1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Matthias P. Braendli
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/* Essential information from datasheet:
*
* SCK mode:
* The internal or external SCK mode is selected on power-up and then
* reselected every time a HIGH-to-LOW transition is detected at the CS pin. If
* SCK is HIGH or floating at power-up or during this transition, the
* converter enters the internal SCK mode. If SCK is LOW at power-up or
* during this transition, the converter enters the external SCK mode.
*
* CS:
* At any time during the conversion cycle, CS may be pulled LOW in order to
* monitor the state of the converter. While CS is pulled LOW, EOC is output
* to the SDO pin. EOC = 1 while a conversion is in progress and EOC = 0 if the
* device is in the sleep state. Independent of CS, the device automatically
* enters the low power sleep state once the conversion is complete.
*
* The device remains in the sleep state until the first rising edge of SCK is
* seen while CS is LOW.
*
* We must latch incoming data on the rising edge of SCK.
*
* On the 32nd falling edge of SCK, the device begins a new conversion.
*
* The sub LSBs are valid conversion results beyond the 24-bit level that may
* be included in averaging or discarded without loss of resolution.
*
* Output format, 32 bits in total:
* EOC, DMY, SIG, EXR, MSB..LSB (24 bits), SUB-LSB(4 bits)
*
* - EOC goes low when the conversion is complete
* - DMY is always low
* - SIG is 1 when Vin > 0
* - EXR is 0 when 0 <= Vin <= Vref
*
*
* We will use External SCK, Single Cycle Conversion (see table 4):
* - SCK must be low on falling edge of CSn
* - We will discard the sub LSB
* - We will check that DMY is always 0, SIG always 1 and EXR always 0
*
*/
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "ltc2400.h"
static void cs_low()
{
cli();
PORTB &= ~PINB_SPI_LTC_CSn;
sei();
}
static void cs_high()
{
cli();
PORTB |= PINB_SPI_LTC_CSn;
sei();
}
static void spi_en()
{
cli();
// Set SPI Enable and Master mode,
// bit order=MSB first (DORD=0),
// SPI mode=0 (CPOL=0, CPHA=0)
//
// clock divider:
// SPR1 and SPR0 are the two LSB bits in SPCR
// SPR1 SPR0 ~SPI2X Freq
// 0 0 0 fosc/2
// 0 1 0 fosc/8
// 1 0 0 fosc/32
// 1 1 0 fosc/64
// double speed mode:
// 0 0 1 fosc/4
// 0 1 1 fosc/16
// 1 0 1 fosc/64
// 1 1 1 fosc/128
//
// Set SPR0 for /8
SPCR = _BV(SPE) | _BV(MSTR) | _BV(SPR0);
SPSR = 0; // clear SPI2X
sei();
}
static void spi_dis()
{
cli();
PORTB &= ~PINB_SPI_SCK;
SPCR = _BV(MSTR) | _BV(SPR1);
sei();
}
void ltc2400_init()
{
cli();
PORTB |= PINB_SPI_LTC_CSn;
// Ensure CLK is low so that the device doesn't enter internal SCK mode
PORTB &= ~PINB_SPI_SCK;
sei();
}
bool ltc2400_conversion_ready()
{
cs_low();
_delay_us(100);
// EOC == 0 means conversion is complete and device in sleep mode
return not (PINB & PINB_SPI_MISO);
}
double ltc2400_get_conversion_result(bool& dmy_fault, bool& exr_fault, uint32_t& raw_value)
{
spi_en();
cs_low();
_delay_us(100);
uint8_t data[4] = {};
for (int i = 0; i < 4; i++) {
SPDR = 0x0; // always output 0
while (!(SPSR & _BV(SPIF))) { /* wait */ }
data[i] = SPDR;
}
spi_dis();
cs_high();
raw_value =
((uint32_t)data[0] << 24) |
((uint32_t)data[1] << 16) |
((uint32_t)data[2] << 8) |
((uint32_t)data[3]);
dmy_fault = raw_value & (1uL << 30);
exr_fault = raw_value & (1uL << 28);
// Mask 4 MSB status bits, and shift out 4 sub-LSB bits
const uint32_t adc_value = (raw_value >> 4) & 0x00FFFFFF;
// Convert ADC value to voltage
return (double)adc_value / ((double)0x00FFFFFF / 5.0f);
}
|