1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
/*
* The MIT License (MIT)
*
* Copyright (c) 2015 Matthias P. Braendli
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "cw.h"
#include "arm_math.h"
#include "audio.h"
#include "debug.h"
/* Kernel includes. */
#include "FreeRTOS.h"
#include "queue.h"
#include "semphr.h"
#define ON_BUFFER_SIZE 1024
struct cw_out_message_s {
// Contains a sequence of ones and zeros corresponding to
// TX on/TX off CW data to be sent
uint8_t on_buffer[ON_BUFFER_SIZE];
size_t on_buffer_end;
int freq;
int dit_duration;
};
// The queue contains above structs
QueueHandle_t cw_queue;
static int cw_samplerate;
// The message being currently handled by cw_fill_buffer
static struct cw_out_message_s cw_fill_msg_current;
// Set to 1 if the cw_fill_buffer function is currently handling
// msg_current. 0 if it has to wait for a new message.
static int cw_fill_msg_status;
// Keep track of number of audio samples that were already
// generated from the current message
static int cw_fill_audio_sent;
void cw_init(unsigned int samplerate)
{
cw_samplerate = samplerate;
cw_fill_msg_status = 0;
cw_queue = xQueueCreate(15, sizeof(struct cw_out_message_s));
if (cw_queue == 0) {
while(1); /* fatal error */
}
}
const uint8_t cw_mapping[60] = { // {{{
// Read bits from right to left
0b110101, //+ ASCII 43
0b110101, //, ASCII 44
0b1011110, //- ASCII 45
0b1010101, //., ASCII 46
0b110110, // / ASCII 47
0b100000, // 0, ASCII 48
0b100001, // 1
0b100011,
0b100111,
0b101111,
0b111111,
0b111110,
0b111100,
0b111000,
0b110000, // 9, ASCII 57
// The following are mostly invalid, but
// required to fill the gap in ASCII between
// numerals and capital letters
0b10, // :
0b10, // ;
0b10, // <
0b10, // =
0b10, // >
0b1110011, // ?
0b1101001, //@
0b101, // A ASCII 65
0b11110,
0b11010,
0b1110,
0b11,
0b11011,
0b1100,
0b11111,
0b111,
0b10001,
0b1010,
0b11101,
0b100, //M
0b110,
0b1000,
0b11001,
0b10100,
0b1101,
0b1111,
0b10,
0b1011,
0b10111,
0b1001,
0b10110,
0b10010,
0b11100, // Z
0b101010, //Start, ASCII [
0b1010111, // SK , ASCII '\'
}; //}}}
void cw_symbol(uint8_t sym, struct cw_out_message_s *msg)
{
uint8_t p = 0;
uint8_t val = cw_mapping[sym];
while((val >> p) != 0b1) {
if (((val >> p) & 0b1) == 0b1) {
if (msg->on_buffer_end + 2 < ON_BUFFER_SIZE) {
// tone(1)
msg->on_buffer[msg->on_buffer_end++] = 1;
// silence(1)
msg->on_buffer[msg->on_buffer_end++] = 0;
}
}
else {
if (msg->on_buffer_end + 4 < ON_BUFFER_SIZE) {
// tone(3)
msg->on_buffer[msg->on_buffer_end++] = 1;
msg->on_buffer[msg->on_buffer_end++] = 1;
msg->on_buffer[msg->on_buffer_end++] = 1;
// silence(1)
msg->on_buffer[msg->on_buffer_end++] = 0;
}
}
p++;
}
// silence(4)
if (msg->on_buffer_end + 4 < ON_BUFFER_SIZE) {
for (int i = 0; i < 4; i++) {
msg->on_buffer[msg->on_buffer_end++] = 0;
}
}
}
// Transmit a string in morse code. Supported range:
// All ASCII between '+' and '\', which includes
// numerals and capital letters.
void cw_push_message(const char* text, int dit_duration, int frequency)
{
struct cw_out_message_s msg;
for (int i = 0; i < ON_BUFFER_SIZE; i++) {
msg.on_buffer[i] = 0;
}
msg.on_buffer_end = 0;
msg.freq = frequency;
msg.dit_duration = dit_duration;
const char* sym = text;
do {
if (*sym < '+' || *sym > '\\') {
if (msg.on_buffer_end + 4 < ON_BUFFER_SIZE) {
for (int i = 0; i < 4; i++) {
msg.on_buffer[msg.on_buffer_end++] = 0;
}
}
}
else {
cw_symbol(*sym - '+', &msg);
}
sym++;
} while (*sym != '\0');
xQueueSendToBack(cw_queue, &msg, 0); /* Send Message */
}
size_t cw_fill_buffer(int16_t *buf, size_t bufsize)
{
static float nco_phase = 0.0f;
char msg[40];
if (cw_fill_msg_status == 0) {
int waiting = uxQueueMessagesWaitingFromISR(cw_queue);
if (waiting > 0) {
sprintf(msg, "we have %d\n", waiting);
debug_print(msg);
}
if (uxQueueMessagesWaitingFromISR(cw_queue) > 0 &&
xQueueReceiveFromISR(cw_queue, &cw_fill_msg_current, NULL)) {
// Convert msg to audio samples and transmit
cw_fill_msg_status = 1;
cw_fill_audio_sent = 0;
}
else {
return 0;
}
}
#if 0
const int samples_per_dit = (cw_samplerate * 1000) /
cw_fill_msg_current.dit_duration;
// Angular frequency of NCO
const float omega = 2.0f * FLOAT_PI * cw_fill_msg_current.freq /
(float)cw_samplerate;
// Define start point
int start_i = cw_fill_audio_sent / samples_per_dit;
int start_t = cw_fill_audio_sent % samples_per_dit;
int pos = 0;
for (int i = start_i; i < cw_fill_msg_current.on_buffer_end; i++) {
for (int t = start_t; t < samples_per_dit; t++) {
int16_t s = 0;
if (cw_fill_msg_current.on_buffer[i]) {
nco_phase += omega;
if (nco_phase > FLOAT_PI) {
nco_phase -= 2.0f * FLOAT_PI;
}
s = 32768.0f * arm_sin_f32(nco_phase);
}
if (pos + 2 >= bufsize) {
goto cw_fill_buf_full;
}
// Stereo
buf[pos++] = s;
buf[pos++] = s;
cw_fill_audio_sent += 2;
}
start_t = 0;
}
// We have completed this message
cw_fill_msg_status = 0;
cw_fill_buf_full:
#else
const float omega = 2.0f * FLOAT_PI * 300.0f /
(float)cw_samplerate;
for (int t = 0; t < bufsize; t++) {
int16_t s = 0;
nco_phase += omega;
if (nco_phase > FLOAT_PI) {
nco_phase -= 2.0f * FLOAT_PI;
}
// TODO preserve oscillator phase
s = 32768.0f * arm_sin_f32(nco_phase);
buf[t] = s;
}
#endif
return bufsize;
}
|