diff options
author | Matthias P. Braendli <matthias.braendli@mpb.li> | 2019-10-19 15:25:33 +0200 |
---|---|---|
committer | Matthias P. Braendli <matthias.braendli@mpb.li> | 2019-10-19 15:25:33 +0200 |
commit | 73fdbdf50e1d024eea755407765991ed5c61c90b (patch) | |
tree | 0af7ecf0433b7170bcdf0d13eb3a2d13511ccf1b /sw/lib/OneWire/OneWire.cpp | |
parent | bf92e6739056e3a4b46a0febbddd860d32096d81 (diff) | |
download | glutte-batteries-73fdbdf50e1d024eea755407765991ed5c61c90b.tar.gz glutte-batteries-73fdbdf50e1d024eea755407765991ed5c61c90b.tar.bz2 glutte-batteries-73fdbdf50e1d024eea755407765991ed5c61c90b.zip |
Restructure lib, add uart
Diffstat (limited to 'sw/lib/OneWire/OneWire.cpp')
-rw-r--r-- | sw/lib/OneWire/OneWire.cpp | 580 |
1 files changed, 0 insertions, 580 deletions
diff --git a/sw/lib/OneWire/OneWire.cpp b/sw/lib/OneWire/OneWire.cpp deleted file mode 100644 index 38bf4ee..0000000 --- a/sw/lib/OneWire/OneWire.cpp +++ /dev/null @@ -1,580 +0,0 @@ -/* -Copyright (c) 2007, Jim Studt (original old version - many contributors since) - -The latest version of this library may be found at: - http://www.pjrc.com/teensy/td_libs_OneWire.html - -OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since -January 2010. - -DO NOT EMAIL for technical support, especially not for ESP chips! -All project support questions must be posted on public forums -relevant to the board or chips used. If using Arduino, post on -Arduino's forum. If using ESP, post on the ESP community forums. -There is ABSOLUTELY NO TECH SUPPORT BY PRIVATE EMAIL! - -Github's issue tracker for OneWire should be used only to report -specific bugs. DO NOT request project support via Github. All -project and tech support questions must be posted on forums, not -github issues. If you experience a problem and you are not -absolutely sure it's an issue with the library, ask on a forum -first. Only use github to report issues after experts have -confirmed the issue is with OneWire rather than your project. - -Back in 2010, OneWire was in need of many bug fixes, but had -been abandoned the original author (Jim Studt). None of the known -contributors were interested in maintaining OneWire. Paul typically -works on OneWire every 6 to 12 months. Patches usually wait that -long. If anyone is interested in more actively maintaining OneWire, -please contact Paul (this is pretty much the only reason to use -private email about OneWire). - -OneWire is now very mature code. No changes other than adding -definitions for newer hardware support are anticipated. - -Version 2.3: - Unknown chip fallback mode, Roger Clark - Teensy-LC compatibility, Paul Stoffregen - Search bug fix, Love Nystrom - -Version 2.2: - Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com - Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030 - Fix DS18B20 example negative temperature - Fix DS18B20 example's low res modes, Ken Butcher - Improve reset timing, Mark Tillotson - Add const qualifiers, Bertrik Sikken - Add initial value input to crc16, Bertrik Sikken - Add target_search() function, Scott Roberts - -Version 2.1: - Arduino 1.0 compatibility, Paul Stoffregen - Improve temperature example, Paul Stoffregen - DS250x_PROM example, Guillermo Lovato - PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com - Improvements from Glenn Trewitt: - - crc16() now works - - check_crc16() does all of calculation/checking work. - - Added read_bytes() and write_bytes(), to reduce tedious loops. - - Added ds2408 example. - Delete very old, out-of-date readme file (info is here) - -Version 2.0: Modifications by Paul Stoffregen, January 2010: -http://www.pjrc.com/teensy/td_libs_OneWire.html - Search fix from Robin James - http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27 - Use direct optimized I/O in all cases - Disable interrupts during timing critical sections - (this solves many random communication errors) - Disable interrupts during read-modify-write I/O - Reduce RAM consumption by eliminating unnecessary - variables and trimming many to 8 bits - Optimize both crc8 - table version moved to flash - -Modified to work with larger numbers of devices - avoids loop. -Tested in Arduino 11 alpha with 12 sensors. -26 Sept 2008 -- Robin James -http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27 - -Updated to work with arduino-0008 and to include skip() as of -2007/07/06. --RJL20 - -Modified to calculate the 8-bit CRC directly, avoiding the need for -the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010 --- Tom Pollard, Jan 23, 2008 - -Jim Studt's original library was modified by Josh Larios. - -Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008 - -Permission is hereby granted, free of charge, to any person obtaining -a copy of this software and associated documentation files (the -"Software"), to deal in the Software without restriction, including -without limitation the rights to use, copy, modify, merge, publish, -distribute, sublicense, and/or sell copies of the Software, and to -permit persons to whom the Software is furnished to do so, subject to -the following conditions: - -The above copyright notice and this permission notice shall be -included in all copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE -LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION -OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION -WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. - -Much of the code was inspired by Derek Yerger's code, though I don't -think much of that remains. In any event that was.. - (copyleft) 2006 by Derek Yerger - Free to distribute freely. - -The CRC code was excerpted and inspired by the Dallas Semiconductor -sample code bearing this copyright. -//--------------------------------------------------------------------------- -// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved. -// -// Permission is hereby granted, free of charge, to any person obtaining a -// copy of this software and associated documentation files (the "Software"), -// to deal in the Software without restriction, including without limitation -// the rights to use, copy, modify, merge, publish, distribute, sublicense, -// and/or sell copies of the Software, and to permit persons to whom the -// Software is furnished to do so, subject to the following conditions: -// -// The above copyright notice and this permission notice shall be included -// in all copies or substantial portions of the Software. -// -// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS -// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. -// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES -// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, -// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -// OTHER DEALINGS IN THE SOFTWARE. -// -// Except as contained in this notice, the name of Dallas Semiconductor -// shall not be used except as stated in the Dallas Semiconductor -// Branding Policy. -//-------------------------------------------------------------------------- -*/ - -#include <Arduino.h> -#include "OneWire.h" -#include "util/OneWire_direct_gpio.h" - - -void OneWire::begin(uint8_t pin) -{ - pinMode(pin, INPUT); - bitmask = PIN_TO_BITMASK(pin); - baseReg = PIN_TO_BASEREG(pin); -#if ONEWIRE_SEARCH - reset_search(); -#endif -} - - -// Perform the onewire reset function. We will wait up to 250uS for -// the bus to come high, if it doesn't then it is broken or shorted -// and we return a 0; -// -// Returns 1 if a device asserted a presence pulse, 0 otherwise. -// -uint8_t OneWire::reset(void) -{ - IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask; - volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg; - uint8_t r; - uint8_t retries = 125; - - noInterrupts(); - DIRECT_MODE_INPUT(reg, mask); - interrupts(); - // wait until the wire is high... just in case - do { - if (--retries == 0) return 0; - delayMicroseconds(2); - } while ( !DIRECT_READ(reg, mask)); - - noInterrupts(); - DIRECT_WRITE_LOW(reg, mask); - DIRECT_MODE_OUTPUT(reg, mask); // drive output low - interrupts(); - delayMicroseconds(480); - noInterrupts(); - DIRECT_MODE_INPUT(reg, mask); // allow it to float - delayMicroseconds(70); - r = !DIRECT_READ(reg, mask); - interrupts(); - delayMicroseconds(410); - return r; -} - -// -// Write a bit. Port and bit is used to cut lookup time and provide -// more certain timing. -// -void OneWire::write_bit(uint8_t v) -{ - IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask; - volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg; - - if (v & 1) { - noInterrupts(); - DIRECT_WRITE_LOW(reg, mask); - DIRECT_MODE_OUTPUT(reg, mask); // drive output low - delayMicroseconds(10); - DIRECT_WRITE_HIGH(reg, mask); // drive output high - interrupts(); - delayMicroseconds(55); - } else { - noInterrupts(); - DIRECT_WRITE_LOW(reg, mask); - DIRECT_MODE_OUTPUT(reg, mask); // drive output low - delayMicroseconds(65); - DIRECT_WRITE_HIGH(reg, mask); // drive output high - interrupts(); - delayMicroseconds(5); - } -} - -// -// Read a bit. Port and bit is used to cut lookup time and provide -// more certain timing. -// -uint8_t OneWire::read_bit(void) -{ - IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask; - volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg; - uint8_t r; - - noInterrupts(); - DIRECT_MODE_OUTPUT(reg, mask); - DIRECT_WRITE_LOW(reg, mask); - delayMicroseconds(3); - DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise - delayMicroseconds(10); - r = DIRECT_READ(reg, mask); - interrupts(); - delayMicroseconds(53); - return r; -} - -// -// Write a byte. The writing code uses the active drivers to raise the -// pin high, if you need power after the write (e.g. DS18S20 in -// parasite power mode) then set 'power' to 1, otherwise the pin will -// go tri-state at the end of the write to avoid heating in a short or -// other mishap. -// -void OneWire::write(uint8_t v, uint8_t power /* = 0 */) { - uint8_t bitMask; - - for (bitMask = 0x01; bitMask; bitMask <<= 1) { - OneWire::write_bit( (bitMask & v)?1:0); - } - if ( !power) { - noInterrupts(); - DIRECT_MODE_INPUT(baseReg, bitmask); - DIRECT_WRITE_LOW(baseReg, bitmask); - interrupts(); - } -} - -void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) { - for (uint16_t i = 0 ; i < count ; i++) - write(buf[i]); - if (!power) { - noInterrupts(); - DIRECT_MODE_INPUT(baseReg, bitmask); - DIRECT_WRITE_LOW(baseReg, bitmask); - interrupts(); - } -} - -// -// Read a byte -// -uint8_t OneWire::read() { - uint8_t bitMask; - uint8_t r = 0; - - for (bitMask = 0x01; bitMask; bitMask <<= 1) { - if ( OneWire::read_bit()) r |= bitMask; - } - return r; -} - -void OneWire::read_bytes(uint8_t *buf, uint16_t count) { - for (uint16_t i = 0 ; i < count ; i++) - buf[i] = read(); -} - -// -// Do a ROM select -// -void OneWire::select(const uint8_t rom[8]) -{ - uint8_t i; - - write(0x55); // Choose ROM - - for (i = 0; i < 8; i++) write(rom[i]); -} - -// -// Do a ROM skip -// -void OneWire::skip() -{ - write(0xCC); // Skip ROM -} - -void OneWire::depower() -{ - noInterrupts(); - DIRECT_MODE_INPUT(baseReg, bitmask); - interrupts(); -} - -#if ONEWIRE_SEARCH - -// -// You need to use this function to start a search again from the beginning. -// You do not need to do it for the first search, though you could. -// -void OneWire::reset_search() -{ - // reset the search state - LastDiscrepancy = 0; - LastDeviceFlag = false; - LastFamilyDiscrepancy = 0; - for(int i = 7; ; i--) { - ROM_NO[i] = 0; - if ( i == 0) break; - } -} - -// Setup the search to find the device type 'family_code' on the next call -// to search(*newAddr) if it is present. -// -void OneWire::target_search(uint8_t family_code) -{ - // set the search state to find SearchFamily type devices - ROM_NO[0] = family_code; - for (uint8_t i = 1; i < 8; i++) - ROM_NO[i] = 0; - LastDiscrepancy = 64; - LastFamilyDiscrepancy = 0; - LastDeviceFlag = false; -} - -// -// Perform a search. If this function returns a '1' then it has -// enumerated the next device and you may retrieve the ROM from the -// OneWire::address variable. If there are no devices, no further -// devices, or something horrible happens in the middle of the -// enumeration then a 0 is returned. If a new device is found then -// its address is copied to newAddr. Use OneWire::reset_search() to -// start over. -// -// --- Replaced by the one from the Dallas Semiconductor web site --- -//-------------------------------------------------------------------------- -// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing -// search state. -// Return TRUE : device found, ROM number in ROM_NO buffer -// FALSE : device not found, end of search -// -bool OneWire::search(uint8_t *newAddr, bool search_mode /* = true */) -{ - uint8_t id_bit_number; - uint8_t last_zero, rom_byte_number; - bool search_result; - uint8_t id_bit, cmp_id_bit; - - unsigned char rom_byte_mask, search_direction; - - // initialize for search - id_bit_number = 1; - last_zero = 0; - rom_byte_number = 0; - rom_byte_mask = 1; - search_result = false; - - // if the last call was not the last one - if (!LastDeviceFlag) { - // 1-Wire reset - if (!reset()) { - // reset the search - LastDiscrepancy = 0; - LastDeviceFlag = false; - LastFamilyDiscrepancy = 0; - return false; - } - - // issue the search command - if (search_mode == true) { - write(0xF0); // NORMAL SEARCH - } else { - write(0xEC); // CONDITIONAL SEARCH - } - - // loop to do the search - do - { - // read a bit and its complement - id_bit = read_bit(); - cmp_id_bit = read_bit(); - - // check for no devices on 1-wire - if ((id_bit == 1) && (cmp_id_bit == 1)) { - break; - } else { - // all devices coupled have 0 or 1 - if (id_bit != cmp_id_bit) { - search_direction = id_bit; // bit write value for search - } else { - // if this discrepancy if before the Last Discrepancy - // on a previous next then pick the same as last time - if (id_bit_number < LastDiscrepancy) { - search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0); - } else { - // if equal to last pick 1, if not then pick 0 - search_direction = (id_bit_number == LastDiscrepancy); - } - // if 0 was picked then record its position in LastZero - if (search_direction == 0) { - last_zero = id_bit_number; - - // check for Last discrepancy in family - if (last_zero < 9) - LastFamilyDiscrepancy = last_zero; - } - } - - // set or clear the bit in the ROM byte rom_byte_number - // with mask rom_byte_mask - if (search_direction == 1) - ROM_NO[rom_byte_number] |= rom_byte_mask; - else - ROM_NO[rom_byte_number] &= ~rom_byte_mask; - - // serial number search direction write bit - write_bit(search_direction); - - // increment the byte counter id_bit_number - // and shift the mask rom_byte_mask - id_bit_number++; - rom_byte_mask <<= 1; - - // if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask - if (rom_byte_mask == 0) { - rom_byte_number++; - rom_byte_mask = 1; - } - } - } - while(rom_byte_number < 8); // loop until through all ROM bytes 0-7 - - // if the search was successful then - if (!(id_bit_number < 65)) { - // search successful so set LastDiscrepancy,LastDeviceFlag,search_result - LastDiscrepancy = last_zero; - - // check for last device - if (LastDiscrepancy == 0) { - LastDeviceFlag = true; - } - search_result = true; - } - } - - // if no device found then reset counters so next 'search' will be like a first - if (!search_result || !ROM_NO[0]) { - LastDiscrepancy = 0; - LastDeviceFlag = false; - LastFamilyDiscrepancy = 0; - search_result = false; - } else { - for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i]; - } - return search_result; - } - -#endif - -#if ONEWIRE_CRC -// The 1-Wire CRC scheme is described in Maxim Application Note 27: -// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products" -// - -#if ONEWIRE_CRC8_TABLE -// Dow-CRC using polynomial X^8 + X^5 + X^4 + X^0 -// Tiny 2x16 entry CRC table created by Arjen Lentz -// See http://lentz.com.au/blog/calculating-crc-with-a-tiny-32-entry-lookup-table -static const uint8_t PROGMEM dscrc2x16_table[] = { - 0x00, 0x5E, 0xBC, 0xE2, 0x61, 0x3F, 0xDD, 0x83, - 0xC2, 0x9C, 0x7E, 0x20, 0xA3, 0xFD, 0x1F, 0x41, - 0x00, 0x9D, 0x23, 0xBE, 0x46, 0xDB, 0x65, 0xF8, - 0x8C, 0x11, 0xAF, 0x32, 0xCA, 0x57, 0xE9, 0x74 -}; - -// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM -// and the registers. (Use tiny 2x16 entry CRC table) -uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len) -{ - uint8_t crc = 0; - - while (len--) { - crc = *addr++ ^ crc; // just re-using crc as intermediate - crc = pgm_read_byte(dscrc2x16_table + (crc & 0x0f)) ^ - pgm_read_byte(dscrc2x16_table + 16 + ((crc >> 4) & 0x0f)); - } - - return crc; -} -#else -// -// Compute a Dallas Semiconductor 8 bit CRC directly. -// this is much slower, but a little smaller, than the lookup table. -// -uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len) -{ - uint8_t crc = 0; - - while (len--) { -#if defined(__AVR__) - crc = _crc_ibutton_update(crc, *addr++); -#else - uint8_t inbyte = *addr++; - for (uint8_t i = 8; i; i--) { - uint8_t mix = (crc ^ inbyte) & 0x01; - crc >>= 1; - if (mix) crc ^= 0x8C; - inbyte >>= 1; - } -#endif - } - return crc; -} -#endif - -#if ONEWIRE_CRC16 -bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc) -{ - crc = ~crc16(input, len, crc); - return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1]; -} - -uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc) -{ -#if defined(__AVR__) - for (uint16_t i = 0 ; i < len ; i++) { - crc = _crc16_update(crc, input[i]); - } -#else - static const uint8_t oddparity[16] = - { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 }; - - for (uint16_t i = 0 ; i < len ; i++) { - // Even though we're just copying a byte from the input, - // we'll be doing 16-bit computation with it. - uint16_t cdata = input[i]; - cdata = (cdata ^ crc) & 0xff; - crc >>= 8; - - if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4]) - crc ^= 0xC001; - - cdata <<= 6; - crc ^= cdata; - cdata <<= 1; - crc ^= cdata; - } -#endif - return crc; -} -#endif - -#endif |