aboutsummaryrefslogtreecommitdiffstats
path: root/sw
diff options
context:
space:
mode:
Diffstat (limited to 'sw')
-rw-r--r--sw/Makefile115
-rw-r--r--sw/lib/DallasTemperature/DallasTemperature.cpp928
-rw-r--r--sw/lib/DallasTemperature/DallasTemperature.h269
-rw-r--r--sw/lib/LTC2400/LTC24XX_general.cpp434
-rw-r--r--sw/lib/LTC2400/LTC24XX_general.h501
-rw-r--r--sw/lib/OneWire/OneWire.cpp580
-rw-r--r--sw/lib/OneWire/OneWire.h182
-rw-r--r--sw/lib/OneWire/util/OneWire_direct_gpio.h420
-rw-r--r--sw/lib/OneWire/util/OneWire_direct_regtype.h52
-rw-r--r--sw/lib/delay.h9
-rw-r--r--sw/main.cpp36
11 files changed, 3526 insertions, 0 deletions
diff --git a/sw/Makefile b/sw/Makefile
new file mode 100644
index 0000000..06d8dd4
--- /dev/null
+++ b/sw/Makefile
@@ -0,0 +1,115 @@
+# Location of build tools
+CC=avr-gcc
+CXX=avr-g++
+OBJCOPY=avr-objcopy
+SIZE=avr-size
+AVRDUDE=avrdude
+
+# Modify this to the device name of the UART used for AVRDUDE
+AVRDUDE_DEV=usb
+PROG = dragon_isp
+
+# Modify this to the CPU you are using
+PART=atmega328
+AVRDUDE_PART=m328
+
+# Cpu frequency is 16MHz, divider = 2
+F_CPU="(16000000UL/2)"
+
+# Directory for built objects
+BUILD_DIR=build
+
+# Port/application object files
+APP_NAME = testapp1
+
+# Application object files
+APP_CXX_OBJECTS = main.o
+APP_OBJECTS =
+
+# Library object files to build and use
+LIB_OBJECTS =
+LIB_CXX_OBJECTS =
+LIB_ASM_OBJECTS =
+LIB_DIR = lib
+
+# Collection of built objects
+ALL_OBJECTS = $(LIB_OBJECTS) $(LIB_ASM_OBJECTS) $(APP_OBJECTS) $(APP_CXX_OBJECTS)
+BUILT_OBJECTS = $(patsubst %,$(BUILD_DIR)/%,$(ALL_OBJECTS))
+
+# Target application filenames (.elf and .hex) for each application object
+APP_ELF = $(APP_NAME).elf
+APP_HEX = $(APP_NAME).hex
+
+# Search build/output directory for dependencies
+vpath %.o ./$(BUILD_DIR)
+vpath %.elf ./$(BUILD_DIR)
+vpath %.hex ./$(BUILD_DIR)
+
+# GCC flags
+CFLAGS=-g -mmcu=$(PART) -O1 -Wall -Werror -DF_CPU=$(F_CPU)
+INCLUDES=-I. -I$(LIB_DIR)
+
+
+#################
+# Build targets #
+#################
+
+# All applications
+all: $(BUILD_DIR) $(APP_HEX) Makefile
+
+# Make build/output directory
+$(BUILD_DIR):
+ mkdir $(BUILD_DIR)
+
+# Application HEX files
+$(APP_HEX): %.hex: %.elf
+ @echo Building $@
+ $(OBJCOPY) -j .text -j .data -O ihex $(BUILD_DIR)/$< $(BUILD_DIR)/$@
+
+# Application ELF files
+$(APP_ELF): %.elf: $(LIB_OBJECTS) $(LIB_CXX_OBJECTS) $(LIB_ASM_OBJECTS) $(APP_OBJECTS) $(APP_CXX_OBJECTS)
+ $(CXX) $(CFLAGS) $(BUILT_OBJECTS) --output $(BUILD_DIR)/$@ -Wl,-Map,$(BUILD_DIR)/$(basename $@).map
+
+# Application objects builder
+$(APP_OBJECTS): %.o: %.c
+ $(CC) -c $(CFLAGS) $(INCLUDES) $< -o $(BUILD_DIR)/$(notdir $@)
+
+$(APP_CXX_OBJECTS): %.o: %.cpp
+ $(CXX) -c $(CFLAGS) $(INCLUDES) $< -o $(BUILD_DIR)/$(notdir $@)
+
+# Application objects builder
+$(LIB_OBJECTS): %.o: $(LIB_DIR)/%.c
+ $(CC) -c $(CFLAGS) $(INCLUDES) $< -o $(BUILD_DIR)/$(notdir $@)
+
+$(LIB_CXX_OBJECTS): %.o: $(LIB_DIR)/%.cpp
+ $(CXX) -c $(CFLAGS) $(INCLUDES) $< -o $(BUILD_DIR)/$(notdir $@)
+
+$(LIB_ASM_OBJECTS): %.o: $(LIB_DIR)/%.s
+ $(CC) -c $(CFLAGS) -x assembler-with-cpp $(INCLUDES) $< -o $(BUILD_DIR)/$(notdir $@)
+
+# .lst file builder
+%.lst: %.c
+ $(CC) $(CFLAGS) $(INCLUDES) -Wa,-al $< > $@
+
+%.lst: %.cpp
+ $(CXX) $(CFLAGS) $(INCLUDES) -Wa,-al $< > $@
+
+# Clean
+clean:
+ rm -f *.o *.elf *.map *.hex *.bin *.lst
+ rm -rf doxygen-avr
+ rm -rf build
+
+# Send to device
+program: $(APP_HEX)
+ $(SIZE) -C $(BUILD_DIR)/$(APP_ELF)
+ $(AVRDUDE) $(AVRDUDE_FLAGS) -c $(PROG) -P $(AVRDUDE_DEV) -p $(AVRDUDE_PART) -U flash:w:$(BUILD_DIR)/$(APP_HEX) -v
+
+fuse:
+ $(AVRDUDE) $(AVRDUDE_FLAGS) -c $(PROG) -P $(AVRDUDE_DEV) -p $(AVRDUDE_PART) -U lfuse:w:0x60:m -U hfuse:w:0xdc:m -U efuse:w:0xff:m -v
+
+interactive:
+ $(AVRDUDE) $(AVRDUDE_FLAGS) -c $(PROG) -P $(AVRDUDE_DEV) -p $(AVRDUDE_PART) -t -v
+
+doxygen:
+ doxygen ./Doxyfile
diff --git a/sw/lib/DallasTemperature/DallasTemperature.cpp b/sw/lib/DallasTemperature/DallasTemperature.cpp
new file mode 100644
index 0000000..a1107ec
--- /dev/null
+++ b/sw/lib/DallasTemperature/DallasTemperature.cpp
@@ -0,0 +1,928 @@
+// This library is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+
+#include "DallasTemperature.h"
+
+#if ARDUINO >= 100
+#include "Arduino.h"
+#else
+extern "C" {
+#include "WConstants.h"
+}
+#endif
+
+// OneWire commands
+#define STARTCONVO 0x44 // Tells device to take a temperature reading and put it on the scratchpad
+#define COPYSCRATCH 0x48 // Copy EEPROM
+#define READSCRATCH 0xBE // Read EEPROM
+#define WRITESCRATCH 0x4E // Write to EEPROM
+#define RECALLSCRATCH 0xB8 // Reload from last known
+#define READPOWERSUPPLY 0xB4 // Determine if device needs parasite power
+#define ALARMSEARCH 0xEC // Query bus for devices with an alarm condition
+
+// Scratchpad locations
+#define TEMP_LSB 0
+#define TEMP_MSB 1
+#define HIGH_ALARM_TEMP 2
+#define LOW_ALARM_TEMP 3
+#define CONFIGURATION 4
+#define INTERNAL_BYTE 5
+#define COUNT_REMAIN 6
+#define COUNT_PER_C 7
+#define SCRATCHPAD_CRC 8
+
+// Device resolution
+#define TEMP_9_BIT 0x1F // 9 bit
+#define TEMP_10_BIT 0x3F // 10 bit
+#define TEMP_11_BIT 0x5F // 11 bit
+#define TEMP_12_BIT 0x7F // 12 bit
+
+#define NO_ALARM_HANDLER ((AlarmHandler *)0)
+
+DallasTemperature::DallasTemperature()
+{
+#if REQUIRESALARMS
+ setAlarmHandler(NO_ALARM_HANDLER);
+#endif
+ useExternalPullup = false;
+}
+DallasTemperature::DallasTemperature(OneWire* _oneWire)
+{
+ setOneWire(_oneWire);
+#if REQUIRESALARMS
+ setAlarmHandler(NO_ALARM_HANDLER);
+#endif
+ useExternalPullup = false;
+}
+
+bool DallasTemperature::validFamily(const uint8_t* deviceAddress) {
+ switch (deviceAddress[0]) {
+ case DS18S20MODEL:
+ case DS18B20MODEL:
+ case DS1822MODEL:
+ case DS1825MODEL:
+ case DS28EA00MODEL:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/*
+ * Constructs DallasTemperature with strong pull-up turned on. Strong pull-up is mandated in DS18B20 datasheet for parasitic
+ * power (2 wires) setup. (https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf, p. 7, section 'Powering the DS18B20').
+ */
+DallasTemperature::DallasTemperature(OneWire* _oneWire, uint8_t _pullupPin) : DallasTemperature(_oneWire){
+ setPullupPin(_pullupPin);
+}
+
+void DallasTemperature::setPullupPin(uint8_t _pullupPin) {
+ useExternalPullup = true;
+ pullupPin = _pullupPin;
+ pinMode(pullupPin, OUTPUT);
+ deactivateExternalPullup();
+}
+
+void DallasTemperature::setOneWire(OneWire* _oneWire) {
+
+ _wire = _oneWire;
+ devices = 0;
+ ds18Count = 0;
+ parasite = false;
+ bitResolution = 9;
+ waitForConversion = true;
+ checkForConversion = true;
+
+}
+
+// initialise the bus
+void DallasTemperature::begin(void) {
+
+ DeviceAddress deviceAddress;
+
+ _wire->reset_search();
+ devices = 0; // Reset the number of devices when we enumerate wire devices
+ ds18Count = 0; // Reset number of DS18xxx Family devices
+
+ while (_wire->search(deviceAddress)) {
+
+ if (validAddress(deviceAddress)) {
+
+ if (!parasite && readPowerSupply(deviceAddress))
+ parasite = true;
+
+ bitResolution = max(bitResolution, getResolution(deviceAddress));
+
+ devices++;
+ if (validFamily(deviceAddress)) {
+ ds18Count++;
+ }
+ }
+ }
+
+}
+
+// returns the number of devices found on the bus
+uint8_t DallasTemperature::getDeviceCount(void) {
+ return devices;
+}
+
+uint8_t DallasTemperature::getDS18Count(void) {
+ return ds18Count;
+}
+
+// returns true if address is valid
+bool DallasTemperature::validAddress(const uint8_t* deviceAddress) {
+ return (_wire->crc8(deviceAddress, 7) == deviceAddress[7]);
+}
+
+// finds an address at a given index on the bus
+// returns true if the device was found
+bool DallasTemperature::getAddress(uint8_t* deviceAddress, uint8_t index) {
+
+ uint8_t depth = 0;
+
+ _wire->reset_search();
+
+ while (depth <= index && _wire->search(deviceAddress)) {
+ if (depth == index && validAddress(deviceAddress))
+ return true;
+ depth++;
+ }
+
+ return false;
+
+}
+
+// attempt to determine if the device at the given address is connected to the bus
+bool DallasTemperature::isConnected(const uint8_t* deviceAddress) {
+
+ ScratchPad scratchPad;
+ return isConnected(deviceAddress, scratchPad);
+
+}
+
+// attempt to determine if the device at the given address is connected to the bus
+// also allows for updating the read scratchpad
+bool DallasTemperature::isConnected(const uint8_t* deviceAddress,
+ uint8_t* scratchPad) {
+ bool b = readScratchPad(deviceAddress, scratchPad);
+ return b && !isAllZeros(scratchPad) && (_wire->crc8(scratchPad, 8) == scratchPad[SCRATCHPAD_CRC]);
+}
+
+bool DallasTemperature::readScratchPad(const uint8_t* deviceAddress,
+ uint8_t* scratchPad) {
+
+ // send the reset command and fail fast
+ int b = _wire->reset();
+ if (b == 0)
+ return false;
+
+ _wire->select(deviceAddress);
+ _wire->write(READSCRATCH);
+
+ // Read all registers in a simple loop
+ // byte 0: temperature LSB
+ // byte 1: temperature MSB
+ // byte 2: high alarm temp
+ // byte 3: low alarm temp
+ // byte 4: DS18S20: store for crc
+ // DS18B20 & DS1822: configuration register
+ // byte 5: internal use & crc
+ // byte 6: DS18S20: COUNT_REMAIN
+ // DS18B20 & DS1822: store for crc
+ // byte 7: DS18S20: COUNT_PER_C
+ // DS18B20 & DS1822: store for crc
+ // byte 8: SCRATCHPAD_CRC
+ for (uint8_t i = 0; i < 9; i++) {
+ scratchPad[i] = _wire->read();
+ }
+
+ b = _wire->reset();
+ return (b == 1);
+}
+
+void DallasTemperature::writeScratchPad(const uint8_t* deviceAddress,
+ const uint8_t* scratchPad) {
+
+ _wire->reset();
+ _wire->select(deviceAddress);
+ _wire->write(WRITESCRATCH);
+ _wire->write(scratchPad[HIGH_ALARM_TEMP]); // high alarm temp
+ _wire->write(scratchPad[LOW_ALARM_TEMP]); // low alarm temp
+
+ // DS1820 and DS18S20 have no configuration register
+ if (deviceAddress[0] != DS18S20MODEL)
+ _wire->write(scratchPad[CONFIGURATION]);
+
+ _wire->reset();
+
+ // save the newly written values to eeprom
+ _wire->select(deviceAddress);
+ _wire->write(COPYSCRATCH, parasite);
+ delay(20); // <--- added 20ms delay to allow 10ms long EEPROM write operation (as specified by datasheet)
+
+ if (parasite) {
+ activateExternalPullup();
+ delay(10); // 10ms delay
+ deactivateExternalPullup();
+ }
+ _wire->reset();
+
+}
+
+bool DallasTemperature::readPowerSupply(const uint8_t* deviceAddress) {
+
+ bool ret = false;
+ _wire->reset();
+ _wire->select(deviceAddress);
+ _wire->write(READPOWERSUPPLY);
+ if (_wire->read_bit() == 0)
+ ret = true;
+ _wire->reset();
+ return ret;
+
+}
+
+// set resolution of all devices to 9, 10, 11, or 12 bits
+// if new resolution is out of range, it is constrained.
+void DallasTemperature::setResolution(uint8_t newResolution) {
+
+ bitResolution = constrain(newResolution, 9, 12);
+ DeviceAddress deviceAddress;
+ for (int i = 0; i < devices; i++) {
+ getAddress(deviceAddress, i);
+ setResolution(deviceAddress, bitResolution, true);
+ }
+
+}
+
+// set resolution of a device to 9, 10, 11, or 12 bits
+// if new resolution is out of range, 9 bits is used.
+bool DallasTemperature::setResolution(const uint8_t* deviceAddress,
+ uint8_t newResolution, bool skipGlobalBitResolutionCalculation) {
+
+ // ensure same behavior as setResolution(uint8_t newResolution)
+ newResolution = constrain(newResolution, 9, 12);
+
+ // return when stored value == new value
+ if (getResolution(deviceAddress) == newResolution)
+ return true;
+
+ ScratchPad scratchPad;
+ if (isConnected(deviceAddress, scratchPad)) {
+
+ // DS1820 and DS18S20 have no resolution configuration register
+ if (deviceAddress[0] != DS18S20MODEL) {
+
+ switch (newResolution) {
+ case 12:
+ scratchPad[CONFIGURATION] = TEMP_12_BIT;
+ break;
+ case 11:
+ scratchPad[CONFIGURATION] = TEMP_11_BIT;
+ break;
+ case 10:
+ scratchPad[CONFIGURATION] = TEMP_10_BIT;
+ break;
+ case 9:
+ default:
+ scratchPad[CONFIGURATION] = TEMP_9_BIT;
+ break;
+ }
+ writeScratchPad(deviceAddress, scratchPad);
+
+ // without calculation we can always set it to max
+ bitResolution = max(bitResolution, newResolution);
+
+ if (!skipGlobalBitResolutionCalculation
+ && (bitResolution > newResolution)) {
+ bitResolution = newResolution;
+ DeviceAddress deviceAddr;
+ for (int i = 0; i < devices; i++) {
+ getAddress(deviceAddr, i);
+ bitResolution = max(bitResolution,
+ getResolution(deviceAddr));
+ }
+ }
+ }
+ return true; // new value set
+ }
+
+ return false;
+
+}
+
+// returns the global resolution
+uint8_t DallasTemperature::getResolution() {
+ return bitResolution;
+}
+
+// returns the current resolution of the device, 9-12
+// returns 0 if device not found
+uint8_t DallasTemperature::getResolution(const uint8_t* deviceAddress) {
+
+ // DS1820 and DS18S20 have no resolution configuration register
+ if (deviceAddress[0] == DS18S20MODEL)
+ return 12;
+
+ ScratchPad scratchPad;
+ if (isConnected(deviceAddress, scratchPad)) {
+ switch (scratchPad[CONFIGURATION]) {
+ case TEMP_12_BIT:
+ return 12;
+
+ case TEMP_11_BIT:
+ return 11;
+
+ case TEMP_10_BIT:
+ return 10;
+
+ case TEMP_9_BIT:
+ return 9;
+ }
+ }
+ return 0;
+
+}
+
+// sets the value of the waitForConversion flag
+// TRUE : function requestTemperature() etc returns when conversion is ready
+// FALSE: function requestTemperature() etc returns immediately (USE WITH CARE!!)
+// (1) programmer has to check if the needed delay has passed
+// (2) but the application can do meaningful things in that time
+void DallasTemperature::setWaitForConversion(bool flag) {
+ waitForConversion = flag;
+}
+
+// gets the value of the waitForConversion flag
+bool DallasTemperature::getWaitForConversion() {
+ return waitForConversion;
+}
+
+// sets the value of the checkForConversion flag
+// TRUE : function requestTemperature() etc will 'listen' to an IC to determine whether a conversion is complete
+// FALSE: function requestTemperature() etc will wait a set time (worst case scenario) for a conversion to complete
+void DallasTemperature::setCheckForConversion(bool flag) {
+ checkForConversion = flag;
+}
+
+// gets the value of the waitForConversion flag
+bool DallasTemperature::getCheckForConversion() {
+ return checkForConversion;
+}
+
+bool DallasTemperature::isConversionComplete() {
+ uint8_t b = _wire->read_bit();
+ return (b == 1);
+}
+
+// sends command for all devices on the bus to perform a temperature conversion
+void DallasTemperature::requestTemperatures() {
+
+ _wire->reset();
+ _wire->skip();
+ _wire->write(STARTCONVO, parasite);
+
+ // ASYNC mode?
+ if (!waitForConversion)
+ return;
+ blockTillConversionComplete(bitResolution);
+
+}
+
+// sends command for one device to perform a temperature by address
+// returns FALSE if device is disconnected
+// returns TRUE otherwise
+bool DallasTemperature::requestTemperaturesByAddress(
+ const uint8_t* deviceAddress) {
+
+ uint8_t bitResolution = getResolution(deviceAddress);
+ if (bitResolution == 0) {
+ return false; //Device disconnected
+ }
+
+ _wire->reset();
+ _wire->select(deviceAddress);
+ _wire->write(STARTCONVO, parasite);
+
+ // ASYNC mode?
+ if (!waitForConversion)
+ return true;
+
+ blockTillConversionComplete(bitResolution);
+
+ return true;
+
+}
+
+// Continue to check if the IC has responded with a temperature
+void DallasTemperature::blockTillConversionComplete(uint8_t bitResolution) {
+
+ int delms = millisToWaitForConversion(bitResolution);
+ if (checkForConversion && !parasite) {
+ unsigned long now = millis();
+ while (!isConversionComplete() && (millis() - delms < now))
+ ;
+ } else {
+ activateExternalPullup();
+ delay(delms);
+ deactivateExternalPullup();
+ }
+
+}
+
+// returns number of milliseconds to wait till conversion is complete (based on IC datasheet)
+int16_t DallasTemperature::millisToWaitForConversion(uint8_t bitResolution) {
+
+ switch (bitResolution) {
+ case 9:
+ return 94;
+ case 10:
+ return 188;
+ case 11:
+ return 375;
+ default:
+ return 750;
+ }
+
+}
+
+void DallasTemperature::activateExternalPullup() {
+ if(useExternalPullup)
+ digitalWrite(pullupPin, LOW);
+}
+
+void DallasTemperature::deactivateExternalPullup() {
+ if(useExternalPullup)
+ digitalWrite(pullupPin, HIGH);
+}
+
+// sends command for one device to perform a temp conversion by index
+bool DallasTemperature::requestTemperaturesByIndex(uint8_t deviceIndex) {
+
+ DeviceAddress deviceAddress;
+ getAddress(deviceAddress, deviceIndex);
+
+ return requestTemperaturesByAddress(deviceAddress);
+
+}
+
+// Fetch temperature for device index
+float DallasTemperature::getTempCByIndex(uint8_t deviceIndex) {
+
+ DeviceAddress deviceAddress;
+ if (!getAddress(deviceAddress, deviceIndex)) {
+ return DEVICE_DISCONNECTED_C;
+ }
+
+ return getTempC((uint8_t*) deviceAddress);
+
+}
+
+// Fetch temperature for device index
+float DallasTemperature::getTempFByIndex(uint8_t deviceIndex) {
+
+ DeviceAddress deviceAddress;
+
+ if (!getAddress(deviceAddress, deviceIndex)) {
+ return DEVICE_DISCONNECTED_F;
+ }
+
+ return getTempF((uint8_t*) deviceAddress);
+
+}
+
+// reads scratchpad and returns fixed-point temperature, scaling factor 2^-7
+int16_t DallasTemperature::calculateTemperature(const uint8_t* deviceAddress,
+ uint8_t* scratchPad) {
+
+ int16_t fpTemperature = (((int16_t) scratchPad[TEMP_MSB]) << 11)
+ | (((int16_t) scratchPad[TEMP_LSB]) << 3);
+
+ /*
+ DS1820 and DS18S20 have a 9-bit temperature register.
+
+ Resolutions greater than 9-bit can be calculated using the data from
+ the temperature, and COUNT REMAIN and COUNT PER °C registers in the
+ scratchpad. The resolution of the calculation depends on the model.
+
+ While the COUNT PER °C register is hard-wired to 16 (10h) in a
+ DS18S20, it changes with temperature in DS1820.
+
+ After reading the scratchpad, the TEMP_READ value is obtained by
+ truncating the 0.5°C bit (bit 0) from the temperature data. The
+ extended resolution temperature can then be calculated using the
+ following equation:
+
+ COUNT_PER_C - COUNT_REMAIN
+ TEMPERATURE = TEMP_READ - 0.25 + --------------------------
+ COUNT_PER_C
+
+ Hagai Shatz simplified this to integer arithmetic for a 12 bits
+ value for a DS18S20, and James Cameron added legacy DS1820 support.
+
+ See - http://myarduinotoy.blogspot.co.uk/2013/02/12bit-result-from-ds18s20.html
+ */
+
+ if (deviceAddress[0] == DS18S20MODEL) {
+ fpTemperature = ((fpTemperature & 0xfff0) << 3) - 32
+ + (((scratchPad[COUNT_PER_C] - scratchPad[COUNT_REMAIN]) << 7)
+ / scratchPad[COUNT_PER_C]);
+ }
+
+ return fpTemperature;
+}
+
+// returns temperature in 1/128 degrees C or DEVICE_DISCONNECTED_RAW if the
+// device's scratch pad cannot be read successfully.
+// the numeric value of DEVICE_DISCONNECTED_RAW is defined in
+// DallasTemperature.h. It is a large negative number outside the
+// operating range of the device
+int16_t DallasTemperature::getTemp(const uint8_t* deviceAddress) {
+
+ ScratchPad scratchPad;
+ if (isConnected(deviceAddress, scratchPad))
+ return calculateTemperature(deviceAddress, scratchPad);
+ return DEVICE_DISCONNECTED_RAW;
+
+}
+
+// returns temperature in degrees C or DEVICE_DISCONNECTED_C if the
+// device's scratch pad cannot be read successfully.
+// the numeric value of DEVICE_DISCONNECTED_C is defined in
+// DallasTemperature.h. It is a large negative number outside the
+// operating range of the device
+float DallasTemperature::getTempC(const uint8_t* deviceAddress) {
+ return rawToCelsius(getTemp(deviceAddress));
+}
+
+// returns temperature in degrees F or DEVICE_DISCONNECTED_F if the
+// device's scratch pad cannot be read successfully.
+// the numeric value of DEVICE_DISCONNECTED_F is defined in
+// DallasTemperature.h. It is a large negative number outside the
+// operating range of the device
+float DallasTemperature::getTempF(const uint8_t* deviceAddress) {
+ return rawToFahrenheit(getTemp(deviceAddress));
+}
+
+// returns true if the bus requires parasite power
+bool DallasTemperature::isParasitePowerMode(void) {
+ return parasite;
+}
+
+// IF alarm is not used one can store a 16 bit int of userdata in the alarm
+// registers. E.g. an ID of the sensor.
+// See github issue #29
+
+// note if device is not connected it will fail writing the data.
+void DallasTemperature::setUserData(const uint8_t* deviceAddress,
+ int16_t data) {
+ // return when stored value == new value
+ if (getUserData(deviceAddress) == data)
+ return;
+
+ ScratchPad scratchPad;
+ if (isConnected(deviceAddress, scratchPad)) {
+ scratchPad[HIGH_ALARM_TEMP] = data >> 8;
+ scratchPad[LOW_ALARM_TEMP] = data & 255;
+ writeScratchPad(deviceAddress, scratchPad);
+ }
+}
+
+int16_t DallasTemperature::getUserData(const uint8_t* deviceAddress) {
+ int16_t data = 0;
+ ScratchPad scratchPad;
+ if (isConnected(deviceAddress, scratchPad)) {
+ data = scratchPad[HIGH_ALARM_TEMP] << 8;
+ data += scratchPad[LOW_ALARM_TEMP];
+ }
+ return data;
+}
+
+// note If address cannot be found no error will be reported.
+int16_t DallasTemperature::getUserDataByIndex(uint8_t deviceIndex) {
+ DeviceAddress deviceAddress;
+ getAddress(deviceAddress, deviceIndex);
+ return getUserData((uint8_t*) deviceAddress);
+}
+
+void DallasTemperature::setUserDataByIndex(uint8_t deviceIndex, int16_t data) {
+ DeviceAddress deviceAddress;
+ getAddress(deviceAddress, deviceIndex);
+ setUserData((uint8_t*) deviceAddress, data);
+}
+
+// Convert float Celsius to Fahrenheit
+float DallasTemperature::toFahrenheit(float celsius) {
+ return (celsius * 1.8) + 32;
+}
+
+// Convert float Fahrenheit to Celsius
+float DallasTemperature::toCelsius(float fahrenheit) {
+ return (fahrenheit - 32) * 0.555555556;
+}
+
+// convert from raw to Celsius
+float DallasTemperature::rawToCelsius(int16_t raw) {
+
+ if (raw <= DEVICE_DISCONNECTED_RAW)
+ return DEVICE_DISCONNECTED_C;
+ // C = RAW/128
+ return (float) raw * 0.0078125;
+
+}
+
+// convert from raw to Fahrenheit
+float DallasTemperature::rawToFahrenheit(int16_t raw) {
+
+ if (raw <= DEVICE_DISCONNECTED_RAW)
+ return DEVICE_DISCONNECTED_F;
+ // C = RAW/128
+ // F = (C*1.8)+32 = (RAW/128*1.8)+32 = (RAW*0.0140625)+32
+ return ((float) raw * 0.0140625) + 32;
+
+}
+
+// Returns true if all bytes of scratchPad are '\0'
+bool DallasTemperature::isAllZeros(const uint8_t * const scratchPad, const size_t length) {
+ for (size_t i = 0; i < length; i++) {
+ if (scratchPad[i] != 0) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+#if REQUIRESALARMS
+
+/*
+
+ ALARMS:
+
+ TH and TL Register Format
+
+ BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
+ S 2^6 2^5 2^4 2^3 2^2 2^1 2^0
+
+ Only bits 11 through 4 of the temperature register are used
+ in the TH and TL comparison since TH and TL are 8-bit
+ registers. If the measured temperature is lower than or equal
+ to TL or higher than or equal to TH, an alarm condition exists
+ and an alarm flag is set inside the DS18B20. This flag is
+ updated after every temperature measurement; therefore, if the
+ alarm condition goes away, the flag will be turned off after
+ the next temperature conversion.
+
+ */
+
+// sets the high alarm temperature for a device in degrees Celsius
+// accepts a float, but the alarm resolution will ignore anything
+// after a decimal point. valid range is -55C - 125C
+void DallasTemperature::setHighAlarmTemp(const uint8_t* deviceAddress,
+ int8_t celsius) {
+
+ // return when stored value == new value
+ if (getHighAlarmTemp(deviceAddress) == celsius)
+ return;
+
+ // make sure the alarm temperature is within the device's range
+ if (celsius > 125)
+ celsius = 125;
+ else if (celsius < -55)
+ celsius = -55;
+
+ ScratchPad scratchPad;
+ if (isConnected(deviceAddress, scratchPad)) {
+ scratchPad[HIGH_ALARM_TEMP] = (uint8_t) celsius;
+ writeScratchPad(deviceAddress, scratchPad);
+ }
+
+}
+
+// sets the low alarm temperature for a device in degrees Celsius
+// accepts a float, but the alarm resolution will ignore anything
+// after a decimal point. valid range is -55C - 125C
+void DallasTemperature::setLowAlarmTemp(const uint8_t* deviceAddress,
+ int8_t celsius) {
+
+ // return when stored value == new value
+ if (getLowAlarmTemp(deviceAddress) == celsius)
+ return;
+
+ // make sure the alarm temperature is within the device's range
+ if (celsius > 125)
+ celsius = 125;
+ else if (celsius < -55)
+ celsius = -55;
+
+ ScratchPad scratchPad;
+ if (isConnected(deviceAddress, scratchPad)) {
+ scratchPad[LOW_ALARM_TEMP] = (uint8_t) celsius;
+ writeScratchPad(deviceAddress, scratchPad);
+ }
+
+}
+
+// returns a int8_t with the current high alarm temperature or
+// DEVICE_DISCONNECTED for an address
+int8_t DallasTemperature::getHighAlarmTemp(const uint8_t* deviceAddress) {
+
+ ScratchPad scratchPad;
+ if (isConnected(deviceAddress, scratchPad))
+ return (int8_t) scratchPad[HIGH_ALARM_TEMP];
+ return DEVICE_DISCONNECTED_C;
+
+}
+
+// returns a int8_t with the current low alarm temperature or
+// DEVICE_DISCONNECTED for an address
+int8_t DallasTemperature::getLowAlarmTemp(const uint8_t* deviceAddress) {
+
+ ScratchPad scratchPad;
+ if (isConnected(deviceAddress, scratchPad))
+ return (int8_t) scratchPad[LOW_ALARM_TEMP];
+ return DEVICE_DISCONNECTED_C;
+
+}
+
+// resets internal variables used for the alarm search
+void DallasTemperature::resetAlarmSearch() {
+
+ alarmSearchJunction = -1;
+ alarmSearchExhausted = 0;
+ for (uint8_t i = 0; i < 7; i++) {
+ alarmSearchAddress[i] = 0;
+ }
+
+}
+
+// This is a modified version of the OneWire::search method.
+//
+// Also added the OneWire search fix documented here:
+// http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295
+//
+// Perform an alarm search. If this function returns a '1' then it has
+// enumerated the next device and you may retrieve the ROM from the
+// OneWire::address variable. If there are no devices, no further
+// devices, or something horrible happens in the middle of the
+// enumeration then a 0 is returned. If a new device is found then
+// its address is copied to newAddr. Use
+// DallasTemperature::resetAlarmSearch() to start over.
+bool DallasTemperature::alarmSearch(uint8_t* newAddr) {
+
+ uint8_t i;
+ int8_t lastJunction = -1;
+ uint8_t done = 1;
+
+ if (alarmSearchExhausted)
+ return false;
+ if (!_wire->reset())
+ return false;
+
+ // send the alarm search command
+ _wire->write(0xEC, 0);
+
+ for (i = 0; i < 64; i++) {
+
+ uint8_t a = _wire->read_bit();
+ uint8_t nota = _wire->read_bit();
+ uint8_t ibyte = i / 8;
+ uint8_t ibit = 1 << (i & 7);
+
+ // I don't think this should happen, this means nothing responded, but maybe if
+ // something vanishes during the search it will come up.
+ if (a && nota)
+ return false;
+
+ if (!a && !nota) {
+ if (i == alarmSearchJunction) {
+ // this is our time to decide differently, we went zero last time, go one.
+ a = 1;
+ alarmSearchJunction = lastJunction;
+ } else if (i < alarmSearchJunction) {
+
+ // take whatever we took last time, look in address
+ if (alarmSearchAddress[ibyte] & ibit) {
+ a = 1;
+ } else {
+ // Only 0s count as pending junctions, we've already exhausted the 0 side of 1s
+ a = 0;
+ done = 0;
+ lastJunction = i;
+ }
+ } else {
+ // we are blazing new tree, take the 0
+ a = 0;
+ alarmSearchJunction = i;
+ done = 0;
+ }
+ // OneWire search fix
+ // See: http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295
+ }
+
+ if (a)
+ alarmSearchAddress[ibyte] |= ibit;
+ else
+ alarmSearchAddress[ibyte] &= ~ibit;
+
+ _wire->write_bit(a);
+ }
+
+ if (done)
+ alarmSearchExhausted = 1;
+ for (i = 0; i < 8; i++)
+ newAddr[i] = alarmSearchAddress[i];
+ return true;
+
+}
+
+// returns true if device address might have an alarm condition
+// (only an alarm search can verify this)
+bool DallasTemperature::hasAlarm(const uint8_t* deviceAddress) {
+
+ ScratchPad scratchPad;
+ if (isConnected(deviceAddress, scratchPad)) {
+
+ int8_t temp = calculateTemperature(deviceAddress, scratchPad) >> 7;
+
+ // check low alarm
+ if (temp <= (int8_t) scratchPad[LOW_ALARM_TEMP])
+ return true;
+
+ // check high alarm
+ if (temp >= (int8_t) scratchPad[HIGH_ALARM_TEMP])
+ return true;
+ }
+
+ // no alarm
+ return false;
+
+}
+
+// returns true if any device is reporting an alarm condition on the bus
+bool DallasTemperature::hasAlarm(void) {
+
+ DeviceAddress deviceAddress;
+ resetAlarmSearch();
+ return alarmSearch(deviceAddress);
+}
+
+// runs the alarm handler for all devices returned by alarmSearch()
+// unless there no _AlarmHandler exist.
+void DallasTemperature::processAlarms(void) {
+
+if (!hasAlarmHandler())
+{
+ return;
+}
+
+ resetAlarmSearch();
+ DeviceAddress alarmAddr;
+
+ while (alarmSearch(alarmAddr)) {
+ if (validAddress(alarmAddr)) {
+ _AlarmHandler(alarmAddr);
+ }
+ }
+}
+
+// sets the alarm handler
+void DallasTemperature::setAlarmHandler(const AlarmHandler *handler) {
+ _AlarmHandler = handler;
+}
+
+// checks if AlarmHandler has been set.
+bool DallasTemperature::hasAlarmHandler()
+{
+ return _AlarmHandler != NO_ALARM_HANDLER;
+}
+
+#endif
+
+#if REQUIRESNEW
+
+// MnetCS - Allocates memory for DallasTemperature. Allows us to instance a new object
+void* DallasTemperature::operator new(unsigned int size) { // Implicit NSS obj size
+
+ void * p;// void pointer
+ p = malloc(size);// Allocate memory
+ memset((DallasTemperature*)p,0,size);// Initialise memory
+
+ //!!! CANT EXPLICITLY CALL CONSTRUCTOR - workaround by using an init() methodR - workaround by using an init() method
+ return (DallasTemperature*) p;// Cast blank region to NSS pointer
+}
+
+// MnetCS 2009 - Free the memory used by this instance
+void DallasTemperature::operator delete(void* p) {
+
+ DallasTemperature* pNss = (DallasTemperature*) p; // Cast to NSS pointer
+ pNss->~DallasTemperature();// Destruct the object
+
+ free(p);// Free the memory
+}
+
+#endif
diff --git a/sw/lib/DallasTemperature/DallasTemperature.h b/sw/lib/DallasTemperature/DallasTemperature.h
new file mode 100644
index 0000000..49a059d
--- /dev/null
+++ b/sw/lib/DallasTemperature/DallasTemperature.h
@@ -0,0 +1,269 @@
+#ifndef DallasTemperature_h
+#define DallasTemperature_h
+
+#define DALLASTEMPLIBVERSION "3.7.9" // To be deprecated
+
+// This library is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+
+// set to true to include code for new and delete operators
+#ifndef REQUIRESNEW
+#define REQUIRESNEW false
+#endif
+
+// set to true to include code implementing alarm search functions
+#ifndef REQUIRESALARMS
+#define REQUIRESALARMS true
+#endif
+
+#include <inttypes.h>
+#ifdef __STM32F1__
+#include <OneWireSTM.h>
+#else
+#include <OneWire.h>
+#endif
+
+// Model IDs
+#define DS18S20MODEL 0x10 // also DS1820
+#define DS18B20MODEL 0x28
+#define DS1822MODEL 0x22
+#define DS1825MODEL 0x3B
+#define DS28EA00MODEL 0x42
+
+// Error Codes
+#define DEVICE_DISCONNECTED_C -127
+#define DEVICE_DISCONNECTED_F -196.6
+#define DEVICE_DISCONNECTED_RAW -7040
+
+typedef uint8_t DeviceAddress[8];
+
+class DallasTemperature {
+public:
+
+ DallasTemperature();
+ DallasTemperature(OneWire*);
+ DallasTemperature(OneWire*, uint8_t);
+
+ void setOneWire(OneWire*);
+
+ void setPullupPin(uint8_t);
+
+ // initialise bus
+ void begin(void);
+
+ // returns the number of devices found on the bus
+ uint8_t getDeviceCount(void);
+
+ // returns the number of DS18xxx Family devices on bus
+ uint8_t getDS18Count(void);
+
+ // returns true if address is valid
+ bool validAddress(const uint8_t*);
+
+ // returns true if address is of the family of sensors the lib supports.
+ bool validFamily(const uint8_t* deviceAddress);
+
+ // finds an address at a given index on the bus
+ bool getAddress(uint8_t*, uint8_t);
+
+ // attempt to determine if the device at the given address is connected to the bus
+ bool isConnected(const uint8_t*);
+
+ // attempt to determine if the device at the given address is connected to the bus
+ // also allows for updating the read scratchpad
+ bool isConnected(const uint8_t*, uint8_t*);
+
+ // read device's scratchpad
+ bool readScratchPad(const uint8_t*, uint8_t*);
+
+ // write device's scratchpad
+ void writeScratchPad(const uint8_t*, const uint8_t*);
+
+ // read device's power requirements
+ bool readPowerSupply(const uint8_t*);
+
+ // get global resolution
+ uint8_t getResolution();
+
+ // set global resolution to 9, 10, 11, or 12 bits
+ void setResolution(uint8_t);
+
+ // returns the device resolution: 9, 10, 11, or 12 bits
+ uint8_t getResolution(const uint8_t*);
+
+ // set resolution of a device to 9, 10, 11, or 12 bits
+ bool setResolution(const uint8_t*, uint8_t,
+ bool skipGlobalBitResolutionCalculation = false);
+
+ // sets/gets the waitForConversion flag
+ void setWaitForConversion(bool);
+ bool getWaitForConversion(void);
+
+ // sets/gets the checkForConversion flag
+ void setCheckForConversion(bool);
+ bool getCheckForConversion(void);
+
+ // sends command for all devices on the bus to perform a temperature conversion
+ void requestTemperatures(void);
+
+ // sends command for one device to perform a temperature conversion by address
+ bool requestTemperaturesByAddress(const uint8_t*);
+
+ // sends command for one device to perform a temperature conversion by index
+ bool requestTemperaturesByIndex(uint8_t);
+
+ // returns temperature raw value (12 bit integer of 1/128 degrees C)
+ int16_t getTemp(const uint8_t*);
+
+ // returns temperature in degrees C
+ float getTempC(const uint8_t*);
+
+ // returns temperature in degrees F
+ float getTempF(const uint8_t*);
+
+ // Get temperature for device index (slow)
+ float getTempCByIndex(uint8_t);
+
+ // Get temperature for device index (slow)
+ float getTempFByIndex(uint8_t);
+
+ // returns true if the bus requires parasite power
+ bool isParasitePowerMode(void);
+
+ // Is a conversion complete on the wire? Only applies to the first sensor on the wire.
+ bool isConversionComplete(void);
+
+ int16_t millisToWaitForConversion(uint8_t);
+
+#if REQUIRESALARMS
+
+ typedef void AlarmHandler(const uint8_t*);
+
+ // sets the high alarm temperature for a device
+ // accepts a int8_t. valid range is -55C - 125C
+ void setHighAlarmTemp(const uint8_t*, int8_t);
+
+ // sets the low alarm temperature for a device
+ // accepts a int8_t. valid range is -55C - 125C
+ void setLowAlarmTemp(const uint8_t*, int8_t);
+
+ // returns a int8_t with the current high alarm temperature for a device
+ // in the range -55C - 125C
+ int8_t getHighAlarmTemp(const uint8_t*);
+
+ // returns a int8_t with the current low alarm temperature for a device
+ // in the range -55C - 125C
+ int8_t getLowAlarmTemp(const uint8_t*);
+
+ // resets internal variables used for the alarm search
+ void resetAlarmSearch(void);
+
+ // search the wire for devices with active alarms
+ bool alarmSearch(uint8_t*);
+
+ // returns true if ia specific device has an alarm
+ bool hasAlarm(const uint8_t*);
+
+ // returns true if any device is reporting an alarm on the bus
+ bool hasAlarm(void);
+
+ // runs the alarm handler for all devices returned by alarmSearch()
+ void processAlarms(void);
+
+ // sets the alarm handler
+ void setAlarmHandler(const AlarmHandler *);
+
+ // returns true if an AlarmHandler has been set
+ bool hasAlarmHandler();
+
+#endif
+
+ // if no alarm handler is used the two bytes can be used as user data
+ // example of such usage is an ID.
+ // note if device is not connected it will fail writing the data.
+ // note if address cannot be found no error will be reported.
+ // in short use carefully
+ void setUserData(const uint8_t*, int16_t);
+ void setUserDataByIndex(uint8_t, int16_t);
+ int16_t getUserData(const uint8_t*);
+ int16_t getUserDataByIndex(uint8_t);
+
+ // convert from Celsius to Fahrenheit
+ static float toFahrenheit(float);
+
+ // convert from Fahrenheit to Celsius
+ static float toCelsius(float);
+
+ // convert from raw to Celsius
+ static float rawToCelsius(int16_t);
+
+ // convert from raw to Fahrenheit
+ static float rawToFahrenheit(int16_t);
+
+#if REQUIRESNEW
+
+ // initialize memory area
+ void* operator new (unsigned int);
+
+ // delete memory reference
+ void operator delete(void*);
+
+#endif
+
+private:
+ typedef uint8_t ScratchPad[9];
+
+ // parasite power on or off
+ bool parasite;
+
+ // external pullup
+ bool useExternalPullup;
+ uint8_t pullupPin;
+
+ // used to determine the delay amount needed to allow for the
+ // temperature conversion to take place
+ uint8_t bitResolution;
+
+ // used to requestTemperature with or without delay
+ bool waitForConversion;
+
+ // used to requestTemperature to dynamically check if a conversion is complete
+ bool checkForConversion;
+
+ // count of devices on the bus
+ uint8_t devices;
+
+ // count of DS18xxx Family devices on bus
+ uint8_t ds18Count;
+
+ // Take a pointer to one wire instance
+ OneWire* _wire;
+
+ // reads scratchpad and returns the raw temperature
+ int16_t calculateTemperature(const uint8_t*, uint8_t*);
+
+ void blockTillConversionComplete(uint8_t);
+
+ // Returns true if all bytes of scratchPad are '\0'
+ bool isAllZeros(const uint8_t* const scratchPad, const size_t length = 9);
+
+ // External pullup control
+ void activateExternalPullup(void);
+ void deactivateExternalPullup(void);
+
+#if REQUIRESALARMS
+
+ // required for alarmSearch
+ uint8_t alarmSearchAddress[8];
+ int8_t alarmSearchJunction;
+ uint8_t alarmSearchExhausted;
+
+ // the alarm handler function pointer
+ AlarmHandler *_AlarmHandler;
+
+#endif
+
+};
+#endif
diff --git a/sw/lib/LTC2400/LTC24XX_general.cpp b/sw/lib/LTC2400/LTC24XX_general.cpp
new file mode 100644
index 0000000..615edff
--- /dev/null
+++ b/sw/lib/LTC2400/LTC24XX_general.cpp
@@ -0,0 +1,434 @@
+/*!
+LTC24XX General Library: Functions and defines for all SINC4 Delta Sigma ADCs.
+
+@verbatim
+
+These functions and defines apply to all No Latency Delta Sigmas in the
+LTC2480 EasyDrive family, LTC2410 differential family, LTC2400 single-ended family,
+and the LTC2440 High Speed family with selectable speed / resolution.
+
+It does not cover the LTC2450 tiny, low cost delta sigma ADC famliy.
+
+Please refer to the No Latency Delta Sigma ADC selector guide available at:
+
+http://www.linear.com/docs/41341
+
+
+@endverbatim
+
+http://www.linear.com/product/LTC2449
+
+http://www.linear.com/product/LTC2449#demoboards
+
+REVISION HISTORY
+$Revision: 1807 $
+$Date: 2013-07-29 13:06:06 -0700 (Mon, 29 Jul 2013) $
+
+Copyright (c) 2013, Linear Technology Corp.(LTC)
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+1. Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+2. Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
+ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+The views and conclusions contained in the software and documentation are those
+of the authors and should not be interpreted as representing official policies,
+either expressed or implied, of Linear Technology Corp.
+
+The Linear Technology Linduino is not affiliated with the official Arduino team.
+However, the Linduino is only possible because of the Arduino team's commitment
+to the open-source community. Please, visit http://www.arduino.cc and
+http://store.arduino.cc , and consider a purchase that will help fund their
+ongoing work.
+*/
+
+//! @defgroup LTC24XX LTC24XX: All no-latency delta sigma ADCs with SINC4 rejection
+
+/*! @file
+ @ingroup LTC24XX
+ Library for LTC24XX no-latency delta sigma ADCs with SINC4 rejection
+*/
+
+#include <stdint.h>
+#include <Arduino.h>
+#include "Linduino.h"
+#include <SPI.h>
+#include "LT_SPI.h"
+#include <Wire.h>
+#include "LT_I2C.h"
+#include "LTC24XX_general.h"
+
+
+int8_t LTC24XX_EOC_timeout(uint8_t cs, uint16_t miso_timeout)
+// Checks for EOC with a specified timeout (ms)
+{
+ uint16_t timer_count = 0; // Timer count for MISO
+ output_low(cs); //! 1) Pull CS low
+ while (1) //! 2) Wait for SDO (MISO) to go low
+ {
+ if (input(MISO) == 0) break; //! 3) If SDO is low, break loop
+ if (timer_count++>miso_timeout) // If timeout, return 1 (failure)
+ {
+ output_high(cs); // Pull CS high
+ return(1);
+ }
+ else
+ delay(1);
+ }
+ output_high(cs); // Pull CS high
+ return(0);
+}
+
+// Reads from LTC24XX ADC that has no configuration word and a 32 bit output word.
+void LTC24XX_SPI_32bit_data(uint8_t cs, int32_t *adc_code)
+{
+ LT_union_int32_4bytes data, command; // LTC2449 data and command
+ command.LT_uint32 = 0; // Set to zero, not necessary but avoids
+ // random data in scope shots.
+ output_low(cs); //! 1) Pull CS low
+
+ spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)4); //! 2) Transfer arrays
+
+ output_high(cs); //! 3) Pull CS high
+ *adc_code = data.LT_int32;
+}
+
+
+// Reads from a SPI LTC24XX device that has an 8 bit command and a 32 bit output word.
+void LTC24XX_SPI_8bit_command_32bit_data(uint8_t cs, uint8_t adc_command, int32_t *adc_code)
+{
+ LT_union_int32_4bytes data, command; // LTC2449 data and command
+ command.LT_byte[3] = adc_command;
+ command.LT_byte[2] = 0;
+ command.LT_byte[1] = 0;
+ command.LT_byte[0] = 0;
+
+ output_low(cs); //! 1) Pull CS low
+
+ spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)4); //! 2) Transfer arrays
+
+ output_high(cs); //! 3) Pull CS high
+ *adc_code = data.LT_int32;
+}
+
+
+// Reads from a SPI LTC24XX device that has a 16 bit command and a 32 bit output word.
+void LTC24XX_SPI_16bit_command_32bit_data(uint8_t cs, uint8_t adc_command_high, uint8_t adc_command_low, int32_t *adc_code)
+{
+
+
+ LT_union_int32_4bytes data, command; // LTC24XX data and command
+ command.LT_byte[3] = adc_command_high;
+ command.LT_byte[2] = adc_command_low;
+ command.LT_byte[1] = 0;
+ command.LT_byte[0] = 0;
+
+ output_low(cs); //! 1) Pull CS low
+ spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)4); //! 2) Transfer arrays
+ output_high(cs); //! 3) Pull CS high
+ *adc_code = data.LT_int32;
+}
+
+//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter
+//! and returning the 32 bit result with the channel bit cleared so the data format matches the rest of the family
+//! @return void
+void LTC24XX_SPI_2ch_ping_pong_32bit_data(uint8_t cs, uint8_t *adc_channel, int32_t *code)
+{
+ LT_union_int32_4bytes data, command; // ADC data
+
+ command.LT_int32 = 0x00000000; // This is a "don't care"
+
+ spi_transfer_block(cs, command.LT_byte , data.LT_byte, (uint8_t)4);
+ if(data.LT_byte[3] & 0x40) // Obtains Channel Number
+ {
+ *adc_channel = 1;
+ }
+ else
+ {
+ *adc_channel = 0;
+ }
+ data.LT_byte[3] &= 0x3F; // Clear channel bit here so code to voltage function doesn't have to.
+ *code = data.LT_int32; // Return data
+}
+
+//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
+//! @return void
+void LTC24XX_SPI_24bit_data(uint8_t cs, int32_t *adc_code)
+{
+ LT_union_int32_4bytes data, command; // LTC24XX data and command
+ command.LT_int32 = 0;
+
+ output_low(cs); //! 1) Pull CS low
+ spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)3); //! 2) Transfer arrays
+ output_high(cs); //! 3) Pull CS high
+
+ data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
+ data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
+ data.LT_byte[1] = data.LT_byte[0]; // justify.
+ data.LT_byte[0] = 0x00;
+
+ *adc_code = data.LT_int32;
+}
+
+//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 24 bit output word.
+//! @return void
+void LTC24XX_SPI_8bit_command_24bit_data(uint8_t cs, uint8_t adc_command, int32_t *adc_code)
+{
+ LT_union_int32_4bytes data, command; // LTC24XX data and command
+ command.LT_byte[2] = adc_command;
+ command.LT_byte[1] = 0;
+ command.LT_byte[0] = 0;
+
+ output_low(cs); //! 1) Pull CS low
+ spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)3); //! 2) Transfer arrays
+ output_high(cs); //! 3) Pull CS high
+
+ data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
+ data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
+ data.LT_byte[1] = data.LT_byte[0]; // justify.
+ data.LT_byte[0] = 0x00;
+
+ *adc_code = data.LT_int32;
+}
+
+//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 24 bit output word.
+//! @return void
+void LTC24XX_SPI_16bit_command_24bit_data(uint8_t cs, uint8_t adc_command_high, uint8_t adc_command_low, int32_t *adc_code)
+{
+ LT_union_int32_4bytes data, command; // LTC24XX data and command
+ command.LT_byte[2] = adc_command_high;
+ command.LT_byte[1] = adc_command_low;
+ command.LT_byte[0] = 0;
+
+
+ output_low(cs); //! 1) Pull CS low
+ spi_transfer_block(cs, command.LT_byte, data.LT_byte, (uint8_t)3); //! 2) Transfer arrays
+ output_high(cs); //! 3) Pull CS high
+
+ data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
+ data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
+ data.LT_byte[1] = data.LT_byte[0]; // justify.
+ data.LT_byte[0] = 0x00;
+
+ *adc_code = data.LT_int32;
+}
+
+//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter
+//! and returning the 24 bit result with the channel bit cleared so the data format matches the rest of the family
+//! @return void
+void LTC24XX_SPI_2ch_ping_pong_24bit_data(uint8_t cs, uint8_t *adc_channel, int32_t *code)
+{
+ LT_union_int32_4bytes data, command; // ADC data
+
+ command.LT_int32 = 0x00000000; // This is a "don't care"
+
+ spi_transfer_block(cs, command.LT_byte , data.LT_byte, (uint8_t)3);
+ data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
+ data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
+ data.LT_byte[1] = data.LT_byte[0]; // justify.
+ data.LT_byte[0] = 0x00;
+
+ if(data.LT_byte[3] & 0x40) // Obtains Channel Number
+ {
+ *adc_channel = 1;
+ }
+ else
+ {
+ *adc_channel = 0;
+ }
+ data.LT_byte[3] &= 0x3F; // Clear channel bit here so code to voltage function doesn't have to.
+ *code = data.LT_int32; // Return data
+}
+
+
+//I2C functions
+
+//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 24 bit result.
+//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
+int8_t LTC24XX_I2C_8bit_command_24bit_data(uint8_t i2c_address, uint8_t adc_command, int32_t *adc_code, uint16_t eoc_timeout)
+{
+ int8_t ack;
+ uint16_t timer_count = 0; // Timer count to wait for ACK
+ int8_t buf[4];
+ LT_union_int32_4bytes data; // LTC24XX data
+ while(1)
+ {
+ ack = i2c_read_block_data(i2c_address, adc_command, 3, data.LT_byte);
+ if(!ack) break; // !ack indicates success
+ if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
+ return(1);
+ else
+ delay(1);
+ }
+ data.LT_byte[3] = data.LT_byte[2]; // Shift bytes up by one. We read out 24 bits,
+ data.LT_byte[2] = data.LT_byte[1]; // which are loaded into bytes 2,1,0. Need to left-
+ data.LT_byte[1] = data.LT_byte[0]; // justify.
+ data.LT_byte[0] = 0x00;
+ data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
+ data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
+ *adc_code = data.LT_int32;
+ return(ack); // Success
+}
+
+
+
+//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
+//! Data is formatted to match the SPI devices, with the MSB in the bit 28 position.
+//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
+int8_t LTC24XX_I2C_32bit_data(uint8_t i2c_address, //!< I2C address of device
+ int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
+ uint16_t eoc_timeout //!< Timeout (in milliseconds)
+ )
+{
+ int8_t ack;
+ uint16_t timer_count = 0; // Timer count to wait for ACK
+ int8_t buf[4];
+ LT_union_int32_4bytes data; // LTC24XX data
+ while(1)
+ {
+ ack = i2c_read_block_data(i2c_address, 4, data.LT_byte);
+ if(!ack) break; // !ack indicates success
+ if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
+ return(1);
+ else
+ delay(1);
+ }
+
+ data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
+ data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
+ *adc_code = data.LT_int32;
+ return(ack); // Success
+ }
+
+
+//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
+//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
+int8_t LTC24XX_I2C_8bit_command_32bit_data(uint8_t i2c_address, uint8_t adc_command, int32_t *adc_code, uint16_t eoc_timeout)
+{
+ int8_t ack;
+ uint16_t timer_count = 0; // Timer count to wait for ACK
+ int8_t buf[4];
+ LT_union_int32_4bytes data; // LTC24XX data
+ while(1)
+ {
+ ack = i2c_read_block_data(i2c_address, adc_command, 4, data.LT_byte);
+ if(!ack) break; // !ack indicates success
+ if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
+ return(1);
+ else
+ delay(1);
+ }
+
+ data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
+ data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
+ *adc_code = data.LT_int32;
+ return(ack); // Success
+}
+
+//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
+//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
+int8_t LTC24XX_I2C_16bit_command_32bit_data(uint8_t i2c_address,uint8_t adc_command_high,
+ uint8_t adc_command_low,int32_t *adc_code,uint16_t eoc_timeout)
+{
+ int8_t ack;
+ uint16_t adc_command, timer_count = 0; // Timer count to wait for ACK
+ int8_t buf[4];
+ LT_union_int32_4bytes data; // LTC24XX data
+ adc_command = (adc_command_high << 8) | adc_command_low;
+ while(1)
+ {
+ ack = i2c_two_byte_command_read_block(i2c_address, adc_command, 4, data.LT_byte);
+ if(!ack) break; // !ack indicates success
+ if (timer_count++>eoc_timeout) // If timeout, return 1 (failure)
+ return(1);
+ else
+ delay(1);
+ }
+
+ data.LT_uint32 >>= 2; // Shifts data 2 bits to the right; operating on unsigned member shifts in zeros.
+ data.LT_byte[3] = data.LT_byte[3] & 0x3F; // Clear upper 2 bits JUST IN CASE. Now the data format matches the SPI parts.
+ *adc_code = data.LT_int32;
+ return(ack); // Success
+}
+
+// Calculates the voltage corresponding to an adc code, given the reference voltage (in volts)
+float LTC24XX_SE_code_to_voltage(int32_t adc_code, float vref)
+{
+ float voltage;
+ adc_code -= 0x20000000; //! 1) Subtract offset
+ voltage=(float) adc_code;
+ voltage = voltage / 268435456.0; //! 2) This calculates the input as a fraction of the reference voltage (dimensionless)
+ voltage = voltage * vref; //! 3) Multiply fraction by Vref to get the actual voltage at the input (in volts)
+ return(voltage);
+}
+
+// Calculates the voltage corresponding to an adc code, given the reference voltage (in volts)
+// This function handles all differential input parts, including the "single-ended" mode on multichannel
+// differential parts. Data from I2C parts must be right-shifted by two bit positions such that the MSB
+// is in bit 28 (the same as the SPI parts.)
+float LTC24XX_diff_code_to_voltage(int32_t adc_code, float vref)
+{
+ float voltage;
+
+ #ifndef SKIP_EZDRIVE_2X_ZERO_CHECK
+ if(adc_code == 0x00000000)
+ {
+ adc_code = 0x20000000;
+ }
+ #endif
+
+ adc_code -= 0x20000000; //! 1) Converts offset binary to binary
+ voltage=(float) adc_code;
+ voltage = voltage / 536870912.0; //! 2) This calculates the input as a fraction of the reference voltage (dimensionless)
+ voltage = voltage * vref; //! 3) Multiply fraction by Vref to get the actual voltage at the input (in volts)
+ return(voltage);
+}
+
+// Calculates the voltage corresponding to an adc code, given lsb weight (in volts) and the calibrated
+// adc offset code (zero code that is subtracted from adc_code). For use with the LTC24XX_cal_voltage() function.
+float LTC24XX_diff_code_to_calibrated_voltage(int32_t adc_code, float LTC2449_lsb, int32_t LTC2449_offset_code)
+{
+ float adc_voltage;
+
+ #ifndef SKIP_EZDRIVE_2X_ZERO_CHECK
+ if(adc_code == 0x00000000)
+ {
+ adc_code = 0x20000000;
+ }
+ #endif
+
+ adc_code -= 536870912; //! 1) Converts offset binary to binary
+ adc_voltage=(float)(adc_code+LTC2449_offset_code)*LTC2449_lsb; //! 2) Calculate voltage from ADC code, lsb, offset.
+ return(adc_voltage);
+}
+
+
+// Calculate the lsb weight and offset code given a full-scale code and a measured zero-code.
+void LTC24XX_calibrate_voltage(int32_t zero_code, int32_t fs_code, float zero_voltage, float fs_voltage, float *LTC24XX_lsb, int32_t *LTC24XX_offset_code)
+{
+ zero_code -= 536870912; //! 1) Converts zero code from offset binary to binary
+ fs_code -= 536870912; //! 2) Converts full scale code from offset binary to binary
+
+ float temp_offset;
+ *LTC24XX_lsb = (fs_voltage-zero_voltage)/((float)(fs_code - zero_code)); //! 3) Calculate the LSB
+
+ temp_offset = (zero_voltage/ *LTC24XX_lsb) - zero_code; //! 4) Calculate Unipolar offset
+ temp_offset = (temp_offset > (floor(temp_offset) + 0.5)) ? ceil(temp_offset) : floor(temp_offset); //! 5) Round
+ *LTC24XX_offset_code = (int32_t)temp_offset; //! 6) Cast as int32_t
+}
diff --git a/sw/lib/LTC2400/LTC24XX_general.h b/sw/lib/LTC2400/LTC24XX_general.h
new file mode 100644
index 0000000..42fd65a
--- /dev/null
+++ b/sw/lib/LTC2400/LTC24XX_general.h
@@ -0,0 +1,501 @@
+/*!
+LTC24XX General Library: Functions and defines for all SINC4 Delta Sigma ADCs.
+
+@verbatim
+
+
+LTC2442 / LTC2444 / LTC2445 / LTC2448 / LTC2449 (Are there don't care bits in the low channel counts?
+SPI DATA FORMAT (MSB First):
+
+ Byte #1 Byte #2
+
+Data Out : !EOC DMY SIG D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16
+Data In : 1 0 EN SGL OS S2 S1 S0 OSR3 OSR2 OSR1 OSR1 SPD X X X
+
+ Byte #3 Byte #4
+ D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 *D3 *D2 *D1 *D0
+ X X X X X X X X X X X X X X X X
+
+!EOC : End of Conversion Bit (Active Low)
+DMY : Dummy Bit (Always 0)
+SIG : Sign Bit (1-data positive, 0-data negative)
+Dx : Data Bits
+*Dx : Data Bits Below lsb
+EN : Enable Bit (0-keep previous mode, 1-change mode)
+SGL : Enable Single-Ended Bit (0-differential, 1-single-ended)
+OS : ODD/Sign Bit
+Sx : Address Select Bit
+0SRX : Over Sampling Rate Bits
+SPD : Double Output Rate Select Bit (0-Normal rate, auto-calibration on, 2x rate, auto_calibration off)
+
+Command Byte #1
+1 0 EN SGL OS S2 S1 S0 Comments
+1 0 0 X X X X X Keep Previous Mode
+1 0 1 0 X X X X Differential Mode
+1 0 1 1 X X X X Single-Ended Mode
+
+| Coversion Rate | RMS | ENOB | OSR | Latency
+Command Byte #2 |Internal | External | Noise | | |
+| 9MHz | 10.24MHz | | | |
+OSR3 OSR2 OSR1 OSR1 SPD | Clock | Clock | | | |
+0 0 0 0 0 Keep Previous Speed/Resolution
+0 0 0 1 0 3.52kHz 4kHz 23uV 17 64 none
+0 0 1 0 0 1.76kHz 2kHz 3.5uV 20.1 128 none
+0 0 1 1 0 880Hz 1kHz 2uV 21.3 256 none
+0 1 0 0 0 440Hz 500Hz 1.4uV 21.8 512 none
+0 1 0 1 0 220Hz 250Hz 1uV 22.4 1024 none
+0 1 1 0 0 110Hz 125Hz 750nV 22.9 2048 none
+0 1 1 1 0 55Hz 62.5Hz 510nV 23.4 4096 none
+1 0 0 0 0 27.5Hz 31.25Hz 375nV 24 8192 none
+1 0 0 1 0 13.75Hz 15.625Hz 250nV 24.4 16384 none
+1 1 1 1 0 6.87kHz 7.8125Hz 200nV 24.6 32768 none
+0 0 0 0 1 Keep Previous Speed/Resolution
+OSR3 OSR2 OSR1 OSR1 1 2X Mode *all clock speeds double
+
+Example Code:
+
+Read Channel 0 in Single-Ended with OSR of 65536
+
+ uint16_t miso_timeout = 1000;
+ adc_command = LTC2449_CH0 | LTC2449_OSR_32768 | LTC2449_SPEED_2X; // Build ADC command for channel 0
+ // OSR = 32768*2 = 65536
+
+ if(LTC2449_EOC_timeout(LTC2449_CS, miso_timeout)) // Check for EOC
+ return; // Exit if timeout is reached
+ LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Throws out last reading
+
+ if(LTC2449_EOC_timeout(LTC2449_CS, miso_timeout)) // Check for EOC
+ return; // Exit if timeout is reached
+ LTC2449_read(LTC2449_CS, adc_command, &adc_code); // Obtains the current reading and stores to adc_code variable
+
+ // Convert adc_code to voltage
+ adc_voltage = LTC2449_code_to_voltage(adc_code, LTC2449_lsb, LTC2449_offset_code);
+
+@endverbatim
+
+http://www.linear.com/product/LTC2449
+
+http://www.linear.com/product/LTC2449#demoboards
+
+REVISION HISTORY
+$Revision: 1881 $
+$Date: 2013-08-15 09:16:50 -0700 (Thu, 15 Aug 2013) $
+
+Copyright (c) 2013, Linear Technology Corp.(LTC)
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+1. Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+2. Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
+ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+The views and conclusions contained in the software and documentation are those
+of the authors and should not be interpreted as representing official policies,
+either expressed or implied, of Linear Technology Corp.
+
+The Linear Technology Linduino is not affiliated with the official Arduino team.
+However, the Linduino is only possible because of the Arduino team's commitment
+to the open-source community. Please, visit http://www.arduino.cc and
+http://store.arduino.cc , and consider a purchase that will help fund their
+ongoing work.
+*/
+
+/*! @file
+ @ingroup LTC24XX_general
+ Header for LTC2449: 24-Bit, 16-Channel Delta Sigma ADCs with Selectable Speed/Resolution
+*/
+
+#ifndef LTC24XX_general_H
+#define LTC24XX_general_H
+
+//! Define the SPI CS pin
+#ifndef LTC24XX_CS
+#define LTC24XX_CS QUIKEVAL_CS
+#endif
+
+//! In 2X Mode, A non offset binary 0 can be produced. This is corrected in the
+//! differential code to voltage functions. To disable this correction, uncomment
+//! The following #define.
+//#define SKIP_EZDRIVE_2X_ZERO_CHECK
+
+/*! @name Mode Configuration for High Speed Family
+ @{
+*/
+#define LTC24XX_HS_MULTI_KEEP_PREVIOUS_MODE 0x80
+#define LTC24XX_HS_MULTI_KEEP_PREVIOUS_SPEED_RESOLUTION 0x00
+#define LTC24XX_HS_MULTI_SPEED_1X 0x00
+#define LTC24XX_HS_MULTI_SPEED_2X 0x08
+/*!
+ @}
+*/
+
+/*! @name Mode Configuration for EasyDrive Family
+ @{
+*/
+// Select ADC source - differential input or PTAT circuit
+#define LTC24XX_EZ_MULTI_VIN 0b10000000
+#define LTC24XX_EZ_MULTI_PTAT 0b11000000
+
+// Select rejection frequency - 50, 55, or 60Hz
+#define LTC24XX_EZ_MULTI_R50 0b10010000
+#define LTC24XX_EZ_MULTI_R55 0b10000000
+#define LTC24XX_EZ_MULTI_R60 0b10100000
+
+// Speed settings is bit 7 in the 2nd byte
+#define LTC24XX_EZ_MULTI_SLOW 0b10000000 // slow output rate with autozero
+#define LTC24XX_EZ_MULTI_FAST 0b10001000 // fast output rate with no autozero
+/*!
+ @}
+*/
+
+
+/*! @name Single-Ended Channel Configuration
+@verbatim
+Channel selection for all multi-channel, differential input ADCs, even those that only require
+8 bits of configuration (no further options.) Most devices in this category require a second
+byte of configuration for speed mode, temperature sensor selection, etc., but for the sake
+of simplicity a single function will be used to read all devices, sending zeros in the second
+configuration byte if only the channel is specified.
+
+Applicable devices:
+Easy Drive:
+LTC2486, LTC2487, LTC2488, LTC2489, LTC2492, LTC2493,
+LTC2494, LTC2495, LTC2496, LTC2497, LTC2498, LTC2499
+First Generation Differential:
+LTC2414, LTC2418, LTC2439
+High Speed:
+LTC2442, LTC2444, LTC2445, LTC2448, LTC2449
+@endverbatim
+@{ */
+#define LTC24XX_MULTI_CH_CH0 0xB0
+#define LTC24XX_MULTI_CH_CH1 0xB8
+#define LTC24XX_MULTI_CH_CH2 0xB1
+#define LTC24XX_MULTI_CH_CH3 0xB9
+#define LTC24XX_MULTI_CH_CH4 0xB2
+#define LTC24XX_MULTI_CH_CH5 0xBA
+#define LTC24XX_MULTI_CH_CH6 0xB3
+#define LTC24XX_MULTI_CH_CH7 0xBB
+#define LTC24XX_MULTI_CH_CH8 0xB4
+#define LTC24XX_MULTI_CH_CH9 0xBC
+#define LTC24XX_MULTI_CH_CH10 0xB5
+#define LTC24XX_MULTI_CH_CH11 0xBD
+#define LTC24XX_MULTI_CH_CH12 0xB6
+#define LTC24XX_MULTI_CH_CH13 0xBE
+#define LTC24XX_MULTI_CH_CH14 0xB7
+#define LTC24XX_MULTI_CH_CH15 0xBF
+/*! @} */
+
+/*! @name Differential Channel Configuration
+@verbatim
+See note for single-ended configuration above.
+
+@endverbatim
+@{ */
+#define LTC24XX_MULTI_CH_P0_N1 0xA0
+#define LTC24XX_MULTI_CH_P1_N0 0xA8
+
+#define LTC24XX_MULTI_CH_P2_N3 0xA1
+#define LTC24XX_MULTI_CH_P3_N2 0xA9
+
+#define LTC24XX_MULTI_CH_P4_N5 0xA2
+#define LTC24XX_MULTI_CH_P5_N4 0xAA
+
+#define LTC24XX_MULTI_CH_P6_N7 0xA3
+#define LTC24XX_MULTI_CH_P7_N6 0xAB
+
+#define LTC24XX_MULTI_CH_P8_N9 0xA4
+#define LTC24XX_MULTI_CH_P9_N8 0xAC
+
+#define LTC24XX_MULTI_CH_P10_N11 0xA5
+#define LTC24XX_MULTI_CH_P11_N10 0xAD
+
+#define LTC24XX_MULTI_CH_P12_N13 0xA6
+#define LTC24XX_MULTI_CH_P13_N12 0xAE
+
+#define LTC24XX_MULTI_CH_P14_N15 0xA7
+#define LTC24XX_MULTI_CH_P15_N14 0xAF
+/*! @} */
+
+/*Commands
+Construct a channel / resolution control word by bitwise ORing one choice from the channel configuration
+and one choice from the Oversample ratio configuration. You can also enable 2Xmode, which will increase
+sample rate by a factor of 2 but introduce one cycle of latency.
+
+Example - read channel 3 single-ended at OSR2048, with 2X mode enabled.
+adc_command = (LTC2449_CH3 | LTC2449_OSR_2048) | LTC2449_SPEED_2X;
+*/
+
+/*! @name Oversample Ratio (OSR) Commands
+@{ */
+#define LTC24XX_MULTI_CH_OSR_64 0x10
+#define LTC24XX_MULTI_CH_OSR_128 0x20
+#define LTC24XX_MULTI_CH_OSR_256 0x30
+#define LTC24XX_MULTI_CH_OSR_512 0x40
+#define LTC24XX_MULTI_CH_OSR_1024 0x50
+#define LTC24XX_MULTI_CH_OSR_2048 0x60
+#define LTC24XX_MULTI_CH_OSR_4096 0x70
+#define LTC24XX_MULTI_CH_OSR_8192 0x80
+#define LTC24XX_MULTI_CH_OSR_16384 0x90
+#define LTC24XX_MULTI_CH_OSR_32768 0xF0
+/*! @}*/
+
+//! Checks for EOC with a specified timeout. Applies to all SPI interface delta sigma
+//! ADCs that have SINC4 rejection, does NOT apply to LTC2450/60/70 family.
+//! @return Returns 0=successful, 1=unsuccessful (exceeded timeout)
+int8_t LTC24XX_EOC_timeout(uint8_t cs, //!< Chip Select pin
+ uint16_t miso_timeout //!< Timeout (in milliseconds)
+ );
+
+
+// Read functions for SPI interface ADCs with a 32 bit output word. These functions are used with both
+// Single-ended and differential parts, as there is no interpretation of the data done in
+// the function. Also note that these functions can be used for devices that have shorter output lengths,
+// the lower bits will read out as "1", as the conversion will be triggered by the last data bit being
+// read, which causes SDO to go high.
+
+
+//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
+//! @return void
+void LTC24XX_SPI_32bit_data(uint8_t cs, //!< Chip Select pin
+ int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
+ );
+
+//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
+//! @return void
+void LTC24XX_SPI_8bit_command_32bit_data(uint8_t cs, //!< Chip Select pin
+ uint8_t adc_command, //!< 1 byte command written to LTC24XX
+ int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
+ );
+
+//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
+//! @return void
+void LTC24XX_SPI_16bit_command_32bit_data(uint8_t cs, //!< Chip Select pin
+ uint8_t adc_command_high, //!< First command byte written to LTC24XX
+ uint8_t adc_command_low, //!< Second command written to LTC24XX
+ int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
+ );
+
+//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter
+//! and returning the 32 bit result with the channel bit cleared so the data format matches the rest of the family
+//! @return void
+void LTC24XX_SPI_2ch_ping_pong_32bit_data(uint8_t cs, //!< Chip Select pin
+ uint8_t *adc_channel, //!< Returns channel number read.
+ int32_t *code //!< 4 byte conversion code read from LTC24XX
+ );
+
+
+// Read functions for SPI interface ADCs with a 24 bit or 19 bit output word. These functions
+// are used with both Single-ended and differential parts, as there is no interpretation of
+// the data done in the function. 24 bits will be read out of 19 bit devices
+// (LTC2433, LTC2436, LTC2439), with the additional 5 bits being set to 1.
+
+//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
+//! @return void
+void LTC24XX_SPI_24bit_data(uint8_t cs, //!< Chip Select pin
+ int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
+ );
+
+//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
+//! @return void
+void LTC24XX_SPI_8bit_command_24bit_data(uint8_t cs, //!< Chip Select pin
+ uint8_t adc_command, //!< 1 byte command written to LTC24XX
+ int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
+ );
+
+//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
+//! @return void
+void LTC24XX_SPI_16bit_command_24bit_data(uint8_t cs, //!< Chip Select pin
+ uint8_t adc_command_high, //!< First command byte written to LTC24XX
+ uint8_t adc_command_low, //!< Second command written to LTC24XX
+ int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
+ );
+
+//! Reads from LTC24XX ADC that accepts a 8 bit configuration and returns a 16 bit result.
+//! @return void
+void LTC24XX_SPI_8bit_command_16bit_data(uint8_t cs, //!< Chip Select pin
+ uint8_t adc_command, //!< First command byte written to LTC24XX
+ int32_t *adc_code //!< 4 byte conversion code read from LTC24XX
+ );
+
+
+//! Reads from LTC24XX two channel "Ping-Pong" ADC, placing the channel information in the adc_channel parameter
+//! and returning the 32 bit result with the channel bit cleared so the data format matches the rest of the family
+//! @return void
+void LTC24XX_SPI_2ch_ping_pong_24bit_data(uint8_t cs, //!< Chip Select pin
+ uint8_t *adc_channel, //!< Returns channel number read.
+ int32_t *code //!< 4 byte conversion code read from LTC24XX
+ );
+
+// Read functions for I2C interface ADCs with a 32 bit output word. These functions are used with both
+// Single-ended and differential parts, as there is no interpretation of the data done in
+// the function. Also note that these functions can be used for devices that have shorter output lengths,
+// the lower bits will read out as "1", as the conversion will be triggered by the last data bit being
+// read, which causes SDO to go high.
+// Data is formatted to match the SPI devices, with the MSB in the bit 28 position.
+// Unlike the SPI members of this family, checking for EOC MUST immediately be followed by reading the data. This
+// is because a stop condition will trigger a new conversion.
+
+
+//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
+//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
+int8_t LTC24XX_I2C_32bit_data(uint8_t i2c_address, //!< I2C address of device
+ int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
+ uint16_t eoc_timeout //!< Timeout (in milliseconds)
+ );
+
+
+//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
+//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
+int8_t LTC24XX_I2C_8bit_command_32bit_data(uint8_t i2c_address, //!< I2C address of device
+ uint8_t adc_command, //!< 1 byte command written to LTC24XX
+ int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
+ uint16_t eoc_timeout //!< Timeout (in milliseconds)
+ );
+
+
+//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
+//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
+int8_t LTC24XX_I2C_16bit_command_32bit_data(uint8_t i2c_address, //!< I2C address of device
+ uint8_t adc_command_high, //!< First command byte written to LTC24XX
+ uint8_t adc_command_low, //!< Second command written to LTC24XX
+ int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
+ uint16_t eoc_timeout //!< Timeout (in milliseconds)
+ );
+
+
+// Read functions for I2C interface ADCs with a 24 bit or 19 bit output word. These functions
+// are used with both Single-ended and differential parts, as there is no interpretation of
+// the data done in the function. 24 bits will be read out of 19 bit devices
+// (LTC2433, LTC2436, LTC2439), with the additional 5 bits being set to 1.
+
+
+//! Reads from LTC24XX ADC that has no configuration word and returns a 32 bit result.
+//! Applies to: LTC2483 (only this lonely one!)
+//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
+int8_t LTC24XX_I2C_24bit_data(uint8_t i2c_address, //!< I2C address of device
+ int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
+ uint16_t eoc_timeout //!< Timeout (in milliseconds)
+ );
+
+
+//! Reads from LTC24XX ADC that accepts an 8 bit configuration and returns a 32 bit result.
+//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
+int8_t LTC24XX_I2C_8bit_command_24bit_data(uint8_t i2c_address, //!< I2C address of device
+ uint8_t adc_command, //!< 1 byte command written to LTC24XX
+ int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
+ uint16_t eoc_timeout //!< Timeout (in milliseconds)
+ );
+
+//! Reads from LTC24XX ADC that accepts a 16 bit configuration and returns a 32 bit result.
+//! @return Returns the state of the acknowledge bit after the I2C address write. 0=acknowledge, 1=no acknowledge.
+int8_t LTC24XX_I2C_16bit_command_24bit_data(uint8_t i2c_address, //!< I2C address of device
+ uint8_t adc_command_high, //!< First command byte written to LTC24XX
+ uint8_t adc_command_low, //!< Second command written to LTC24XX
+ int32_t *adc_code, //!< 4 byte conversion code read from LTC24XX
+ uint16_t eoc_timeout //!< Timeout (in milliseconds)
+ );
+
+//! Calculates the voltage corresponding to an ADC code, given the reference voltage.
+//! Applies to Single-Ended input parts (LTC2400-type input)
+//! @return Returns voltage calculated from ADC code.
+float LTC24XX_SE_code_to_voltage(int32_t adc_code, //!< Code read from ADC
+ float vref //!< Reference voltage
+ );
+//! Calculates the voltage corresponding to an ADC code, given the reference voltage.
+//! Applies to differential input parts (LTC2410 type input)
+//! @return Returns voltage calculated from ADC code.
+float LTC24XX_diff_code_to_voltage(int32_t adc_code, //!< Code read from ADC
+ float vref //!< Reference voltage
+ );
+
+//! Calculates the voltage corresponding to an ADC code, given lsb weight (in volts) and the calibrated
+//! ADC offset code (zero code that is subtracted from adc_code).
+//! Applies to differential input, SPI interface parts.
+//! @return Returns voltage calculated from ADC code.
+float LTC24XX_diff_code_to_calibrated_voltage(int32_t adc_code, //!< Code read from ADC
+ float LTC24XX_lsb, //!< LSB weight (in volts)
+ int32_t LTC24XX_offset_code //!< The calibrated offset code (This is the ADC code zero code that will be subtracted from adc_code)
+ );
+
+//! Calculate the lsb weight and offset code given a full-scale code and a measured zero-code.
+//! @return Void
+void LTC24XX_calibrate_voltage(int32_t zero_code, //!< Measured code with the inputs shorted to ground
+ int32_t fs_code, //!< Measured code at nearly full-scale
+ float zero_voltage, //!< Measured zero voltage
+ float fs_voltage, //!< Voltage measured at input (with voltmeter) when fs_code was read from ADC
+ float *LTC24XX_lsb, //!< Overwritten with lsb weight (in volts)
+ int32_t *LTC24XX_offset_code //!< Overwritten with offset code (zero code)
+ );
+
+
+
+// I2C Addresses for 8/16 channel parts (LTC2495/7/9)
+// ADDRESS CA2 CA1 CA0
+// #define LTC24XX_16CH_I2C_ADDRESS 0b0010100 // LOW LOW LOW
+// #define LTC24XX_16CH_I2C_ADDRESS 0b0010110 // LOW LOW HIGH
+// #define LTC24XX_16CH_I2C_ADDRESS 0b0010101 // LOW LOW FLOAT
+// #define LTC24XX_16CH_I2C_ADDRESS 0b0100110 // LOW HIGH LOW
+// #define LTC24XX_16CH_I2C_ADDRESS 0b0110100 // LOW HIGH HIGH
+// #define LTC24XX_16CH_I2C_ADDRESS 0b0100111 // LOW HIGH FLOAT
+// #define LTC24XX_16CH_I2C_ADDRESS 0b0010111 // LOW FLOAT LOW
+// #define LTC24XX_16CH_I2C_ADDRESS 0b0100101 // LOW FLOAT HIGH
+// #define LTC24XX_16CH_I2C_ADDRESS 0b0100100 // LOW FLOAT FLOAT
+// #define LTC24XX_16CH_I2C_ADDRESS 0b1010110 // HIGH LOW LOW
+// #define LTC24XX_16CH_I2C_ADDRESS 0b1100100 // HIGH LOW HIGH
+// #define LTC24XX_16CH_I2C_ADDRESS 0b1010111 // HIGH LOW FLOAT
+// #define LTC24XX_16CH_I2C_ADDRESS 0b1110100 // HIGH HIGH LOW
+// #define LTC24XX_16CH_I2C_ADDRESS 0b1110110 // HIGH HIGH HIGH
+// #define LTC24XX_16CH_I2C_ADDRESS 0b1110101 // HIGH HIGH FLOAT
+// #define LTC24XX_16CH_I2C_ADDRESS 0b1100101 // HIGH FLOAT LOW
+// #define LTC24XX_16CH_I2C_ADDRESS 0b1100111 // HIGH FLOAT HIGH
+// #define LTC24XX_16CH_I2C_ADDRESS 0b1100110 // HIGH FLOAT FLOAT
+// #define LTC24XX_16CH_I2C_ADDRESS 0b0110101 // FLOAT LOW LOW
+// #define LTC24XX_16CH_I2C_ADDRESS 0b0110111 // FLOAT LOW HIGH
+// #define LTC24XX_16CH_I2C_ADDRESS 0b0110110 // FLOAT LOW FLOAT
+// #define LTC24XX_16CH_I2C_ADDRESS 0b1000111 // FLOAT HIGH LOW
+// #define LTC24XX_16CH_I2C_ADDRESS 0b1010101 // FLOAT HIGH HIGH
+// #define LTC24XX_16CH_I2C_ADDRESS 0b1010100 // FLOAT HIGH FLOAT
+// #define LTC24XX_16CH_I2C_ADDRESS 0b1000100 // FLOAT FLOAT LOW
+// #define LTC24XX_16CH_I2C_ADDRESS 0b1000110 // FLOAT FLOAT HIGH
+// #define LTC24XX_16CH_I2C_ADDRESS 0b1000101 // FLOAT FLOAT FLOAT
+
+// I2C Addresses for 2/4 channel parts
+// ADDRESS CA1 CA0
+// #define LTC24XX_4CH_I2C_ADDRESS 0b0010100 // LOW LOW
+// #define LTC24XX_4CH_I2C_ADDRESS 0b0010110 // LOW HIGH
+// #define LTC24XX_4CH_I2C_ADDRESS 0b0010101 // LOW FLOAT
+// #define LTC24XX_4CH_I2C_ADDRESS 0b0100110 // HIGH LOW
+// #define LTC24XX_4CH_I2C_ADDRESS 0b0110100 // HIGH HIGH
+// #define LTC24XX_4CH_I2C_ADDRESS 0b0100111 // HIGH FLOAT
+// #define LTC24XX_4CH_I2C_ADDRESS 0b0010111 // FLOAT LOW
+// #define LTC24XX_4CH_I2C_ADDRESS 0b0100101 // FLOAT HIGH
+// #define LTC24XX_4CH_I2C_ADDRESS 0b0100100 // FLOAT FLOAT
+
+
+// I2C Addresses for Single channel parts (LTC2481/83/85)
+// ADDRESS CA1 CA0/f0*
+// #define LTC24XX_1CH_I2C_ADDRESS 0b0010100 // LOW HIGH
+// #define LTC24XX_1CH_I2C_ADDRESS 0b0010101 // LOW FLOAT
+// #define LTC24XX_1CH_I2C_ADDRESS 0b0010111 // FLOAT HIGH
+// #define LTC24XX_1CH_I2C_ADDRESS 0b0100100 // FLOAT FLOAT
+// #define LTC24XX_1CH_I2C_ADDRESS 0b0100110 // HIGH HIGH
+// #define LTC24XX_1CH_I2C_ADDRESS 0b0100111 // HIGH FLOAT
+
+
+#endif // LTC24XX_general_H
+
diff --git a/sw/lib/OneWire/OneWire.cpp b/sw/lib/OneWire/OneWire.cpp
new file mode 100644
index 0000000..38bf4ee
--- /dev/null
+++ b/sw/lib/OneWire/OneWire.cpp
@@ -0,0 +1,580 @@
+/*
+Copyright (c) 2007, Jim Studt (original old version - many contributors since)
+
+The latest version of this library may be found at:
+ http://www.pjrc.com/teensy/td_libs_OneWire.html
+
+OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since
+January 2010.
+
+DO NOT EMAIL for technical support, especially not for ESP chips!
+All project support questions must be posted on public forums
+relevant to the board or chips used. If using Arduino, post on
+Arduino's forum. If using ESP, post on the ESP community forums.
+There is ABSOLUTELY NO TECH SUPPORT BY PRIVATE EMAIL!
+
+Github's issue tracker for OneWire should be used only to report
+specific bugs. DO NOT request project support via Github. All
+project and tech support questions must be posted on forums, not
+github issues. If you experience a problem and you are not
+absolutely sure it's an issue with the library, ask on a forum
+first. Only use github to report issues after experts have
+confirmed the issue is with OneWire rather than your project.
+
+Back in 2010, OneWire was in need of many bug fixes, but had
+been abandoned the original author (Jim Studt). None of the known
+contributors were interested in maintaining OneWire. Paul typically
+works on OneWire every 6 to 12 months. Patches usually wait that
+long. If anyone is interested in more actively maintaining OneWire,
+please contact Paul (this is pretty much the only reason to use
+private email about OneWire).
+
+OneWire is now very mature code. No changes other than adding
+definitions for newer hardware support are anticipated.
+
+Version 2.3:
+ Unknown chip fallback mode, Roger Clark
+ Teensy-LC compatibility, Paul Stoffregen
+ Search bug fix, Love Nystrom
+
+Version 2.2:
+ Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com
+ Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030
+ Fix DS18B20 example negative temperature
+ Fix DS18B20 example's low res modes, Ken Butcher
+ Improve reset timing, Mark Tillotson
+ Add const qualifiers, Bertrik Sikken
+ Add initial value input to crc16, Bertrik Sikken
+ Add target_search() function, Scott Roberts
+
+Version 2.1:
+ Arduino 1.0 compatibility, Paul Stoffregen
+ Improve temperature example, Paul Stoffregen
+ DS250x_PROM example, Guillermo Lovato
+ PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com
+ Improvements from Glenn Trewitt:
+ - crc16() now works
+ - check_crc16() does all of calculation/checking work.
+ - Added read_bytes() and write_bytes(), to reduce tedious loops.
+ - Added ds2408 example.
+ Delete very old, out-of-date readme file (info is here)
+
+Version 2.0: Modifications by Paul Stoffregen, January 2010:
+http://www.pjrc.com/teensy/td_libs_OneWire.html
+ Search fix from Robin James
+ http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
+ Use direct optimized I/O in all cases
+ Disable interrupts during timing critical sections
+ (this solves many random communication errors)
+ Disable interrupts during read-modify-write I/O
+ Reduce RAM consumption by eliminating unnecessary
+ variables and trimming many to 8 bits
+ Optimize both crc8 - table version moved to flash
+
+Modified to work with larger numbers of devices - avoids loop.
+Tested in Arduino 11 alpha with 12 sensors.
+26 Sept 2008 -- Robin James
+http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
+
+Updated to work with arduino-0008 and to include skip() as of
+2007/07/06. --RJL20
+
+Modified to calculate the 8-bit CRC directly, avoiding the need for
+the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010
+-- Tom Pollard, Jan 23, 2008
+
+Jim Studt's original library was modified by Josh Larios.
+
+Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008
+
+Permission is hereby granted, free of charge, to any person obtaining
+a copy of this software and associated documentation files (the
+"Software"), to deal in the Software without restriction, including
+without limitation the rights to use, copy, modify, merge, publish,
+distribute, sublicense, and/or sell copies of the Software, and to
+permit persons to whom the Software is furnished to do so, subject to
+the following conditions:
+
+The above copyright notice and this permission notice shall be
+included in all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+Much of the code was inspired by Derek Yerger's code, though I don't
+think much of that remains. In any event that was..
+ (copyleft) 2006 by Derek Yerger - Free to distribute freely.
+
+The CRC code was excerpted and inspired by the Dallas Semiconductor
+sample code bearing this copyright.
+//---------------------------------------------------------------------------
+// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a
+// copy of this software and associated documentation files (the "Software"),
+// to deal in the Software without restriction, including without limitation
+// the rights to use, copy, modify, merge, publish, distribute, sublicense,
+// and/or sell copies of the Software, and to permit persons to whom the
+// Software is furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included
+// in all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
+// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+// OTHER DEALINGS IN THE SOFTWARE.
+//
+// Except as contained in this notice, the name of Dallas Semiconductor
+// shall not be used except as stated in the Dallas Semiconductor
+// Branding Policy.
+//--------------------------------------------------------------------------
+*/
+
+#include <Arduino.h>
+#include "OneWire.h"
+#include "util/OneWire_direct_gpio.h"
+
+
+void OneWire::begin(uint8_t pin)
+{
+ pinMode(pin, INPUT);
+ bitmask = PIN_TO_BITMASK(pin);
+ baseReg = PIN_TO_BASEREG(pin);
+#if ONEWIRE_SEARCH
+ reset_search();
+#endif
+}
+
+
+// Perform the onewire reset function. We will wait up to 250uS for
+// the bus to come high, if it doesn't then it is broken or shorted
+// and we return a 0;
+//
+// Returns 1 if a device asserted a presence pulse, 0 otherwise.
+//
+uint8_t OneWire::reset(void)
+{
+ IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
+ volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
+ uint8_t r;
+ uint8_t retries = 125;
+
+ noInterrupts();
+ DIRECT_MODE_INPUT(reg, mask);
+ interrupts();
+ // wait until the wire is high... just in case
+ do {
+ if (--retries == 0) return 0;
+ delayMicroseconds(2);
+ } while ( !DIRECT_READ(reg, mask));
+
+ noInterrupts();
+ DIRECT_WRITE_LOW(reg, mask);
+ DIRECT_MODE_OUTPUT(reg, mask); // drive output low
+ interrupts();
+ delayMicroseconds(480);
+ noInterrupts();
+ DIRECT_MODE_INPUT(reg, mask); // allow it to float
+ delayMicroseconds(70);
+ r = !DIRECT_READ(reg, mask);
+ interrupts();
+ delayMicroseconds(410);
+ return r;
+}
+
+//
+// Write a bit. Port and bit is used to cut lookup time and provide
+// more certain timing.
+//
+void OneWire::write_bit(uint8_t v)
+{
+ IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
+ volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
+
+ if (v & 1) {
+ noInterrupts();
+ DIRECT_WRITE_LOW(reg, mask);
+ DIRECT_MODE_OUTPUT(reg, mask); // drive output low
+ delayMicroseconds(10);
+ DIRECT_WRITE_HIGH(reg, mask); // drive output high
+ interrupts();
+ delayMicroseconds(55);
+ } else {
+ noInterrupts();
+ DIRECT_WRITE_LOW(reg, mask);
+ DIRECT_MODE_OUTPUT(reg, mask); // drive output low
+ delayMicroseconds(65);
+ DIRECT_WRITE_HIGH(reg, mask); // drive output high
+ interrupts();
+ delayMicroseconds(5);
+ }
+}
+
+//
+// Read a bit. Port and bit is used to cut lookup time and provide
+// more certain timing.
+//
+uint8_t OneWire::read_bit(void)
+{
+ IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
+ volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
+ uint8_t r;
+
+ noInterrupts();
+ DIRECT_MODE_OUTPUT(reg, mask);
+ DIRECT_WRITE_LOW(reg, mask);
+ delayMicroseconds(3);
+ DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise
+ delayMicroseconds(10);
+ r = DIRECT_READ(reg, mask);
+ interrupts();
+ delayMicroseconds(53);
+ return r;
+}
+
+//
+// Write a byte. The writing code uses the active drivers to raise the
+// pin high, if you need power after the write (e.g. DS18S20 in
+// parasite power mode) then set 'power' to 1, otherwise the pin will
+// go tri-state at the end of the write to avoid heating in a short or
+// other mishap.
+//
+void OneWire::write(uint8_t v, uint8_t power /* = 0 */) {
+ uint8_t bitMask;
+
+ for (bitMask = 0x01; bitMask; bitMask <<= 1) {
+ OneWire::write_bit( (bitMask & v)?1:0);
+ }
+ if ( !power) {
+ noInterrupts();
+ DIRECT_MODE_INPUT(baseReg, bitmask);
+ DIRECT_WRITE_LOW(baseReg, bitmask);
+ interrupts();
+ }
+}
+
+void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
+ for (uint16_t i = 0 ; i < count ; i++)
+ write(buf[i]);
+ if (!power) {
+ noInterrupts();
+ DIRECT_MODE_INPUT(baseReg, bitmask);
+ DIRECT_WRITE_LOW(baseReg, bitmask);
+ interrupts();
+ }
+}
+
+//
+// Read a byte
+//
+uint8_t OneWire::read() {
+ uint8_t bitMask;
+ uint8_t r = 0;
+
+ for (bitMask = 0x01; bitMask; bitMask <<= 1) {
+ if ( OneWire::read_bit()) r |= bitMask;
+ }
+ return r;
+}
+
+void OneWire::read_bytes(uint8_t *buf, uint16_t count) {
+ for (uint16_t i = 0 ; i < count ; i++)
+ buf[i] = read();
+}
+
+//
+// Do a ROM select
+//
+void OneWire::select(const uint8_t rom[8])
+{
+ uint8_t i;
+
+ write(0x55); // Choose ROM
+
+ for (i = 0; i < 8; i++) write(rom[i]);
+}
+
+//
+// Do a ROM skip
+//
+void OneWire::skip()
+{
+ write(0xCC); // Skip ROM
+}
+
+void OneWire::depower()
+{
+ noInterrupts();
+ DIRECT_MODE_INPUT(baseReg, bitmask);
+ interrupts();
+}
+
+#if ONEWIRE_SEARCH
+
+//
+// You need to use this function to start a search again from the beginning.
+// You do not need to do it for the first search, though you could.
+//
+void OneWire::reset_search()
+{
+ // reset the search state
+ LastDiscrepancy = 0;
+ LastDeviceFlag = false;
+ LastFamilyDiscrepancy = 0;
+ for(int i = 7; ; i--) {
+ ROM_NO[i] = 0;
+ if ( i == 0) break;
+ }
+}
+
+// Setup the search to find the device type 'family_code' on the next call
+// to search(*newAddr) if it is present.
+//
+void OneWire::target_search(uint8_t family_code)
+{
+ // set the search state to find SearchFamily type devices
+ ROM_NO[0] = family_code;
+ for (uint8_t i = 1; i < 8; i++)
+ ROM_NO[i] = 0;
+ LastDiscrepancy = 64;
+ LastFamilyDiscrepancy = 0;
+ LastDeviceFlag = false;
+}
+
+//
+// Perform a search. If this function returns a '1' then it has
+// enumerated the next device and you may retrieve the ROM from the
+// OneWire::address variable. If there are no devices, no further
+// devices, or something horrible happens in the middle of the
+// enumeration then a 0 is returned. If a new device is found then
+// its address is copied to newAddr. Use OneWire::reset_search() to
+// start over.
+//
+// --- Replaced by the one from the Dallas Semiconductor web site ---
+//--------------------------------------------------------------------------
+// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
+// search state.
+// Return TRUE : device found, ROM number in ROM_NO buffer
+// FALSE : device not found, end of search
+//
+bool OneWire::search(uint8_t *newAddr, bool search_mode /* = true */)
+{
+ uint8_t id_bit_number;
+ uint8_t last_zero, rom_byte_number;
+ bool search_result;
+ uint8_t id_bit, cmp_id_bit;
+
+ unsigned char rom_byte_mask, search_direction;
+
+ // initialize for search
+ id_bit_number = 1;
+ last_zero = 0;
+ rom_byte_number = 0;
+ rom_byte_mask = 1;
+ search_result = false;
+
+ // if the last call was not the last one
+ if (!LastDeviceFlag) {
+ // 1-Wire reset
+ if (!reset()) {
+ // reset the search
+ LastDiscrepancy = 0;
+ LastDeviceFlag = false;
+ LastFamilyDiscrepancy = 0;
+ return false;
+ }
+
+ // issue the search command
+ if (search_mode == true) {
+ write(0xF0); // NORMAL SEARCH
+ } else {
+ write(0xEC); // CONDITIONAL SEARCH
+ }
+
+ // loop to do the search
+ do
+ {
+ // read a bit and its complement
+ id_bit = read_bit();
+ cmp_id_bit = read_bit();
+
+ // check for no devices on 1-wire
+ if ((id_bit == 1) && (cmp_id_bit == 1)) {
+ break;
+ } else {
+ // all devices coupled have 0 or 1
+ if (id_bit != cmp_id_bit) {
+ search_direction = id_bit; // bit write value for search
+ } else {
+ // if this discrepancy if before the Last Discrepancy
+ // on a previous next then pick the same as last time
+ if (id_bit_number < LastDiscrepancy) {
+ search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
+ } else {
+ // if equal to last pick 1, if not then pick 0
+ search_direction = (id_bit_number == LastDiscrepancy);
+ }
+ // if 0 was picked then record its position in LastZero
+ if (search_direction == 0) {
+ last_zero = id_bit_number;
+
+ // check for Last discrepancy in family
+ if (last_zero < 9)
+ LastFamilyDiscrepancy = last_zero;
+ }
+ }
+
+ // set or clear the bit in the ROM byte rom_byte_number
+ // with mask rom_byte_mask
+ if (search_direction == 1)
+ ROM_NO[rom_byte_number] |= rom_byte_mask;
+ else
+ ROM_NO[rom_byte_number] &= ~rom_byte_mask;
+
+ // serial number search direction write bit
+ write_bit(search_direction);
+
+ // increment the byte counter id_bit_number
+ // and shift the mask rom_byte_mask
+ id_bit_number++;
+ rom_byte_mask <<= 1;
+
+ // if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
+ if (rom_byte_mask == 0) {
+ rom_byte_number++;
+ rom_byte_mask = 1;
+ }
+ }
+ }
+ while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
+
+ // if the search was successful then
+ if (!(id_bit_number < 65)) {
+ // search successful so set LastDiscrepancy,LastDeviceFlag,search_result
+ LastDiscrepancy = last_zero;
+
+ // check for last device
+ if (LastDiscrepancy == 0) {
+ LastDeviceFlag = true;
+ }
+ search_result = true;
+ }
+ }
+
+ // if no device found then reset counters so next 'search' will be like a first
+ if (!search_result || !ROM_NO[0]) {
+ LastDiscrepancy = 0;
+ LastDeviceFlag = false;
+ LastFamilyDiscrepancy = 0;
+ search_result = false;
+ } else {
+ for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
+ }
+ return search_result;
+ }
+
+#endif
+
+#if ONEWIRE_CRC
+// The 1-Wire CRC scheme is described in Maxim Application Note 27:
+// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
+//
+
+#if ONEWIRE_CRC8_TABLE
+// Dow-CRC using polynomial X^8 + X^5 + X^4 + X^0
+// Tiny 2x16 entry CRC table created by Arjen Lentz
+// See http://lentz.com.au/blog/calculating-crc-with-a-tiny-32-entry-lookup-table
+static const uint8_t PROGMEM dscrc2x16_table[] = {
+ 0x00, 0x5E, 0xBC, 0xE2, 0x61, 0x3F, 0xDD, 0x83,
+ 0xC2, 0x9C, 0x7E, 0x20, 0xA3, 0xFD, 0x1F, 0x41,
+ 0x00, 0x9D, 0x23, 0xBE, 0x46, 0xDB, 0x65, 0xF8,
+ 0x8C, 0x11, 0xAF, 0x32, 0xCA, 0x57, 0xE9, 0x74
+};
+
+// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
+// and the registers. (Use tiny 2x16 entry CRC table)
+uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
+{
+ uint8_t crc = 0;
+
+ while (len--) {
+ crc = *addr++ ^ crc; // just re-using crc as intermediate
+ crc = pgm_read_byte(dscrc2x16_table + (crc & 0x0f)) ^
+ pgm_read_byte(dscrc2x16_table + 16 + ((crc >> 4) & 0x0f));
+ }
+
+ return crc;
+}
+#else
+//
+// Compute a Dallas Semiconductor 8 bit CRC directly.
+// this is much slower, but a little smaller, than the lookup table.
+//
+uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
+{
+ uint8_t crc = 0;
+
+ while (len--) {
+#if defined(__AVR__)
+ crc = _crc_ibutton_update(crc, *addr++);
+#else
+ uint8_t inbyte = *addr++;
+ for (uint8_t i = 8; i; i--) {
+ uint8_t mix = (crc ^ inbyte) & 0x01;
+ crc >>= 1;
+ if (mix) crc ^= 0x8C;
+ inbyte >>= 1;
+ }
+#endif
+ }
+ return crc;
+}
+#endif
+
+#if ONEWIRE_CRC16
+bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc)
+{
+ crc = ~crc16(input, len, crc);
+ return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
+}
+
+uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc)
+{
+#if defined(__AVR__)
+ for (uint16_t i = 0 ; i < len ; i++) {
+ crc = _crc16_update(crc, input[i]);
+ }
+#else
+ static const uint8_t oddparity[16] =
+ { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
+
+ for (uint16_t i = 0 ; i < len ; i++) {
+ // Even though we're just copying a byte from the input,
+ // we'll be doing 16-bit computation with it.
+ uint16_t cdata = input[i];
+ cdata = (cdata ^ crc) & 0xff;
+ crc >>= 8;
+
+ if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
+ crc ^= 0xC001;
+
+ cdata <<= 6;
+ crc ^= cdata;
+ cdata <<= 1;
+ crc ^= cdata;
+ }
+#endif
+ return crc;
+}
+#endif
+
+#endif
diff --git a/sw/lib/OneWire/OneWire.h b/sw/lib/OneWire/OneWire.h
new file mode 100644
index 0000000..a7bfab7
--- /dev/null
+++ b/sw/lib/OneWire/OneWire.h
@@ -0,0 +1,182 @@
+#ifndef OneWire_h
+#define OneWire_h
+
+#ifdef __cplusplus
+
+#include <stdint.h>
+
+#if defined(__AVR__)
+#include <util/crc16.h>
+#endif
+
+#if ARDUINO >= 100
+#include <Arduino.h> // for delayMicroseconds, digitalPinToBitMask, etc
+#else
+#include "WProgram.h" // for delayMicroseconds
+#include "pins_arduino.h" // for digitalPinToBitMask, etc
+#endif
+
+// You can exclude certain features from OneWire. In theory, this
+// might save some space. In practice, the compiler automatically
+// removes unused code (technically, the linker, using -fdata-sections
+// and -ffunction-sections when compiling, and Wl,--gc-sections
+// when linking), so most of these will not result in any code size
+// reduction. Well, unless you try to use the missing features
+// and redesign your program to not need them! ONEWIRE_CRC8_TABLE
+// is the exception, because it selects a fast but large algorithm
+// or a small but slow algorithm.
+
+// you can exclude onewire_search by defining that to 0
+#ifndef ONEWIRE_SEARCH
+#define ONEWIRE_SEARCH 1
+#endif
+
+// You can exclude CRC checks altogether by defining this to 0
+#ifndef ONEWIRE_CRC
+#define ONEWIRE_CRC 1
+#endif
+
+// Select the table-lookup method of computing the 8-bit CRC
+// by setting this to 1. The lookup table enlarges code size by
+// about 250 bytes. It does NOT consume RAM (but did in very
+// old versions of OneWire). If you disable this, a slower
+// but very compact algorithm is used.
+#ifndef ONEWIRE_CRC8_TABLE
+#define ONEWIRE_CRC8_TABLE 1
+#endif
+
+// You can allow 16-bit CRC checks by defining this to 1
+// (Note that ONEWIRE_CRC must also be 1.)
+#ifndef ONEWIRE_CRC16
+#define ONEWIRE_CRC16 1
+#endif
+
+// Board-specific macros for direct GPIO
+#include "util/OneWire_direct_regtype.h"
+
+class OneWire
+{
+ private:
+ IO_REG_TYPE bitmask;
+ volatile IO_REG_TYPE *baseReg;
+
+#if ONEWIRE_SEARCH
+ // global search state
+ unsigned char ROM_NO[8];
+ uint8_t LastDiscrepancy;
+ uint8_t LastFamilyDiscrepancy;
+ bool LastDeviceFlag;
+#endif
+
+ public:
+ OneWire() { }
+ OneWire(uint8_t pin) { begin(pin); }
+ void begin(uint8_t pin);
+
+ // Perform a 1-Wire reset cycle. Returns 1 if a device responds
+ // with a presence pulse. Returns 0 if there is no device or the
+ // bus is shorted or otherwise held low for more than 250uS
+ uint8_t reset(void);
+
+ // Issue a 1-Wire rom select command, you do the reset first.
+ void select(const uint8_t rom[8]);
+
+ // Issue a 1-Wire rom skip command, to address all on bus.
+ void skip(void);
+
+ // Write a byte. If 'power' is one then the wire is held high at
+ // the end for parasitically powered devices. You are responsible
+ // for eventually depowering it by calling depower() or doing
+ // another read or write.
+ void write(uint8_t v, uint8_t power = 0);
+
+ void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0);
+
+ // Read a byte.
+ uint8_t read(void);
+
+ void read_bytes(uint8_t *buf, uint16_t count);
+
+ // Write a bit. The bus is always left powered at the end, see
+ // note in write() about that.
+ void write_bit(uint8_t v);
+
+ // Read a bit.
+ uint8_t read_bit(void);
+
+ // Stop forcing power onto the bus. You only need to do this if
+ // you used the 'power' flag to write() or used a write_bit() call
+ // and aren't about to do another read or write. You would rather
+ // not leave this powered if you don't have to, just in case
+ // someone shorts your bus.
+ void depower(void);
+
+#if ONEWIRE_SEARCH
+ // Clear the search state so that if will start from the beginning again.
+ void reset_search();
+
+ // Setup the search to find the device type 'family_code' on the next call
+ // to search(*newAddr) if it is present.
+ void target_search(uint8_t family_code);
+
+ // Look for the next device. Returns 1 if a new address has been
+ // returned. A zero might mean that the bus is shorted, there are
+ // no devices, or you have already retrieved all of them. It
+ // might be a good idea to check the CRC to make sure you didn't
+ // get garbage. The order is deterministic. You will always get
+ // the same devices in the same order.
+ bool search(uint8_t *newAddr, bool search_mode = true);
+#endif
+
+#if ONEWIRE_CRC
+ // Compute a Dallas Semiconductor 8 bit CRC, these are used in the
+ // ROM and scratchpad registers.
+ static uint8_t crc8(const uint8_t *addr, uint8_t len);
+
+#if ONEWIRE_CRC16
+ // Compute the 1-Wire CRC16 and compare it against the received CRC.
+ // Example usage (reading a DS2408):
+ // // Put everything in a buffer so we can compute the CRC easily.
+ // uint8_t buf[13];
+ // buf[0] = 0xF0; // Read PIO Registers
+ // buf[1] = 0x88; // LSB address
+ // buf[2] = 0x00; // MSB address
+ // WriteBytes(net, buf, 3); // Write 3 cmd bytes
+ // ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
+ // if (!CheckCRC16(buf, 11, &buf[11])) {
+ // // Handle error.
+ // }
+ //
+ // @param input - Array of bytes to checksum.
+ // @param len - How many bytes to use.
+ // @param inverted_crc - The two CRC16 bytes in the received data.
+ // This should just point into the received data,
+ // *not* at a 16-bit integer.
+ // @param crc - The crc starting value (optional)
+ // @return True, iff the CRC matches.
+ static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0);
+
+ // Compute a Dallas Semiconductor 16 bit CRC. This is required to check
+ // the integrity of data received from many 1-Wire devices. Note that the
+ // CRC computed here is *not* what you'll get from the 1-Wire network,
+ // for two reasons:
+ // 1) The CRC is transmitted bitwise inverted.
+ // 2) Depending on the endian-ness of your processor, the binary
+ // representation of the two-byte return value may have a different
+ // byte order than the two bytes you get from 1-Wire.
+ // @param input - Array of bytes to checksum.
+ // @param len - How many bytes to use.
+ // @param crc - The crc starting value (optional)
+ // @return The CRC16, as defined by Dallas Semiconductor.
+ static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0);
+#endif
+#endif
+};
+
+// Prevent this name from leaking into Arduino sketches
+#ifdef IO_REG_TYPE
+#undef IO_REG_TYPE
+#endif
+
+#endif // __cplusplus
+#endif // OneWire_h
diff --git a/sw/lib/OneWire/util/OneWire_direct_gpio.h b/sw/lib/OneWire/util/OneWire_direct_gpio.h
new file mode 100644
index 0000000..0771367
--- /dev/null
+++ b/sw/lib/OneWire/util/OneWire_direct_gpio.h
@@ -0,0 +1,420 @@
+#ifndef OneWire_Direct_GPIO_h
+#define OneWire_Direct_GPIO_h
+
+// This header should ONLY be included by OneWire.cpp. These defines are
+// meant to be private, used within OneWire.cpp, but not exposed to Arduino
+// sketches or other libraries which may include OneWire.h.
+
+#include <stdint.h>
+
+// Platform specific I/O definitions
+
+#if defined(__AVR__)
+#define PIN_TO_BASEREG(pin) (portInputRegister(digitalPinToPort(pin)))
+#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
+#define IO_REG_TYPE uint8_t
+#define IO_REG_BASE_ATTR asm("r30")
+#define IO_REG_MASK_ATTR
+#if defined(__AVR_ATmega4809__)
+#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0)
+#define DIRECT_MODE_INPUT(base, mask) ((*((base)-8)) &= ~(mask))
+#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)-8)) |= (mask))
+#define DIRECT_WRITE_LOW(base, mask) ((*((base)-4)) &= ~(mask))
+#define DIRECT_WRITE_HIGH(base, mask) ((*((base)-4)) |= (mask))
+#else
+#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0)
+#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) &= ~(mask))
+#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+1)) |= (mask))
+#define DIRECT_WRITE_LOW(base, mask) ((*((base)+2)) &= ~(mask))
+#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+2)) |= (mask))
+#endif
+
+#elif defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK66FX1M0__) || defined(__MK64FX512__)
+#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
+#define PIN_TO_BITMASK(pin) (1)
+#define IO_REG_TYPE uint8_t
+#define IO_REG_BASE_ATTR
+#define IO_REG_MASK_ATTR __attribute__ ((unused))
+#define DIRECT_READ(base, mask) (*((base)+512))
+#define DIRECT_MODE_INPUT(base, mask) (*((base)+640) = 0)
+#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+640) = 1)
+#define DIRECT_WRITE_LOW(base, mask) (*((base)+256) = 1)
+#define DIRECT_WRITE_HIGH(base, mask) (*((base)+128) = 1)
+
+#elif defined(__MKL26Z64__)
+#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
+#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
+#define IO_REG_TYPE uint8_t
+#define IO_REG_BASE_ATTR
+#define IO_REG_MASK_ATTR
+#define DIRECT_READ(base, mask) ((*((base)+16) & (mask)) ? 1 : 0)
+#define DIRECT_MODE_INPUT(base, mask) (*((base)+20) &= ~(mask))
+#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+20) |= (mask))
+#define DIRECT_WRITE_LOW(base, mask) (*((base)+8) = (mask))
+#define DIRECT_WRITE_HIGH(base, mask) (*((base)+4) = (mask))
+
+#elif defined(__IMXRT1052__) || defined(__IMXRT1062__)
+#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
+#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
+#define IO_REG_TYPE uint32_t
+#define IO_REG_BASE_ATTR
+#define IO_REG_MASK_ATTR
+#define DIRECT_READ(base, mask) ((*((base)+2) & (mask)) ? 1 : 0)
+#define DIRECT_MODE_INPUT(base, mask) (*((base)+1) &= ~(mask))
+#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+1) |= (mask))
+#define DIRECT_WRITE_LOW(base, mask) (*((base)+34) = (mask))
+#define DIRECT_WRITE_HIGH(base, mask) (*((base)+33) = (mask))
+
+#elif defined(__SAM3X8E__) || defined(__SAM3A8C__) || defined(__SAM3A4C__)
+// Arduino 1.5.1 may have a bug in delayMicroseconds() on Arduino Due.
+// http://arduino.cc/forum/index.php/topic,141030.msg1076268.html#msg1076268
+// If you have trouble with OneWire on Arduino Due, please check the
+// status of delayMicroseconds() before reporting a bug in OneWire!
+#define PIN_TO_BASEREG(pin) (&(digitalPinToPort(pin)->PIO_PER))
+#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
+#define IO_REG_TYPE uint32_t
+#define IO_REG_BASE_ATTR
+#define IO_REG_MASK_ATTR
+#define DIRECT_READ(base, mask) (((*((base)+15)) & (mask)) ? 1 : 0)
+#define DIRECT_MODE_INPUT(base, mask) ((*((base)+5)) = (mask))
+#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+4)) = (mask))
+#define DIRECT_WRITE_LOW(base, mask) ((*((base)+13)) = (mask))
+#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+12)) = (mask))
+#ifndef PROGMEM
+#define PROGMEM
+#endif
+#ifndef pgm_read_byte
+#define pgm_read_byte(addr) (*(const uint8_t *)(addr))
+#endif
+
+#elif defined(__PIC32MX__)
+#define PIN_TO_BASEREG(pin) (portModeRegister(digitalPinToPort(pin)))
+#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
+#define IO_REG_TYPE uint32_t
+#define IO_REG_BASE_ATTR
+#define IO_REG_MASK_ATTR
+#define DIRECT_READ(base, mask) (((*(base+4)) & (mask)) ? 1 : 0) //PORTX + 0x10
+#define DIRECT_MODE_INPUT(base, mask) ((*(base+2)) = (mask)) //TRISXSET + 0x08
+#define DIRECT_MODE_OUTPUT(base, mask) ((*(base+1)) = (mask)) //TRISXCLR + 0x04
+#define DIRECT_WRITE_LOW(base, mask) ((*(base+8+1)) = (mask)) //LATXCLR + 0x24
+#define DIRECT_WRITE_HIGH(base, mask) ((*(base+8+2)) = (mask)) //LATXSET + 0x28
+
+#elif defined(ARDUINO_ARCH_ESP8266)
+// Special note: I depend on the ESP community to maintain these definitions and
+// submit good pull requests. I can not answer any ESP questions or help you
+// resolve any problems related to ESP chips. Please do not contact me and please
+// DO NOT CREATE GITHUB ISSUES for ESP support. All ESP questions must be asked
+// on ESP community forums.
+#define PIN_TO_BASEREG(pin) ((volatile uint32_t*) GPO)
+#define PIN_TO_BITMASK(pin) (1 << pin)
+#define IO_REG_TYPE uint32_t
+#define IO_REG_BASE_ATTR
+#define IO_REG_MASK_ATTR
+#define DIRECT_READ(base, mask) ((GPI & (mask)) ? 1 : 0) //GPIO_IN_ADDRESS
+#define DIRECT_MODE_INPUT(base, mask) (GPE &= ~(mask)) //GPIO_ENABLE_W1TC_ADDRESS
+#define DIRECT_MODE_OUTPUT(base, mask) (GPE |= (mask)) //GPIO_ENABLE_W1TS_ADDRESS
+#define DIRECT_WRITE_LOW(base, mask) (GPOC = (mask)) //GPIO_OUT_W1TC_ADDRESS
+#define DIRECT_WRITE_HIGH(base, mask) (GPOS = (mask)) //GPIO_OUT_W1TS_ADDRESS
+
+#elif defined(ARDUINO_ARCH_ESP32)
+#include <driver/rtc_io.h>
+#define PIN_TO_BASEREG(pin) (0)
+#define PIN_TO_BITMASK(pin) (pin)
+#define IO_REG_TYPE uint32_t
+#define IO_REG_BASE_ATTR
+#define IO_REG_MASK_ATTR
+
+static inline __attribute__((always_inline))
+IO_REG_TYPE directRead(IO_REG_TYPE pin)
+{
+ if ( pin < 32 )
+ return (GPIO.in >> pin) & 0x1;
+ else if ( pin < 40 )
+ return (GPIO.in1.val >> (pin - 32)) & 0x1;
+
+ return 0;
+}
+
+static inline __attribute__((always_inline))
+void directWriteLow(IO_REG_TYPE pin)
+{
+ if ( pin < 32 )
+ GPIO.out_w1tc = ((uint32_t)1 << pin);
+ else if ( pin < 34 )
+ GPIO.out1_w1tc.val = ((uint32_t)1 << (pin - 32));
+}
+
+static inline __attribute__((always_inline))
+void directWriteHigh(IO_REG_TYPE pin)
+{
+ if ( pin < 32 )
+ GPIO.out_w1ts = ((uint32_t)1 << pin);
+ else if ( pin < 34 )
+ GPIO.out1_w1ts.val = ((uint32_t)1 << (pin - 32));
+}
+
+static inline __attribute__((always_inline))
+void directModeInput(IO_REG_TYPE pin)
+{
+ if ( digitalPinIsValid(pin) )
+ {
+ uint32_t rtc_reg(rtc_gpio_desc[pin].reg);
+
+ if ( rtc_reg ) // RTC pins PULL settings
+ {
+ ESP_REG(rtc_reg) = ESP_REG(rtc_reg) & ~(rtc_gpio_desc[pin].mux);
+ ESP_REG(rtc_reg) = ESP_REG(rtc_reg) & ~(rtc_gpio_desc[pin].pullup | rtc_gpio_desc[pin].pulldown);
+ }
+
+ if ( pin < 32 )
+ GPIO.enable_w1tc = ((uint32_t)1 << pin);
+ else
+ GPIO.enable1_w1tc.val = ((uint32_t)1 << (pin - 32));
+
+ uint32_t pinFunction((uint32_t)2 << FUN_DRV_S); // what are the drivers?
+ pinFunction |= FUN_IE; // input enable but required for output as well?
+ pinFunction |= ((uint32_t)2 << MCU_SEL_S);
+
+ ESP_REG(DR_REG_IO_MUX_BASE + esp32_gpioMux[pin].reg) = pinFunction;
+
+ GPIO.pin[pin].val = 0;
+ }
+}
+
+static inline __attribute__((always_inline))
+void directModeOutput(IO_REG_TYPE pin)
+{
+ if ( digitalPinIsValid(pin) && pin <= 33 ) // pins above 33 can be only inputs
+ {
+ uint32_t rtc_reg(rtc_gpio_desc[pin].reg);
+
+ if ( rtc_reg ) // RTC pins PULL settings
+ {
+ ESP_REG(rtc_reg) = ESP_REG(rtc_reg) & ~(rtc_gpio_desc[pin].mux);
+ ESP_REG(rtc_reg) = ESP_REG(rtc_reg) & ~(rtc_gpio_desc[pin].pullup | rtc_gpio_desc[pin].pulldown);
+ }
+
+ if ( pin < 32 )
+ GPIO.enable_w1ts = ((uint32_t)1 << pin);
+ else // already validated to pins <= 33
+ GPIO.enable1_w1ts.val = ((uint32_t)1 << (pin - 32));
+
+ uint32_t pinFunction((uint32_t)2 << FUN_DRV_S); // what are the drivers?
+ pinFunction |= FUN_IE; // input enable but required for output as well?
+ pinFunction |= ((uint32_t)2 << MCU_SEL_S);
+
+ ESP_REG(DR_REG_IO_MUX_BASE + esp32_gpioMux[pin].reg) = pinFunction;
+
+ GPIO.pin[pin].val = 0;
+ }
+}
+
+#define DIRECT_READ(base, pin) directRead(pin)
+#define DIRECT_WRITE_LOW(base, pin) directWriteLow(pin)
+#define DIRECT_WRITE_HIGH(base, pin) directWriteHigh(pin)
+#define DIRECT_MODE_INPUT(base, pin) directModeInput(pin)
+#define DIRECT_MODE_OUTPUT(base, pin) directModeOutput(pin)
+// https://github.com/PaulStoffregen/OneWire/pull/47
+// https://github.com/stickbreaker/OneWire/commit/6eb7fc1c11a15b6ac8c60e5671cf36eb6829f82c
+#ifdef interrupts
+#undef interrupts
+#endif
+#ifdef noInterrupts
+#undef noInterrupts
+#endif
+#define noInterrupts() {portMUX_TYPE mux = portMUX_INITIALIZER_UNLOCKED;portENTER_CRITICAL(&mux)
+#define interrupts() portEXIT_CRITICAL(&mux);}
+//#warning "ESP32 OneWire testing"
+
+#elif defined(ARDUINO_ARCH_STM32)
+#define PIN_TO_BASEREG(pin) (0)
+#define PIN_TO_BITMASK(pin) ((uint32_t)digitalPinToPinName(pin))
+#define IO_REG_TYPE uint32_t
+#define IO_REG_BASE_ATTR
+#define IO_REG_MASK_ATTR
+#define DIRECT_READ(base, pin) digitalReadFast((PinName)pin)
+#define DIRECT_WRITE_LOW(base, pin) digitalWriteFast((PinName)pin, LOW)
+#define DIRECT_WRITE_HIGH(base, pin) digitalWriteFast((PinName)pin, HIGH)
+#define DIRECT_MODE_INPUT(base, pin) pin_function((PinName)pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0))
+#define DIRECT_MODE_OUTPUT(base, pin) pin_function((PinName)pin, STM_PIN_DATA(STM_MODE_OUTPUT_PP, GPIO_NOPULL, 0))
+
+#elif defined(__SAMD21G18A__)
+#define PIN_TO_BASEREG(pin) portModeRegister(digitalPinToPort(pin))
+#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
+#define IO_REG_TYPE uint32_t
+#define IO_REG_BASE_ATTR
+#define IO_REG_MASK_ATTR
+#define DIRECT_READ(base, mask) (((*((base)+8)) & (mask)) ? 1 : 0)
+#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) = (mask))
+#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+2)) = (mask))
+#define DIRECT_WRITE_LOW(base, mask) ((*((base)+5)) = (mask))
+#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+6)) = (mask))
+
+#elif defined(RBL_NRF51822)
+#define PIN_TO_BASEREG(pin) (0)
+#define PIN_TO_BITMASK(pin) (pin)
+#define IO_REG_TYPE uint32_t
+#define IO_REG_BASE_ATTR
+#define IO_REG_MASK_ATTR
+#define DIRECT_READ(base, pin) nrf_gpio_pin_read(pin)
+#define DIRECT_WRITE_LOW(base, pin) nrf_gpio_pin_clear(pin)
+#define DIRECT_WRITE_HIGH(base, pin) nrf_gpio_pin_set(pin)
+#define DIRECT_MODE_INPUT(base, pin) nrf_gpio_cfg_input(pin, NRF_GPIO_PIN_NOPULL)
+#define DIRECT_MODE_OUTPUT(base, pin) nrf_gpio_cfg_output(pin)
+
+#elif defined(__arc__) /* Arduino101/Genuino101 specifics */
+
+#include "scss_registers.h"
+#include "portable.h"
+#include "avr/pgmspace.h"
+
+#define GPIO_ID(pin) (g_APinDescription[pin].ulGPIOId)
+#define GPIO_TYPE(pin) (g_APinDescription[pin].ulGPIOType)
+#define GPIO_BASE(pin) (g_APinDescription[pin].ulGPIOBase)
+#define DIR_OFFSET_SS 0x01
+#define DIR_OFFSET_SOC 0x04
+#define EXT_PORT_OFFSET_SS 0x0A
+#define EXT_PORT_OFFSET_SOC 0x50
+
+/* GPIO registers base address */
+#define PIN_TO_BASEREG(pin) ((volatile uint32_t *)g_APinDescription[pin].ulGPIOBase)
+#define PIN_TO_BITMASK(pin) pin
+#define IO_REG_TYPE uint32_t
+#define IO_REG_BASE_ATTR
+#define IO_REG_MASK_ATTR
+
+static inline __attribute__((always_inline))
+IO_REG_TYPE directRead(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
+{
+ IO_REG_TYPE ret;
+ if (SS_GPIO == GPIO_TYPE(pin)) {
+ ret = READ_ARC_REG(((IO_REG_TYPE)base + EXT_PORT_OFFSET_SS));
+ } else {
+ ret = MMIO_REG_VAL_FROM_BASE((IO_REG_TYPE)base, EXT_PORT_OFFSET_SOC);
+ }
+ return ((ret >> GPIO_ID(pin)) & 0x01);
+}
+
+static inline __attribute__((always_inline))
+void directModeInput(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
+{
+ if (SS_GPIO == GPIO_TYPE(pin)) {
+ WRITE_ARC_REG(READ_ARC_REG((((IO_REG_TYPE)base) + DIR_OFFSET_SS)) & ~(0x01 << GPIO_ID(pin)),
+ ((IO_REG_TYPE)(base) + DIR_OFFSET_SS));
+ } else {
+ MMIO_REG_VAL_FROM_BASE((IO_REG_TYPE)base, DIR_OFFSET_SOC) &= ~(0x01 << GPIO_ID(pin));
+ }
+}
+
+static inline __attribute__((always_inline))
+void directModeOutput(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
+{
+ if (SS_GPIO == GPIO_TYPE(pin)) {
+ WRITE_ARC_REG(READ_ARC_REG(((IO_REG_TYPE)(base) + DIR_OFFSET_SS)) | (0x01 << GPIO_ID(pin)),
+ ((IO_REG_TYPE)(base) + DIR_OFFSET_SS));
+ } else {
+ MMIO_REG_VAL_FROM_BASE((IO_REG_TYPE)base, DIR_OFFSET_SOC) |= (0x01 << GPIO_ID(pin));
+ }
+}
+
+static inline __attribute__((always_inline))
+void directWriteLow(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
+{
+ if (SS_GPIO == GPIO_TYPE(pin)) {
+ WRITE_ARC_REG(READ_ARC_REG(base) & ~(0x01 << GPIO_ID(pin)), base);
+ } else {
+ MMIO_REG_VAL(base) &= ~(0x01 << GPIO_ID(pin));
+ }
+}
+
+static inline __attribute__((always_inline))
+void directWriteHigh(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
+{
+ if (SS_GPIO == GPIO_TYPE(pin)) {
+ WRITE_ARC_REG(READ_ARC_REG(base) | (0x01 << GPIO_ID(pin)), base);
+ } else {
+ MMIO_REG_VAL(base) |= (0x01 << GPIO_ID(pin));
+ }
+}
+
+#define DIRECT_READ(base, pin) directRead(base, pin)
+#define DIRECT_MODE_INPUT(base, pin) directModeInput(base, pin)
+#define DIRECT_MODE_OUTPUT(base, pin) directModeOutput(base, pin)
+#define DIRECT_WRITE_LOW(base, pin) directWriteLow(base, pin)
+#define DIRECT_WRITE_HIGH(base, pin) directWriteHigh(base, pin)
+
+#elif defined(__riscv)
+
+/*
+ * Tested on highfive1
+ *
+ * Stable results are achieved operating in the
+ * two high speed modes of the highfive1. It
+ * seems to be less reliable in slow mode.
+ */
+#define PIN_TO_BASEREG(pin) (0)
+#define PIN_TO_BITMASK(pin) digitalPinToBitMask(pin)
+#define IO_REG_TYPE uint32_t
+#define IO_REG_BASE_ATTR
+#define IO_REG_MASK_ATTR
+
+static inline __attribute__((always_inline))
+IO_REG_TYPE directRead(IO_REG_TYPE mask)
+{
+ return ((GPIO_REG(GPIO_INPUT_VAL) & mask) != 0) ? 1 : 0;
+}
+
+static inline __attribute__((always_inline))
+void directModeInput(IO_REG_TYPE mask)
+{
+ GPIO_REG(GPIO_OUTPUT_XOR) &= ~mask;
+ GPIO_REG(GPIO_IOF_EN) &= ~mask;
+
+ GPIO_REG(GPIO_INPUT_EN) |= mask;
+ GPIO_REG(GPIO_OUTPUT_EN) &= ~mask;
+}
+
+static inline __attribute__((always_inline))
+void directModeOutput(IO_REG_TYPE mask)
+{
+ GPIO_REG(GPIO_OUTPUT_XOR) &= ~mask;
+ GPIO_REG(GPIO_IOF_EN) &= ~mask;
+
+ GPIO_REG(GPIO_INPUT_EN) &= ~mask;
+ GPIO_REG(GPIO_OUTPUT_EN) |= mask;
+}
+
+static inline __attribute__((always_inline))
+void directWriteLow(IO_REG_TYPE mask)
+{
+ GPIO_REG(GPIO_OUTPUT_VAL) &= ~mask;
+}
+
+static inline __attribute__((always_inline))
+void directWriteHigh(IO_REG_TYPE mask)
+{
+ GPIO_REG(GPIO_OUTPUT_VAL) |= mask;
+}
+
+#define DIRECT_READ(base, mask) directRead(mask)
+#define DIRECT_WRITE_LOW(base, mask) directWriteLow(mask)
+#define DIRECT_WRITE_HIGH(base, mask) directWriteHigh(mask)
+#define DIRECT_MODE_INPUT(base, mask) directModeInput(mask)
+#define DIRECT_MODE_OUTPUT(base, mask) directModeOutput(mask)
+
+#else
+#define PIN_TO_BASEREG(pin) (0)
+#define PIN_TO_BITMASK(pin) (pin)
+#define IO_REG_TYPE unsigned int
+#define IO_REG_BASE_ATTR
+#define IO_REG_MASK_ATTR
+#define DIRECT_READ(base, pin) digitalRead(pin)
+#define DIRECT_WRITE_LOW(base, pin) digitalWrite(pin, LOW)
+#define DIRECT_WRITE_HIGH(base, pin) digitalWrite(pin, HIGH)
+#define DIRECT_MODE_INPUT(base, pin) pinMode(pin,INPUT)
+#define DIRECT_MODE_OUTPUT(base, pin) pinMode(pin,OUTPUT)
+#warning "OneWire. Fallback mode. Using API calls for pinMode,digitalRead and digitalWrite. Operation of this library is not guaranteed on this architecture."
+
+#endif
+
+#endif
diff --git a/sw/lib/OneWire/util/OneWire_direct_regtype.h b/sw/lib/OneWire/util/OneWire_direct_regtype.h
new file mode 100644
index 0000000..21c4634
--- /dev/null
+++ b/sw/lib/OneWire/util/OneWire_direct_regtype.h
@@ -0,0 +1,52 @@
+#ifndef OneWire_Direct_RegType_h
+#define OneWire_Direct_RegType_h
+
+#include <stdint.h>
+
+// Platform specific I/O register type
+
+#if defined(__AVR__)
+#define IO_REG_TYPE uint8_t
+
+#elif defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK66FX1M0__) || defined(__MK64FX512__)
+#define IO_REG_TYPE uint8_t
+
+#elif defined(__IMXRT1052__) || defined(__IMXRT1062__)
+#define IO_REG_TYPE uint32_t
+
+#elif defined(__MKL26Z64__)
+#define IO_REG_TYPE uint8_t
+
+#elif defined(__SAM3X8E__) || defined(__SAM3A8C__) || defined(__SAM3A4C__)
+#define IO_REG_TYPE uint32_t
+
+#elif defined(__PIC32MX__)
+#define IO_REG_TYPE uint32_t
+
+#elif defined(ARDUINO_ARCH_ESP8266)
+#define IO_REG_TYPE uint32_t
+
+#elif defined(ARDUINO_ARCH_ESP32)
+#define IO_REG_TYPE uint32_t
+#define IO_REG_MASK_ATTR
+
+#elif defined(ARDUINO_ARCH_STM32)
+#define IO_REG_TYPE uint32_t
+
+#elif defined(__SAMD21G18A__)
+#define IO_REG_TYPE uint32_t
+
+#elif defined(RBL_NRF51822)
+#define IO_REG_TYPE uint32_t
+
+#elif defined(__arc__) /* Arduino101/Genuino101 specifics */
+#define IO_REG_TYPE uint32_t
+
+#elif defined(__riscv)
+#define IO_REG_TYPE uint32_t
+
+#else
+#define IO_REG_TYPE unsigned int
+
+#endif
+#endif
diff --git a/sw/lib/delay.h b/sw/lib/delay.h
new file mode 100644
index 0000000..af92a4f
--- /dev/null
+++ b/sw/lib/delay.h
@@ -0,0 +1,9 @@
+#ifndef __DELAY_INT_H
+#define __DELAY_INT_H
+
+#include <util/delay.h>
+
+#define delay_us(us) _delay_us(us)
+#define delay_ms(ms) _delay_ms(ms)
+
+#endif
diff --git a/sw/main.cpp b/sw/main.cpp
new file mode 100644
index 0000000..a021b96
--- /dev/null
+++ b/sw/main.cpp
@@ -0,0 +1,36 @@
+/*
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2019 Matthias P. Braendli
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+*/
+
+#include <stdlib.h>
+#include <stdint.h>
+
+#include <avr/pgmspace.h>
+#include <avr/io.h>
+#include <avr/interrupt.h>
+
+int main()
+{
+
+ return 0;
+}