1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
|
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:
You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.
You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */
/**************************** SBR decoder library ******************************
Author(s):
Description:
*******************************************************************************/
/*!
\file
\brief envelope decoding
This module provides envelope decoding and error concealment algorithms. The
main entry point is decodeSbrData().
\sa decodeSbrData(),\ref documentationOverview
*/
#include "env_dec.h"
#include "env_extr.h"
#include "transcendent.h"
#include "genericStds.h"
static void decodeEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData,
HANDLE_SBR_FRAME_DATA h_sbr_data,
HANDLE_SBR_PREV_FRAME_DATA h_prev_data,
HANDLE_SBR_PREV_FRAME_DATA h_prev_data_otherChannel);
static void sbr_envelope_unmapping(HANDLE_SBR_HEADER_DATA hHeaderData,
HANDLE_SBR_FRAME_DATA h_data_left,
HANDLE_SBR_FRAME_DATA h_data_right);
static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data,
int ampResolution);
static void deltaToLinearPcmEnvelopeDecoding(
HANDLE_SBR_HEADER_DATA hHeaderData, HANDLE_SBR_FRAME_DATA h_sbr_data,
HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
static void decodeNoiseFloorlevels(HANDLE_SBR_HEADER_DATA hHeaderData,
HANDLE_SBR_FRAME_DATA h_sbr_data,
HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
static void timeCompensateFirstEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData,
HANDLE_SBR_FRAME_DATA h_sbr_data,
HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
static int checkEnvelopeData(HANDLE_SBR_HEADER_DATA hHeaderData,
HANDLE_SBR_FRAME_DATA h_sbr_data,
HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
#define SBR_ENERGY_PAN_OFFSET (12 << ENV_EXP_FRACT)
#define SBR_MAX_ENERGY (35 << ENV_EXP_FRACT)
#define DECAY (1 << ENV_EXP_FRACT)
#if ENV_EXP_FRACT
#define DECAY_COUPLING \
(1 << (ENV_EXP_FRACT - 1)) /*!< corresponds to a value of 0.5 */
#else
#define DECAY_COUPLING \
1 /*!< If the energy data is not shifted, use 1 instead of 0.5 */
#endif
/*!
\brief Convert table index
*/
static int indexLow2High(int offset, /*!< mapping factor */
int index, /*!< index to scalefactor band */
int res) /*!< frequency resolution */
{
if (res == 0) {
if (offset >= 0) {
if (index < offset)
return (index);
else
return (2 * index - offset);
} else {
offset = -offset;
if (index < offset)
return (2 * index + index);
else
return (2 * index + offset);
}
} else
return (index);
}
/*!
\brief Update previous envelope value for delta-coding
The current envelope values needs to be stored for delta-coding
in the next frame. The stored envelope is always represented with
the high frequency resolution. If the current envelope uses the
low frequency resolution, the energy value will be mapped to the
corresponding high-res bands.
*/
static void mapLowResEnergyVal(
FIXP_SGL currVal, /*!< current energy value */
FIXP_SGL *prevData, /*!< pointer to previous data vector */
int offset, /*!< mapping factor */
int index, /*!< index to scalefactor band */
int res) /*!< frequeny resolution */
{
if (res == 0) {
if (offset >= 0) {
if (index < offset)
prevData[index] = currVal;
else {
prevData[2 * index - offset] = currVal;
prevData[2 * index + 1 - offset] = currVal;
}
} else {
offset = -offset;
if (index < offset) {
prevData[3 * index] = currVal;
prevData[3 * index + 1] = currVal;
prevData[3 * index + 2] = currVal;
} else {
prevData[2 * index + offset] = currVal;
prevData[2 * index + 1 + offset] = currVal;
}
}
} else
prevData[index] = currVal;
}
/*!
\brief Convert raw envelope and noisefloor data to energy levels
This function is being called by sbrDecoder_ParseElement() and provides two
important algorithms:
First the function decodes envelopes and noise floor levels as described in
requantizeEnvelopeData() and sbr_envelope_unmapping(). The function also
implements concealment algorithms in case there are errors within the sbr
data. For both operations fractional arithmetic is used. Therefore you might
encounter different output values on your target system compared to the
reference implementation.
*/
void decodeSbrData(
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
HANDLE_SBR_FRAME_DATA
h_data_left, /*!< pointer to left channel frame data */
HANDLE_SBR_PREV_FRAME_DATA
h_prev_data_left, /*!< pointer to left channel previous frame data */
HANDLE_SBR_FRAME_DATA
h_data_right, /*!< pointer to right channel frame data */
HANDLE_SBR_PREV_FRAME_DATA
h_prev_data_right) /*!< pointer to right channel previous frame data */
{
FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];
int errLeft;
/* Save previous energy values to be able to reuse them later for concealment.
*/
FDKmemcpy(tempSfbNrgPrev, h_prev_data_left->sfb_nrg_prev,
MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
if (hHeaderData->frameErrorFlag || hHeaderData->bs_info.pvc_mode == 0) {
decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left,
h_prev_data_right);
} else {
FDK_ASSERT(h_data_right == NULL);
}
decodeNoiseFloorlevels(hHeaderData, h_data_left, h_prev_data_left);
if (h_data_right != NULL) {
errLeft = hHeaderData->frameErrorFlag;
decodeEnvelope(hHeaderData, h_data_right, h_prev_data_right,
h_prev_data_left);
decodeNoiseFloorlevels(hHeaderData, h_data_right, h_prev_data_right);
if (!errLeft && hHeaderData->frameErrorFlag) {
/* If an error occurs in the right channel where the left channel seemed
ok, we apply concealment also on the left channel. This ensures that
the coupling modes of both channels match and that we have the same
number of envelopes in coupling mode. However, as the left channel has
already been processed before, the resulting energy levels are not the
same as if the left channel had been concealed during the first call of
decodeEnvelope().
*/
/* Restore previous energy values for concealment, because the values have
been overwritten by the first call of decodeEnvelope(). */
FDKmemcpy(h_prev_data_left->sfb_nrg_prev, tempSfbNrgPrev,
MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
/* Do concealment */
decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left,
h_prev_data_right);
}
if (h_data_left->coupling) {
sbr_envelope_unmapping(hHeaderData, h_data_left, h_data_right);
}
}
/* Display the data for debugging: */
}
/*!
\brief Convert from coupled channels to independent L/R data
*/
static void sbr_envelope_unmapping(
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
HANDLE_SBR_FRAME_DATA h_data_left, /*!< pointer to left channel */
HANDLE_SBR_FRAME_DATA h_data_right) /*!< pointer to right channel */
{
int i;
FIXP_SGL tempL_m, tempR_m, tempRplus1_m, newL_m, newR_m;
SCHAR tempL_e, tempR_e, tempRplus1_e, newL_e, newR_e;
/* 1. Unmap (already dequantized) coupled envelope energies */
for (i = 0; i < h_data_left->nScaleFactors; i++) {
tempR_m = (FIXP_SGL)((LONG)h_data_right->iEnvelope[i] & MASK_M);
tempR_e = (SCHAR)((LONG)h_data_right->iEnvelope[i] & MASK_E);
tempR_e -= (18 + NRG_EXP_OFFSET); /* -18 = ld(UNMAPPING_SCALE /
h_data_right->nChannels) */
tempL_m = (FIXP_SGL)((LONG)h_data_left->iEnvelope[i] & MASK_M);
tempL_e = (SCHAR)((LONG)h_data_left->iEnvelope[i] & MASK_E);
tempL_e -= NRG_EXP_OFFSET;
/* Calculate tempRight+1 */
FDK_add_MantExp(tempR_m, tempR_e, FL2FXCONST_SGL(0.5f), 1, /* 1.0 */
&tempRplus1_m, &tempRplus1_e);
FDK_divide_MantExp(tempL_m, tempL_e + 1, /* 2 * tempLeft */
tempRplus1_m, tempRplus1_e, &newR_m, &newR_e);
if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) {
newR_m >>= 1;
newR_e += 1;
}
newL_m = FX_DBL2FX_SGL(fMult(tempR_m, newR_m));
newL_e = tempR_e + newR_e;
h_data_right->iEnvelope[i] =
((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
(FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NRG_EXP_OFFSET) & MASK_E);
h_data_left->iEnvelope[i] =
((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
(FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NRG_EXP_OFFSET) & MASK_E);
}
/* 2. Dequantize and unmap coupled noise floor levels */
for (i = 0; i < hHeaderData->freqBandData.nNfb *
h_data_left->frameInfo.nNoiseEnvelopes;
i++) {
tempL_e = (SCHAR)(6 - (LONG)h_data_left->sbrNoiseFloorLevel[i]);
tempR_e = (SCHAR)((LONG)h_data_right->sbrNoiseFloorLevel[i] -
12) /*SBR_ENERGY_PAN_OFFSET*/;
/* Calculate tempR+1 */
FDK_add_MantExp(FL2FXCONST_SGL(0.5f), 1 + tempR_e, /* tempR */
FL2FXCONST_SGL(0.5f), 1, /* 1.0 */
&tempRplus1_m, &tempRplus1_e);
/* Calculate 2*tempLeft/(tempR+1) */
FDK_divide_MantExp(FL2FXCONST_SGL(0.5f), tempL_e + 2, /* 2 * tempLeft */
tempRplus1_m, tempRplus1_e, &newR_m, &newR_e);
/* if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) {
newR_m >>= 1;
newR_e += 1;
} */
/* L = tempR * R */
newL_m = newR_m;
newL_e = newR_e + tempR_e;
h_data_right->sbrNoiseFloorLevel[i] =
((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
(FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NOISE_EXP_OFFSET) & MASK_E);
h_data_left->sbrNoiseFloorLevel[i] =
((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
(FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NOISE_EXP_OFFSET) & MASK_E);
}
}
/*!
\brief Simple alternative to the real SBR concealment
If the real frameInfo is not available due to a frame loss, a replacement will
be constructed with 1 envelope spanning the whole frame (FIX-FIX).
The delta-coded energies are set to negative values, resulting in a fade-down.
In case of coupling, the balance-channel will move towards the center.
*/
static void leanSbrConcealment(
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
) {
FIXP_SGL target; /* targeted level for sfb_nrg_prev during fade-down */
FIXP_SGL step; /* speed of fade */
int i;
int currentStartPos =
fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);
int currentStopPos = hHeaderData->numberTimeSlots;
/* Use some settings of the previous frame */
h_sbr_data->ampResolutionCurrentFrame = h_prev_data->ampRes;
h_sbr_data->coupling = h_prev_data->coupling;
for (i = 0; i < MAX_INVF_BANDS; i++)
h_sbr_data->sbr_invf_mode[i] = h_prev_data->sbr_invf_mode[i];
/* Generate concealing control data */
h_sbr_data->frameInfo.nEnvelopes = 1;
h_sbr_data->frameInfo.borders[0] = currentStartPos;
h_sbr_data->frameInfo.borders[1] = currentStopPos;
h_sbr_data->frameInfo.freqRes[0] = 1;
h_sbr_data->frameInfo.tranEnv = -1; /* no transient */
h_sbr_data->frameInfo.nNoiseEnvelopes = 1;
h_sbr_data->frameInfo.bordersNoise[0] = currentStartPos;
h_sbr_data->frameInfo.bordersNoise[1] = currentStopPos;
h_sbr_data->nScaleFactors = hHeaderData->freqBandData.nSfb[1];
/* Generate fake envelope data */
h_sbr_data->domain_vec[0] = 1;
if (h_sbr_data->coupling == COUPLING_BAL) {
target = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
step = (FIXP_SGL)DECAY_COUPLING;
} else {
target = FL2FXCONST_SGL(0.0f);
step = (FIXP_SGL)DECAY;
}
if (hHeaderData->bs_info.ampResolution == 0) {
target <<= 1;
step <<= 1;
}
for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
if (h_prev_data->sfb_nrg_prev[i] > target)
h_sbr_data->iEnvelope[i] = -step;
else
h_sbr_data->iEnvelope[i] = step;
}
/* Noisefloor levels are always cleared ... */
h_sbr_data->domain_vec_noise[0] = 1;
for (i = 0; i < hHeaderData->freqBandData.nNfb; i++)
h_sbr_data->sbrNoiseFloorLevel[i] = FL2FXCONST_SGL(0.0f);
/* ... and so are the sines */
FDKmemclear(h_sbr_data->addHarmonics,
sizeof(ULONG) * ADD_HARMONICS_FLAGS_SIZE);
}
/*!
\brief Build reference energies and noise levels from bitstream elements
*/
static void decodeEnvelope(
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
HANDLE_SBR_PREV_FRAME_DATA
h_prev_data, /*!< pointer to data of last frame */
HANDLE_SBR_PREV_FRAME_DATA
otherChannel /*!< other channel's last frame data */
) {
int i;
int fFrameError = hHeaderData->frameErrorFlag;
FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];
if (!fFrameError) {
/*
To avoid distortions after bad frames, set the error flag if delta coding
in time occurs. However, SBR can take a little longer to come up again.
*/
if (h_prev_data->frameErrorFlag) {
if (h_sbr_data->domain_vec[0] != 0) {
fFrameError = 1;
}
} else {
/* Check that the previous stop position and the current start position
match. (Could be done in checkFrameInfo(), but the previous frame data
is not available there) */
if (h_sbr_data->frameInfo.borders[0] !=
h_prev_data->stopPos - hHeaderData->numberTimeSlots) {
/* Both the previous as well as the current frame are flagged to be ok,
* but they do not match! */
if (h_sbr_data->domain_vec[0] == 1) {
/* Prefer concealment over delta-time coding between the mismatching
* frames */
fFrameError = 1;
} else {
/* Close the gap in time by triggering timeCompensateFirstEnvelope()
*/
fFrameError = 1;
}
}
}
}
if (fFrameError) /* Error is detected */
{
leanSbrConcealment(hHeaderData, h_sbr_data, h_prev_data);
/* decode the envelope data to linear PCM */
deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data);
} else /*Do a temporary dummy decoding and check that the envelope values are
within limits */
{
if (h_prev_data->frameErrorFlag) {
timeCompensateFirstEnvelope(hHeaderData, h_sbr_data, h_prev_data);
if (h_sbr_data->coupling != h_prev_data->coupling) {
/*
Coupling mode has changed during concealment.
The stored energy levels need to be converted.
*/
for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) {
/* Former Level-Channel will be used for both channels */
if (h_prev_data->coupling == COUPLING_BAL)
h_prev_data->sfb_nrg_prev[i] = otherChannel->sfb_nrg_prev[i];
/* Former L/R will be combined as the new Level-Channel */
else if (h_sbr_data->coupling == COUPLING_LEVEL)
h_prev_data->sfb_nrg_prev[i] = (h_prev_data->sfb_nrg_prev[i] +
otherChannel->sfb_nrg_prev[i]) >>
1;
else if (h_sbr_data->coupling == COUPLING_BAL)
h_prev_data->sfb_nrg_prev[i] = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
}
}
}
FDKmemcpy(tempSfbNrgPrev, h_prev_data->sfb_nrg_prev,
MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data);
fFrameError = checkEnvelopeData(hHeaderData, h_sbr_data, h_prev_data);
if (fFrameError) {
hHeaderData->frameErrorFlag = 1;
FDKmemcpy(h_prev_data->sfb_nrg_prev, tempSfbNrgPrev,
MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
decodeEnvelope(hHeaderData, h_sbr_data, h_prev_data, otherChannel);
return;
}
}
requantizeEnvelopeData(h_sbr_data, h_sbr_data->ampResolutionCurrentFrame);
hHeaderData->frameErrorFlag = fFrameError;
}
/*!
\brief Verify that envelope energies are within the allowed range
\return 0 if all is fine, 1 if an envelope value was too high
*/
static int checkEnvelopeData(
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
) {
FIXP_SGL *iEnvelope = h_sbr_data->iEnvelope;
FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;
int i = 0, errorFlag = 0;
FIXP_SGL sbr_max_energy = (h_sbr_data->ampResolutionCurrentFrame == 1)
? SBR_MAX_ENERGY
: (SBR_MAX_ENERGY << 1);
/*
Range check for current energies
*/
for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
if (iEnvelope[i] > sbr_max_energy) {
errorFlag = 1;
}
if (iEnvelope[i] < FL2FXCONST_SGL(0.0f)) {
errorFlag = 1;
/* iEnvelope[i] = FL2FXCONST_SGL(0.0f); */
}
}
/*
Range check for previous energies
*/
for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) {
sfb_nrg_prev[i] = fixMax(sfb_nrg_prev[i], FL2FXCONST_SGL(0.0f));
sfb_nrg_prev[i] = fixMin(sfb_nrg_prev[i], sbr_max_energy);
}
return (errorFlag);
}
/*!
\brief Verify that the noise levels are within the allowed range
The function is equivalent to checkEnvelopeData().
When the noise-levels are being decoded, it is already too late for
concealment. Therefore the noise levels are simply limited here.
*/
static void limitNoiseLevels(
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
HANDLE_SBR_FRAME_DATA h_sbr_data) /*!< pointer to current data */
{
int i;
int nNfb = hHeaderData->freqBandData.nNfb;
/*
Set range limits. The exact values depend on the coupling mode.
However this limitation is primarily intended to avoid unlimited
accumulation of the delta-coded noise levels.
*/
#define lowerLimit \
((FIXP_SGL)0) /* lowerLimit actually refers to the _highest_ noise energy */
#define upperLimit \
((FIXP_SGL)35) /* upperLimit actually refers to the _lowest_ noise energy */
/*
Range check for current noise levels
*/
for (i = 0; i < h_sbr_data->frameInfo.nNoiseEnvelopes * nNfb; i++) {
h_sbr_data->sbrNoiseFloorLevel[i] =
fixMin(h_sbr_data->sbrNoiseFloorLevel[i], upperLimit);
h_sbr_data->sbrNoiseFloorLevel[i] =
fixMax(h_sbr_data->sbrNoiseFloorLevel[i], lowerLimit);
}
}
/*!
\brief Compensate for the wrong timing that might occur after a frame error.
*/
static void timeCompensateFirstEnvelope(
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to actual data */
HANDLE_SBR_PREV_FRAME_DATA
h_prev_data) /*!< pointer to data of last frame */
{
int i, nScalefactors;
FRAME_INFO *pFrameInfo = &h_sbr_data->frameInfo;
UCHAR *nSfb = hHeaderData->freqBandData.nSfb;
int estimatedStartPos =
fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);
int refLen, newLen, shift;
FIXP_SGL deltaExp;
/* Original length of first envelope according to bitstream */
refLen = pFrameInfo->borders[1] - pFrameInfo->borders[0];
/* Corrected length of first envelope (concealing can make the first envelope
* longer) */
newLen = pFrameInfo->borders[1] - estimatedStartPos;
if (newLen <= 0) {
/* An envelope length of <= 0 would not work, so we don't use it.
May occur if the previous frame was flagged bad due to a mismatch
of the old and new frame infos. */
newLen = refLen;
estimatedStartPos = pFrameInfo->borders[0];
}
deltaExp = FDK_getNumOctavesDiv8(newLen, refLen);
/* Shift by -3 to rescale ld-table, ampRes-1 to enable coarser steps */
shift = (FRACT_BITS - 1 - ENV_EXP_FRACT - 1 +
h_sbr_data->ampResolutionCurrentFrame - 3);
deltaExp = deltaExp >> shift;
pFrameInfo->borders[0] = estimatedStartPos;
pFrameInfo->bordersNoise[0] = estimatedStartPos;
if (h_sbr_data->coupling != COUPLING_BAL) {
nScalefactors = (pFrameInfo->freqRes[0]) ? nSfb[1] : nSfb[0];
for (i = 0; i < nScalefactors; i++)
h_sbr_data->iEnvelope[i] = h_sbr_data->iEnvelope[i] + deltaExp;
}
}
/*!
\brief Convert each envelope value from logarithmic to linear domain
Energy levels are transmitted in powers of 2, i.e. only the exponent
is extracted from the bitstream.
Therefore, normally only integer exponents can occur. However during
fading (in case of a corrupt bitstream), a fractional part can also
occur. The data in the array iEnvelope is shifted left by ENV_EXP_FRACT
compared to an integer representation so that numbers smaller than 1
can be represented.
This function calculates a mantissa corresponding to the fractional
part of the exponent for each reference energy. The array iEnvelope
is converted in place to save memory. Input and output data must
be interpreted differently, as shown in the below figure:
\image html EnvelopeData.png
The data is then used in calculateSbrEnvelope().
*/
static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data,
int ampResolution) {
int i;
FIXP_SGL mantissa;
int ampShift = 1 - ampResolution;
int exponent;
/* In case that ENV_EXP_FRACT is changed to something else but 0 or 8,
the initialization of this array has to be adapted!
*/
#if ENV_EXP_FRACT
static const FIXP_SGL pow2[ENV_EXP_FRACT] = {
FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 1))), /* 0.7071 */
FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 2))), /* 0.5946 */
FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 3))),
FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 4))),
FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 5))),
FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 6))),
FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 7))),
FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 8))) /* 0.5013 */
};
int bit, mask;
#endif
for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
exponent = (LONG)h_sbr_data->iEnvelope[i];
#if ENV_EXP_FRACT
exponent = exponent >> ampShift;
mantissa = 0.5f;
/* Amplify mantissa according to the fractional part of the
exponent (result will be between 0.500000 and 0.999999)
*/
mask = 1; /* begin with lowest bit of exponent */
for (bit = ENV_EXP_FRACT - 1; bit >= 0; bit--) {
if (exponent & mask) {
/* The current bit of the exponent is set,
multiply mantissa with the corresponding factor: */
mantissa = (FIXP_SGL)((mantissa * pow2[bit]) << 1);
}
/* Advance to next bit */
mask = mask << 1;
}
/* Make integer part of exponent right aligned */
exponent = exponent >> ENV_EXP_FRACT;
#else
/* In case of the high amplitude resolution, 1 bit of the exponent gets lost
by the shift. This will be compensated by a mantissa of 0.5*sqrt(2)
instead of 0.5 if that bit is 1. */
mantissa = (exponent & ampShift) ? FL2FXCONST_SGL(0.707106781186548f)
: FL2FXCONST_SGL(0.5f);
exponent = exponent >> ampShift;
#endif
/*
Mantissa was set to 0.5 (instead of 1.0, therefore increase exponent by
1). Multiply by L=nChannels=64 by increasing exponent by another 6.
=> Increase exponent by 7
*/
exponent += 7 + NRG_EXP_OFFSET;
/* Combine mantissa and exponent and write back the result */
h_sbr_data->iEnvelope[i] =
((FIXP_SGL)((SHORT)(FIXP_SGL)mantissa & MASK_M)) +
(FIXP_SGL)((SHORT)(FIXP_SGL)exponent & MASK_E);
}
}
/*!
\brief Build new reference energies from old ones and delta coded data
*/
static void deltaToLinearPcmEnvelopeDecoding(
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
{
int i, domain, no_of_bands, band, freqRes;
FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;
FIXP_SGL *ptr_nrg = h_sbr_data->iEnvelope;
int offset =
2 * hHeaderData->freqBandData.nSfb[0] - hHeaderData->freqBandData.nSfb[1];
for (i = 0; i < h_sbr_data->frameInfo.nEnvelopes; i++) {
domain = h_sbr_data->domain_vec[i];
freqRes = h_sbr_data->frameInfo.freqRes[i];
FDK_ASSERT(freqRes >= 0 && freqRes <= 1);
no_of_bands = hHeaderData->freqBandData.nSfb[freqRes];
FDK_ASSERT(no_of_bands < (64));
if (domain == 0) {
mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, 0, freqRes);
ptr_nrg++;
for (band = 1; band < no_of_bands; band++) {
*ptr_nrg = *ptr_nrg + *(ptr_nrg - 1);
mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);
ptr_nrg++;
}
} else {
for (band = 0; band < no_of_bands; band++) {
*ptr_nrg =
*ptr_nrg + sfb_nrg_prev[indexLow2High(offset, band, freqRes)];
mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);
ptr_nrg++;
}
}
}
}
/*!
\brief Build new noise levels from old ones and delta coded data
*/
static void decodeNoiseFloorlevels(
HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
{
int i;
int nNfb = hHeaderData->freqBandData.nNfb;
int nNoiseFloorEnvelopes = h_sbr_data->frameInfo.nNoiseEnvelopes;
/* Decode first noise envelope */
if (h_sbr_data->domain_vec_noise[0] == 0) {
FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[0];
for (i = 1; i < nNfb; i++) {
noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];
h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;
}
} else {
for (i = 0; i < nNfb; i++) {
h_sbr_data->sbrNoiseFloorLevel[i] += h_prev_data->prevNoiseLevel[i];
}
}
/* If present, decode the second noise envelope
Note: nNoiseFloorEnvelopes can only be 1 or 2 */
if (nNoiseFloorEnvelopes > 1) {
if (h_sbr_data->domain_vec_noise[1] == 0) {
FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[nNfb];
for (i = nNfb + 1; i < 2 * nNfb; i++) {
noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];
h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;
}
} else {
for (i = 0; i < nNfb; i++) {
h_sbr_data->sbrNoiseFloorLevel[i + nNfb] +=
h_sbr_data->sbrNoiseFloorLevel[i];
}
}
}
limitNoiseLevels(hHeaderData, h_sbr_data);
/* Update prevNoiseLevel with the last noise envelope */
for (i = 0; i < nNfb; i++)
h_prev_data->prevNoiseLevel[i] =
h_sbr_data->sbrNoiseFloorLevel[i + nNfb * (nNoiseFloorEnvelopes - 1)];
/* Requantize the noise floor levels in COUPLING_OFF-mode */
if (!h_sbr_data->coupling) {
int nf_e;
for (i = 0; i < nNoiseFloorEnvelopes * nNfb; i++) {
nf_e = 6 - (LONG)h_sbr_data->sbrNoiseFloorLevel[i] + 1 + NOISE_EXP_OFFSET;
/* +1 to compensate for a mantissa of 0.5 instead of 1.0 */
h_sbr_data->sbrNoiseFloorLevel[i] =
(FIXP_SGL)(((LONG)FL2FXCONST_SGL(0.5f)) + /* mantissa */
(nf_e & MASK_E)); /* exponent */
}
}
}
|