1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Matthias P. Braendli
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdlib.h>
#include <stdint.h>
#include <avr/pgmspace.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/sleep.h>
#include <avr/eeprom.h>
// Definitions allocation pin
#define PIN(x) (1 << x)
/* All relay signals PINx_Kx have external pulldown.
* All pins whose name ends in 'n' are active low */
// PORT B
constexpr uint8_t PINB_STATUSn = PIN(0);
// Pins 2,3,4,5 = SPI
constexpr uint8_t PINB_SPI_LTC_CSn = PIN(2); // with external pullup
constexpr uint8_t PINB_SPI_MOSI = PIN(3);
constexpr uint8_t PINB_SPI_MISO = PIN(4);
constexpr uint8_t PINB_SPI_SCK = PIN(5);
constexpr uint8_t PINB_OUTPUTS =
PINB_STATUSn | PINB_SPI_SCK | PINB_SPI_MOSI | PINB_SPI_LTC_CSn;
// PORT C
constexpr uint8_t PINC_ADC0 = PIN(0);
constexpr uint8_t PINC_ADC1 = PIN(1);
constexpr uint8_t PINC_K3_RESET = PIN(2);
constexpr uint8_t PINC_K3_SET = PIN(3);
constexpr uint8_t PINC_K2_RESET = PIN(4);
constexpr uint8_t PINC_K2_SET = PIN(5);
constexpr uint8_t PINC_OUTPUTS =
PINC_K3_RESET | PINC_K3_SET |
PINC_K2_RESET | PINC_K2_SET;
// PORT D
// Pins 0,1 = UART RX,TX
constexpr uint8_t PIND_UART_RX = PIN(0);
constexpr uint8_t PIND_UART_TX = PIN(1);
constexpr uint8_t PIND_ONEWIRE = PIN(4); // with exteral pullup
constexpr uint8_t PIND_K1_RESET = PIN(5);
constexpr uint8_t PIND_K1_SET = PIN(6);
constexpr uint8_t PIND_OUTPUTS =
PIND_UART_TX |
PIND_K1_RESET | PIND_K1_SET;
/* Storage of battery capacity in mC.
* 3600 mC = 1mAh */
/* Store the capacity three times in EEPROM, and check data validity using majority vote */
uint32_t EEMEM stored_capacity1;
uint32_t EEMEM stored_capacity2;
uint32_t EEMEM stored_capacity3;
uint32_t last_store_time; /* In seconds */
uint32_t current_capacity;
/* Assuming F_CPU at 16MHz / 8:
*
* overflow for 100ms: F_CPU [ticks/s] / prescaler [unit-less] * interval [s] = [ticks/s*s] = [ticks]
* interval [s] = 0.1 = 1 / 10
*
* Actual interval after rounding:
* interval [s] = overflow [ticks] / (F_CPU [ticks/s] / prescaler [unit-less])
* = 99.84 ms
*/
volatile uint8_t timer_counter; /* Timer in 100ms steps */
volatile uint32_t timer_seconds; /* Timer in seconds */
ISR(TIMER0_COMPA_vect)
{
timer_counter++;
if (timer_counter >= 10) {
timer_seconds++;
timer_counter = 0;
}
}
enum class error_type_t {
EEPROM_READ_WARNING,
EEPROM_READ_ERROR,
EEPROM_WRITE_ERROR,
};
static void flag_error(error_type_t e) {
// TODO output error
}
static void load_capacity_from_eeprom()
{
uint32_t cap1 = eeprom_read_dword(&stored_capacity1);
uint32_t cap2 = eeprom_read_dword(&stored_capacity2);
uint32_t cap3 = eeprom_read_dword(&stored_capacity3);
if (cap1 == cap2 and cap2 == cap3) {
current_capacity = cap1;
}
else if (cap1 == cap2) {
flag_error(error_type_t::EEPROM_READ_WARNING);
current_capacity = cap1;
eeprom_write_dword(&stored_capacity3, cap1);
}
else if (cap1 == cap3) {
flag_error(error_type_t::EEPROM_READ_WARNING);
current_capacity = cap1;
eeprom_write_dword(&stored_capacity2, cap1);
}
else if (cap2 == cap3) {
flag_error(error_type_t::EEPROM_READ_WARNING);
current_capacity = cap2;
eeprom_write_dword(&stored_capacity1, cap1);
}
else {
flag_error(error_type_t::EEPROM_READ_ERROR);
current_capacity = cap2; // arbitrary
}
}
static void store_capacity_to_eeprom()
{
eeprom_write_dword(&stored_capacity1, current_capacity);
eeprom_write_dword(&stored_capacity2, current_capacity);
eeprom_write_dword(&stored_capacity3, current_capacity);
if (eeprom_read_dword(&stored_capacity1) != current_capacity or
eeprom_read_dword(&stored_capacity2) != current_capacity or
eeprom_read_dword(&stored_capacity3) != current_capacity) {
flag_error(error_type_t::EEPROM_WRITE_ERROR);
}
}
int main()
{
/* Setup GPIO */
// Active-low outputs must be high
PORTB = PINB_STATUSn | PINB_SPI_LTC_CSn;
PORTC = 0;
PORTD = 0;
// Enable output
DDRB = PINB_OUTPUTS;
DDRC = PINC_OUTPUTS;
DDRD = PIND_OUTPUTS;
/* Setup 100Hz timer */
timer_seconds = 0;
timer_counter = 0;
TCCR0B |= (1 << WGM02); // Set timer mode to CTC (datasheet 15.7.2)
TIMSK0 |= (1 << TOIE0); // enable overflow interrupt
OCR0A = (uint8_t)(F_CPU / 1024 / 10); // Overflow at 99.84 ms
TCCR0B |= (1 << CS02) | (1 << CS00); // Start timer at Fcpu/1024
/* Load capacity stored in EEPROM */
load_capacity_from_eeprom();
last_store_time = timer_seconds;
/* Enable interrupts */
sei();
/* Put the CPU to sleep */
set_sleep_mode(SLEEP_MODE_IDLE);
while (true) {
sleep_mode();
if (last_store_time + 3600 * 5 >= timer_seconds) {
store_capacity_to_eeprom();
}
}
return 0;
}
|