aboutsummaryrefslogtreecommitdiffstats
path: root/src/main.rs
blob: 38a34d4ffc879517e19f2e4c802e5825a4f0ae92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/*
 * Copyright (C) 2022 by Matthias P. Braendli <matthias.braendli@mpb.li>
 *
 * Based on previous work by
 * Copyright (C) 2022 by Felix Erckenbrecht <eligs@eligs.de>
 * Copyright (C) 2016-2018 by Steve Markgraf <steve@steve-m.de>
 * Copyright (C) 2009 by Bartek Kania <mbk@gnarf.org>
 *
 * SPDX-License-Identifier: GPL-2.0+
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

use std::sync::atomic::{AtomicBool, Ordering};
use std::{env, thread};
use std::io::{prelude::*, BufReader, BufWriter};
use std::fs::File;
use std::sync::{mpsc, Arc};
use getopts::Options;

mod fl2k;

const TRIG_TABLE_ORDER: usize = 8;
const TRIG_TABLE_SHIFT: usize = 32 - TRIG_TABLE_ORDER;
const TRIG_TABLE_LEN: usize = 1 << TRIG_TABLE_ORDER;

const PI: f32 = std::f32::consts::PI;
const INT32_MAX_AS_FLOAT: f32 = 0x1_0000_0000u64 as f32;
const ANG_INCR: f32 = INT32_MAX_AS_FLOAT / (2.0 * PI);

enum Waveform { Sine, Rect }

#[derive(Clone, Copy)]
enum Output { Debug, FL2K }

struct BufferDumper<T> {
    phantom : std::marker::PhantomData<T>,
    writer : BufWriter<File>,
}

impl<T> BufferDumper<T> {
    fn new(filename: &str) -> Self {
        let writer = BufWriter::new(File::create(filename).expect("create file"));
        BufferDumper { phantom: std::marker::PhantomData, writer }
    }

    fn write_buf(&mut self, buf: &[T]) -> std::io::Result<()> {
        let buf_u8: &[u8] = unsafe {
            std::slice::from_raw_parts(
                buf.as_ptr() as *const u8,
                buf.len() * std::mem::size_of::<T>()
            )
        };

        self.writer.write_all(buf_u8)
    }
}

struct DDS {
    trig_table_quadrature: Vec<i8>,
    trig_table_inphase: Vec<i8>,

    /* instantaneous phase */
    phase: u32,
    /* phase increment */
    phase_step: u32,

    /* for phase modulation */
    phase_delta: i32,
    phase_slope: i32,
}

impl DDS {
    fn init(samp_rate: f32, freq: f32, phase: f32, waveform: Waveform) -> Self {
        let mut trig_table_inphase = Vec::with_capacity(TRIG_TABLE_LEN);
        let mut trig_table_quadrature = Vec::with_capacity(TRIG_TABLE_LEN);

        let incr = 1.0f32 / TRIG_TABLE_LEN as f32;
        for i in 0..TRIG_TABLE_LEN {
            let i = f32::cos(incr * i as f32 * 2.0 * PI) * 127.0;
            let q = f32::sin(incr * i as f32 * 2.0 * PI) * 127.0;

            match waveform {
                Waveform::Sine => {
                    trig_table_inphase.push(f32::round(i) as i8);
                    trig_table_quadrature.push(f32::round(q) as i8);
                }
                Waveform::Rect => {
                    trig_table_inphase.push(if i >= 0.0 { 127 } else { -127 });
                    trig_table_quadrature.push(if q >= 0.0 { 127 } else { -127 });
                }
            }
        }

        let phase_step = (freq / samp_rate) * 2.0 * PI * ANG_INCR;

        DDS {
            trig_table_quadrature,
            trig_table_inphase,
            phase: f32::round(phase * ANG_INCR) as u32,
            phase_step: f32::round(phase_step) as u32,
            phase_delta: 0,
            phase_slope: 0,
        }
    }
}

fn print_usage(program: &str, opts: Options) {
    let brief = format!("Usage: {} FILE [options]", program);
    eprint!("{}", opts.usage(&brief));
}

fn main() {
    let args: Vec<String> = env::args().collect();
    let program = args[0].clone();

    let mut opts = Options::new();
    opts.optopt("f", "file", "Input file, containing signed 16-bit samples.", "FILE");
    opts.optopt("d", "device-index", "Select device index", "DEVINDEX");
    opts.optopt("c", "center-freq", "Center frequency in Hz (default: 1440 kHz)", "FREQ");
    opts.optopt("s", "samplerate", "Samplerate in Hz (default: 96 MS/s)", "RATE");
    opts.optopt("m", "mod-index", "Modulation index (default: 0.25)]", "FACTOR");
    opts.optopt("i", "input-rate", "Input baseband sample rate (default: 48000 Hz)", "RATE");
    opts.optopt("w", "waveform", "(sine|rect) default: rect", "WAVEFORM");
    opts.optflag("C", "device-count", "Return FL2K device count and quit");
    opts.optflag("D", "debug", "Write to debug files instead of FL2K");
    opts.optflag("h", "help", "print this help menu");
    let cli_args = match opts.parse(&args[1..]) {
        Ok(m) => { m }
        Err(f) => { panic!("{}", f.to_string()) }
    };
    if cli_args.opt_present("h") {
        print_usage(&program, opts);
        std::process::exit(1);
    }

    if cli_args.opt_present("C") {
        eprintln!("FL2K device count {}", fl2k::get_device_count());
        return;
    }

    let output = if cli_args.opt_present("D") {
        Output::Debug
    }
    else {
        Output::FL2K
    };

    let device_index: u32 = match cli_args.opt_str("d") {
        Some(s) => s.parse().expect("integer value"),
        None => 0,
    };

    let samp_rate: u32 = match cli_args.opt_str("s") {
        Some(s) => s.parse().expect("integer value"),
        None => 96_000_000,
    };

    let base_freq = match cli_args.opt_str("c") {
        Some(s) => s.parse().expect("floating point value"),
        None => 1_440_000.0,
    };

    let input_rate: u32 = match cli_args.opt_str("i") {
        Some(s) => s.parse().expect("integer value"),
        None => 48_000,
    };

    let modulation_index = match cli_args.opt_str("m") {
        Some(s) => s.parse().expect("floating point value"),
        None => 0.25,
    };

    let waveform = match cli_args.opt_str("w") {
        None => Waveform::Rect,
        Some(w) if w == "sine" => Waveform::Sine,
        Some(w) if w == "rect" => Waveform::Rect,
        _ => {
            eprintln!("Waveform must be 'sine' or 'rect'");
            print_usage(&program, opts);
            std::process::exit(1);
        }
    };

    let source_file_name = match cli_args.opt_str("f") {
        Some(f) => f,
        None => {
            eprintln!("Specify input file!");
            print_usage(&program, opts);
            std::process::exit(1);
        }
    };

    if samp_rate % input_rate != 0 {
        eprintln!("WARNING: input_rate freq does not divide sample rate.");
    }
    let rf_to_baseband_sample_ratio = samp_rate / input_rate;

    eprintln!("Input rate:       {} kHz", (input_rate as f32)/1e3);
    eprintln!("Samplerate:       {} MHz", (samp_rate as f32)/1e6);
    eprintln!("Center frequency: {} kHz", base_freq/1e3);

    let running = Arc::new(AtomicBool::new(true));

    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    }).expect("Error setting Ctrl-C handler");

    let (input_samples_tx, input_samples_rx) = mpsc::sync_channel::<Vec<f32>>(2);
    let (pd_tx, pd_rx) = mpsc::sync_channel(2);
    let (iq_tx, iq_rx) = mpsc::sync_channel(2);

    let source_file = File::open(source_file_name).expect("open file");
    let mut source_file = BufReader::new(source_file);

    const BASEBAND_BUF_SAMPS: usize = 1024;

    // Read file and convert samples
    thread::spawn(move || {
        let mut in_debug = match output {
            Output::Debug => Some(BufferDumper::<f32>::new("debug-in.f32")),
            Output::FL2K => None,
        };

        while running.load(Ordering::SeqCst) {
            let mut buf = Vec::with_capacity(BASEBAND_BUF_SAMPS);
            buf.resize(BASEBAND_BUF_SAMPS, 0i16);

            let mut buf_u8: &mut [u8] = unsafe {
                std::slice::from_raw_parts_mut(
                    buf.as_mut_ptr() as *mut u8,
                    buf.len() * std::mem::size_of::<i16>()
                )
            };

            if let Err(e) = source_file.read_exact(&mut buf_u8) {
                if e.kind() != std::io::ErrorKind::UnexpectedEof {
                    eprintln!("Input file read stopped {:?}", e);
                }
                else {
                    eprintln!("Input file EOF reached");
                }
                break;
            }

            let buf: Vec<f32> = buf
                .iter()
                .map(|v| (v/2 + i16::MAX/2) as f32 / 32768.0)
                .collect();

            if let Some(w) = &mut in_debug {
                if let Err(e) = w.write_buf(&buf) {
                    eprintln!("Error writing debug-in.f32: {}", e);
                }
            }

            if let Err(_) = input_samples_tx.send(buf) {
                eprintln!("Quit read thread");
                break;
            }
        }
    });

    // Read samples, calculate PD and PDSLOPE
    thread::spawn(move || {
        let mut lastamp = 0f32;

        let mut debug_writer = match output {
            Output::Debug => Some(BufWriter::new(File::create("debug-pd.csv").expect("create file"))),
            Output::FL2K => None,
        };

        loop {
            let Ok(buf) = input_samples_rx.recv() else { break };

            let mut pd_buf = Vec::with_capacity(buf.len());

            /* What we do here is calculate a linear "slope" from
               the previous sample to this one. This is then used by
               the modulator to gently increase/decrease the phase
               with each sample without the need to recalculate
               the dds parameters. In fact this gives us a very
               efficient and pretty good interpolation filter. */

            for sample in buf {
                let slope = (sample - lastamp) / rf_to_baseband_sample_ratio as f32;

                let pd = lastamp * modulation_index * INT32_MAX_AS_FLOAT;

                const MIN_VAL: f32 = std::i32::MIN as f32;
                const MAX_VAL: f32 = std::i32::MAX as f32;

                if pd < MIN_VAL || pd > MAX_VAL {
                    panic!("pd out of bounds {}", pd);
                }

                let pdslope = slope * modulation_index * INT32_MAX_AS_FLOAT;
                if pdslope < MIN_VAL || pdslope > MAX_VAL {
                    panic!("pdslope out of bounds {}", pdslope);
                }

                if let Some(w) = &mut debug_writer {
                    writeln!(w, "{},{},{},{}", sample, slope, pd, pdslope)
                        .expect("write debug-pd.csv");
                }

                pd_buf.push((pd as i32, pdslope as i32));

                lastamp = sample;
            }

            if let Err(_) = pd_tx.send(pd_buf) {
                eprintln!("Quit pd thread");
                break;
            }
        }
    });

    // Read PD and PDSLOPE, interpolate to higher rate
    thread::spawn(move || {
        let mut dds = DDS::init(samp_rate as f32, base_freq, 0.0, waveform);

        let mut debug_writer = match output {
            Output::Debug => Some(BufWriter::new(File::create("debug-dds.csv").expect("create file"))),
            Output::FL2K => None,
        };

        loop {
            let Ok(pd_buf) = pd_rx.recv() else { break };

            for (pd, pdslope) in pd_buf {
                dds.phase_delta = pd;
                dds.phase_slope = pdslope;

                let len = rf_to_baseband_sample_ratio as usize;
                let mut out_i = Vec::with_capacity(len);
                let mut out_q = Vec::with_capacity(len);
                for ix in 0..len {
                    // get current carrier phase, add phase mod, calculate table index
                    let phase_idx_i = dds.phase.overflowing_sub(dds.phase_delta as u32).0 >> TRIG_TABLE_SHIFT;
                    let phase_idx_q = dds.phase.overflowing_add(dds.phase_delta as u32).0 >> TRIG_TABLE_SHIFT;

                    if phase_idx_q > 255 || phase_idx_i > 255 {
                        panic!("Phase IDX out of bounds");
                    }

                    out_i.push(dds.trig_table_inphase[phase_idx_i as usize]);
                    out_q.push(dds.trig_table_quadrature[phase_idx_q as usize]);

                    if let Some(w) = &mut debug_writer {
                        writeln!(w, "{},{},{},{},{}", ix, dds.phase, dds.phase_delta, phase_idx_i, phase_idx_q)
                            .expect("write debug-dds.csv");
                    }

                    dds.phase = dds.phase.overflowing_add(dds.phase_step).0;
                    dds.phase_delta += dds.phase_slope;
                }

                if let Err(_) = iq_tx.send((out_i, out_q)) {
                    eprintln!("Quit dds thread");
                    break;
                }
            }
        }
    });

    // Main thread, output to file/device
    match output {
        Output::FL2K => {
            let mut fl2k = fl2k::FL2K::open(device_index).expect("fl2k open");

            fl2k.set_sample_rate(samp_rate).expect("set fl2k sample rate");

            fl2k.start_tx().expect("fl2k start_tx");

            eprintln!("FL2K sample rate set to {}", fl2k.get_sample_rate().unwrap());

            loop {
                let Ok((i, q)) = iq_rx.recv() else { break };
                if fl2k.send(i, q) == false { break };
            }

            fl2k.stop_tx().expect("stop tx");
        }
        Output::Debug => {
            let mut out_file = BufferDumper::new("debug-out.i8");
            loop {
                let Ok((i_buf, q_buf)) = iq_rx.recv() else { break };

                if i_buf.len() != q_buf.len() {
                    panic!("i_buf and q_buf must have same length");
                }

                let mut buf = Vec::with_capacity(i_buf.len() * 2);
                for (i, q) in i_buf.iter().zip(q_buf) {
                    buf.push(*i);
                    buf.push(q);
                }

                let buf_u8: &[u8] = unsafe {
                    std::slice::from_raw_parts(
                        buf.as_ptr() as *const u8,
                        buf.len()
                    )
                };

                if let Err(e) = out_file.write_buf(buf_u8) {
                    eprintln!("Write output error: {}", e);
                    break;
                }
            }
        }
    }

    eprintln!("Leaving main thread");
}