1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
|
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:
You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.
You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */
/******************* Library for basic calculation routines ********************
Author(s): Matthias Hildenbrand
Description: Module to efficiently handle QMF data for multiple channels and
to share the data between e.g. SBR and MPS
*******************************************************************************/
#include "FDK_qmf_domain.h"
#include "common_fix.h"
#define WORKBUFFER1_TAG 0
#define WORKBUFFER2_TAG 1
#define WORKBUFFER3_TAG 4
#define WORKBUFFER4_TAG 5
#define WORKBUFFER5_TAG 6
#define WORKBUFFER6_TAG 7
C_ALLOC_MEM_OVERLAY(QmfWorkBufferCore1, FIXP_DBL, QMF_WB_SECTION_SIZE,
SECT_DATA_L1, WORKBUFFER1_TAG)
C_ALLOC_MEM_OVERLAY(QmfWorkBufferCore2, FIXP_DBL, QMF_WB_SECTION_SIZE,
SECT_DATA_L2, WORKBUFFER2_TAG)
C_ALLOC_MEM_OVERLAY(QmfWorkBufferCore3, FIXP_DBL, QMF_WB_SECTION_SIZE,
SECT_DATA_L2, WORKBUFFER3_TAG)
C_ALLOC_MEM_OVERLAY(QmfWorkBufferCore4, FIXP_DBL, QMF_WB_SECTION_SIZE,
SECT_DATA_L2, WORKBUFFER4_TAG)
C_ALLOC_MEM_OVERLAY(QmfWorkBufferCore5, FIXP_DBL, QMF_WB_SECTION_SIZE,
SECT_DATA_L2, WORKBUFFER5_TAG)
C_ALLOC_MEM_OVERLAY(QmfWorkBufferCore6, FIXP_DBL, QMF_WB_SECTION_SIZE,
SECT_DATA_L2, WORKBUFFER6_TAG)
/*! Analysis states buffer. <br>
Dimension: #((8) + (1)) */
C_AALLOC_MEM2(AnaQmfStates, FIXP_DBL, 10 * QMF_DOMAIN_MAX_ANALYSIS_QMF_BANDS,
((8) + (1)))
/*! Synthesis states buffer. <br>
Dimension: #((8) + (1)) */
C_AALLOC_MEM2(SynQmfStates, FIXP_QSS, 9 * QMF_DOMAIN_MAX_SYNTHESIS_QMF_BANDS,
((8) + (1)))
/*! Pointer to real qmf data for each time slot. <br>
Dimension: #((8) + (1)) */
C_ALLOC_MEM2(QmfSlotsReal, FIXP_DBL *,
QMF_DOMAIN_MAX_TIMESLOTS + QMF_DOMAIN_MAX_OV_TIMESLOTS,
((8) + (1)))
/*! Pointer to imaginary qmf data for each time slot. <br>
Dimension: #((8) + (1)) */
C_ALLOC_MEM2(QmfSlotsImag, FIXP_DBL *,
QMF_DOMAIN_MAX_TIMESLOTS + QMF_DOMAIN_MAX_OV_TIMESLOTS,
((8) + (1)))
/*! QMF overlap buffer. <br>
Dimension: #((8) + (1)) */
C_AALLOC_MEM2(QmfOverlapBuffer, FIXP_DBL,
2 * QMF_DOMAIN_MAX_OV_TIMESLOTS * QMF_DOMAIN_MAX_QMF_PROC_BANDS,
((8) + (1)))
/*! Analysis states buffer. <br>
Dimension: #((8) + (1)) */
C_AALLOC_MEM2(AnaQmfStates16, FIXP_DBL, 10 * QMF_DOMAIN_ANALYSIS_QMF_BANDS_16,
((8) + (1)))
/*! Analysis states buffer. <br>
Dimension: #((8) + (1)) */
C_AALLOC_MEM2(AnaQmfStates24, FIXP_DBL, 10 * QMF_DOMAIN_ANALYSIS_QMF_BANDS_24,
((8) + (1)))
/*! Analysis states buffer. <br>
Dimension: #((8) + (1)) */
C_AALLOC_MEM2(AnaQmfStates32, FIXP_DBL, 10 * QMF_DOMAIN_ANALYSIS_QMF_BANDS_32,
((8) + (1)))
/*! Pointer to real qmf data for each time slot. <br>
Dimension: #((8) + (1)) */
C_ALLOC_MEM2(QmfSlotsReal16, FIXP_DBL *,
QMF_DOMAIN_TIMESLOTS_16 + QMF_DOMAIN_OV_TIMESLOTS_16, ((8) + (1)))
/*! Pointer to real qmf data for each time slot. <br>
Dimension: #((8) + (1)) */
C_ALLOC_MEM2(QmfSlotsReal32, FIXP_DBL *,
QMF_DOMAIN_TIMESLOTS_32 + QMF_DOMAIN_OV_TIMESLOTS_32, ((8) + (1)))
/*! Pointer to imaginary qmf data for each time slot. <br>
Dimension: #((8) + (1)) */
C_ALLOC_MEM2(QmfSlotsImag16, FIXP_DBL *,
QMF_DOMAIN_TIMESLOTS_16 + QMF_DOMAIN_OV_TIMESLOTS_16, ((8) + (1)))
/*! Pointer to imaginary qmf data for each time slot. <br>
Dimension: #((8) + (1)) */
C_ALLOC_MEM2(QmfSlotsImag32, FIXP_DBL *,
QMF_DOMAIN_TIMESLOTS_32 + QMF_DOMAIN_OV_TIMESLOTS_32, ((8) + (1)))
/*! QMF overlap buffer. <br>
Dimension: #((8) + (1)) */
C_AALLOC_MEM2(QmfOverlapBuffer16, FIXP_DBL,
2 * QMF_DOMAIN_OV_TIMESLOTS_16 * QMF_DOMAIN_MAX_QMF_PROC_BANDS,
((8) + (1)))
/*! QMF overlap buffer. <br>
Dimension: #((8) + (1)) */
C_AALLOC_MEM2(QmfOverlapBuffer32, FIXP_DBL,
2 * QMF_DOMAIN_OV_TIMESLOTS_32 * QMF_DOMAIN_MAX_QMF_PROC_BANDS,
((8) + (1)))
static int FDK_QmfDomain_FreePersistentMemory(HANDLE_FDK_QMF_DOMAIN qd) {
int err = 0;
int ch;
for (ch = 0; ch < ((8) + (1)); ch++) {
if (qd->QmfDomainIn[ch].pAnaQmfStates) {
if (qd->globalConf.nBandsAnalysis == QMF_DOMAIN_ANALYSIS_QMF_BANDS_16) {
FreeAnaQmfStates16(&qd->QmfDomainIn[ch].pAnaQmfStates);
} else if (qd->globalConf.nBandsAnalysis ==
QMF_DOMAIN_ANALYSIS_QMF_BANDS_24) {
FreeAnaQmfStates24(&qd->QmfDomainIn[ch].pAnaQmfStates);
} else if (qd->globalConf.nBandsAnalysis ==
QMF_DOMAIN_ANALYSIS_QMF_BANDS_32) {
FreeAnaQmfStates32(&qd->QmfDomainIn[ch].pAnaQmfStates);
} else {
FreeAnaQmfStates(&qd->QmfDomainIn[ch].pAnaQmfStates);
}
}
if (qd->QmfDomainIn[ch].pOverlapBuffer) {
if (qd->globalConf.nQmfOvTimeSlots == QMF_DOMAIN_OV_TIMESLOTS_16) {
FreeQmfOverlapBuffer16(&qd->QmfDomainIn[ch].pOverlapBuffer);
} else if (qd->globalConf.nQmfOvTimeSlots == QMF_DOMAIN_OV_TIMESLOTS_32) {
FreeQmfOverlapBuffer32(&qd->QmfDomainIn[ch].pOverlapBuffer);
} else {
FreeQmfOverlapBuffer(&qd->QmfDomainIn[ch].pOverlapBuffer);
}
}
if (qd->QmfDomainIn[ch].hQmfSlotsReal) {
if (qd->globalConf.nQmfTimeSlots == QMF_DOMAIN_TIMESLOTS_16) {
FreeQmfSlotsReal16(&qd->QmfDomainIn[ch].hQmfSlotsReal);
} else if (qd->globalConf.nQmfTimeSlots == QMF_DOMAIN_TIMESLOTS_32) {
FreeQmfSlotsReal32(&qd->QmfDomainIn[ch].hQmfSlotsReal);
} else {
FreeQmfSlotsReal(&qd->QmfDomainIn[ch].hQmfSlotsReal);
}
}
if (qd->QmfDomainIn[ch].hQmfSlotsImag) {
if (qd->globalConf.nQmfTimeSlots == QMF_DOMAIN_TIMESLOTS_16) {
FreeQmfSlotsImag16(&qd->QmfDomainIn[ch].hQmfSlotsImag);
}
if (qd->globalConf.nQmfTimeSlots == QMF_DOMAIN_TIMESLOTS_32) {
FreeQmfSlotsImag32(&qd->QmfDomainIn[ch].hQmfSlotsImag);
} else {
FreeQmfSlotsImag(&qd->QmfDomainIn[ch].hQmfSlotsImag);
}
}
}
for (ch = 0; ch < ((8) + (1)); ch++) {
if (qd->QmfDomainOut[ch].pSynQmfStates) {
FreeSynQmfStates(&qd->QmfDomainOut[ch].pSynQmfStates);
}
}
return err;
}
static int FDK_QmfDomain_AllocatePersistentMemory(HANDLE_FDK_QMF_DOMAIN qd) {
int err = 0;
int ch;
HANDLE_FDK_QMF_DOMAIN_GC gc = &qd->globalConf;
if ((gc->nInputChannels > ((8) + (1))) || (gc->nOutputChannels > ((8) + (1))))
return err = 1;
for (ch = 0; ch < gc->nInputChannels; ch++) {
int size;
size = gc->nBandsAnalysis * 10;
if (size > 0) {
if (gc->nBandsAnalysis == QMF_DOMAIN_ANALYSIS_QMF_BANDS_16) {
if (qd->QmfDomainIn[ch].pAnaQmfStates == NULL) {
if (NULL ==
(qd->QmfDomainIn[ch].pAnaQmfStates = GetAnaQmfStates16(ch)))
goto bail;
}
} else if (gc->nBandsAnalysis == QMF_DOMAIN_ANALYSIS_QMF_BANDS_24) {
if (qd->QmfDomainIn[ch].pAnaQmfStates == NULL) {
if (NULL ==
(qd->QmfDomainIn[ch].pAnaQmfStates = GetAnaQmfStates24(ch)))
goto bail;
}
} else if (gc->nBandsAnalysis == QMF_DOMAIN_ANALYSIS_QMF_BANDS_32) {
if (qd->QmfDomainIn[ch].pAnaQmfStates == NULL) {
if (NULL ==
(qd->QmfDomainIn[ch].pAnaQmfStates = GetAnaQmfStates32(ch)))
goto bail;
}
} else {
if (qd->QmfDomainIn[ch].pAnaQmfStates == NULL) {
if (NULL == (qd->QmfDomainIn[ch].pAnaQmfStates = GetAnaQmfStates(ch)))
goto bail;
}
}
} else {
qd->QmfDomainIn[ch].pAnaQmfStates = NULL;
}
size = gc->nQmfOvTimeSlots + gc->nQmfTimeSlots;
if (size > 0) {
if (gc->nQmfTimeSlots == QMF_DOMAIN_TIMESLOTS_16) {
if (qd->QmfDomainIn[ch].hQmfSlotsReal == NULL) {
if (NULL ==
(qd->QmfDomainIn[ch].hQmfSlotsReal = GetQmfSlotsReal16(ch)))
goto bail;
}
if (qd->QmfDomainIn[ch].hQmfSlotsImag == NULL) {
if (NULL ==
(qd->QmfDomainIn[ch].hQmfSlotsImag = GetQmfSlotsImag16(ch)))
goto bail;
}
} else if (gc->nQmfTimeSlots == QMF_DOMAIN_TIMESLOTS_32) {
if (qd->QmfDomainIn[ch].hQmfSlotsReal == NULL) {
if (NULL ==
(qd->QmfDomainIn[ch].hQmfSlotsReal = GetQmfSlotsReal32(ch)))
goto bail;
}
if (qd->QmfDomainIn[ch].hQmfSlotsImag == NULL) {
if (NULL ==
(qd->QmfDomainIn[ch].hQmfSlotsImag = GetQmfSlotsImag32(ch)))
goto bail;
}
} else {
if (qd->QmfDomainIn[ch].hQmfSlotsReal == NULL) {
if (NULL == (qd->QmfDomainIn[ch].hQmfSlotsReal = GetQmfSlotsReal(ch)))
goto bail;
}
if (qd->QmfDomainIn[ch].hQmfSlotsImag == NULL) {
if (NULL == (qd->QmfDomainIn[ch].hQmfSlotsImag = GetQmfSlotsImag(ch)))
goto bail;
}
}
} else {
qd->QmfDomainIn[ch].hQmfSlotsReal = NULL;
qd->QmfDomainIn[ch].hQmfSlotsImag = NULL;
}
size = gc->nQmfOvTimeSlots * gc->nQmfProcBands * CMPLX_MOD;
if (size > 0) {
if (gc->nQmfOvTimeSlots == QMF_DOMAIN_OV_TIMESLOTS_16) {
if (qd->QmfDomainIn[ch].pOverlapBuffer == NULL) {
if (NULL ==
(qd->QmfDomainIn[ch].pOverlapBuffer = GetQmfOverlapBuffer16(ch)))
goto bail;
}
} else if (gc->nQmfOvTimeSlots == QMF_DOMAIN_OV_TIMESLOTS_32) {
if (qd->QmfDomainIn[ch].pOverlapBuffer == NULL) {
if (NULL ==
(qd->QmfDomainIn[ch].pOverlapBuffer = GetQmfOverlapBuffer32(ch)))
goto bail;
}
} else {
if (qd->QmfDomainIn[ch].pOverlapBuffer == NULL) {
if (NULL ==
(qd->QmfDomainIn[ch].pOverlapBuffer = GetQmfOverlapBuffer(ch)))
goto bail;
}
}
} else {
qd->QmfDomainIn[ch].pOverlapBuffer = NULL;
}
}
for (ch = 0; ch < gc->nOutputChannels; ch++) {
int size = gc->nBandsSynthesis * 9;
if (size > 0) {
if (qd->QmfDomainOut[ch].pSynQmfStates == NULL) {
if (NULL == (qd->QmfDomainOut[ch].pSynQmfStates = GetSynQmfStates(ch)))
goto bail;
}
} else {
qd->QmfDomainOut[ch].pSynQmfStates = NULL;
}
}
return err;
bail:
FDK_QmfDomain_FreePersistentMemory(qd);
return -1;
}
QMF_DOMAIN_ERROR FDK_QmfDomain_ClearPersistentMemory(
HANDLE_FDK_QMF_DOMAIN hqd) {
QMF_DOMAIN_ERROR err = QMF_DOMAIN_OK;
int ch, size;
if (hqd) {
HANDLE_FDK_QMF_DOMAIN_GC gc = &hqd->globalConf;
size = gc->nQmfOvTimeSlots * gc->nQmfProcBands * CMPLX_MOD;
for (ch = 0; ch < gc->nInputChannels; ch++) {
if (hqd->QmfDomainIn[ch].pOverlapBuffer) {
FDKmemclear(hqd->QmfDomainIn[ch].pOverlapBuffer,
size * sizeof(FIXP_DBL));
}
}
if (FDK_QmfDomain_InitFilterBank(hqd, 0)) {
err = QMF_DOMAIN_INIT_ERROR;
}
} else {
err = QMF_DOMAIN_INIT_ERROR;
}
return err;
}
/*
FDK_getWorkBuffer
Parameters:
pWorkBuffer i: array of pointers which point to different workbuffer
sections workBufferOffset i: offset in the workbuffer to the requested
memory memSize i: size of requested memory
Function:
The functions returns the address to the requested memory in the workbuffer.
The overall workbuffer is divided into several sections. There are
QMF_MAX_WB_SECTIONS sections of size QMF_WB_SECTION_SIZE. The function
selects the workbuffer section with the help of the workBufferOffset and than
it verifies whether the requested amount of memory fits into the selected
workbuffer section.
Returns:
address to workbuffer
*/
static FIXP_DBL *FDK_getWorkBuffer(FIXP_DBL **pWorkBuffer,
USHORT workBufferOffset,
USHORT workBufferSectSize, USHORT memSize) {
int idx1;
int idx2;
FIXP_DBL *pwb;
/* a section must be a multiple of the number of processing bands (currently
* always 64) */
FDK_ASSERT((workBufferSectSize % 64) == 0);
/* calculate offset within the section */
idx2 = workBufferOffset % workBufferSectSize;
/* calculate section number */
idx1 = (workBufferOffset - idx2) / workBufferSectSize;
/* maximum sectionnumber is QMF_MAX_WB_SECTIONS */
FDK_ASSERT(idx1 < QMF_MAX_WB_SECTIONS);
/* check, whether workbuffer is available */
FDK_ASSERT(pWorkBuffer[idx1] != NULL);
/* check, whether buffer fits into selected section */
FDK_ASSERT((idx2 + memSize) <= workBufferSectSize);
/* get requested address to workbuffer */
pwb = &pWorkBuffer[idx1][idx2];
return pwb;
}
static int FDK_QmfDomain_FeedWorkBuffer(HANDLE_FDK_QMF_DOMAIN qd, int ch,
FIXP_DBL **pWorkBuffer,
USHORT workBufferOffset,
USHORT workBufferSectSize, int size) {
int err = 0;
int mem_needed;
mem_needed = qd->QmfDomainIn[ch].workBuf_nBands *
qd->QmfDomainIn[ch].workBuf_nTimeSlots * CMPLX_MOD;
if (mem_needed > size) {
return (err = 1);
}
qd->QmfDomainIn[ch].pWorkBuffer = pWorkBuffer;
qd->QmfDomainIn[ch].workBufferOffset = workBufferOffset;
qd->QmfDomainIn[ch].workBufferSectSize = workBufferSectSize;
return err;
}
int FDK_QmfDomain_IsInitialized(const HANDLE_FDK_QMF_DOMAIN qd) {
FDK_ASSERT(qd != NULL);
return ((qd->QmfDomainIn[0].pAnaQmfStates == NULL) &&
(qd->QmfDomainOut[0].pSynQmfStates == NULL))
? 0
: 1;
}
int FDK_QmfDomain_InitFilterBank(HANDLE_FDK_QMF_DOMAIN qd, UINT extra_flags) {
FDK_ASSERT(qd != NULL);
int err = 0;
int ch, ts;
HANDLE_FDK_QMF_DOMAIN_GC gc = &qd->globalConf;
int noCols = gc->nQmfTimeSlots;
int lsb = gc->nBandsAnalysis;
int usb = fMin((INT)gc->nBandsSynthesis, 64);
int nProcBands = gc->nQmfProcBands;
FDK_ASSERT(nProcBands % ALIGNMENT_DEFAULT == 0);
if (extra_flags & QMF_FLAG_MPSLDFB) {
gc->flags &= ~QMF_FLAG_CLDFB;
gc->flags |= QMF_FLAG_MPSLDFB;
}
for (ch = 0; ch < gc->nInputChannels; ch++) {
/* distribute memory to slots array */
FIXP_DBL *ptrOv =
qd->QmfDomainIn[ch].pOverlapBuffer; /* persistent memory for overlap */
if ((ptrOv == NULL) && (gc->nQmfOvTimeSlots != 0)) {
err = 1;
return err;
}
/* This assumes the workbuffer defined for ch0 is the big one being used to
* hold one full frame of QMF data. */
FIXP_DBL **ptr =
qd->QmfDomainIn[fMin(ch, fMax((INT)gc->nQmfProcChannels - 1, 0))]
.pWorkBuffer; /* non-persistent workbuffer */
USHORT workBufferOffset =
qd->QmfDomainIn[fMin(ch, fMax((INT)gc->nQmfProcChannels - 1, 0))]
.workBufferOffset;
USHORT workBufferSectSize =
qd->QmfDomainIn[fMin(ch, fMax((INT)gc->nQmfProcChannels - 1, 0))]
.workBufferSectSize;
if ((ptr == NULL) && (gc->nQmfTimeSlots != 0)) {
err = 1;
return err;
}
qd->QmfDomainIn[ch].pGlobalConf = gc;
for (ts = 0; ts < gc->nQmfOvTimeSlots; ts++) {
qd->QmfDomainIn[ch].hQmfSlotsReal[ts] = ptrOv;
ptrOv += nProcBands;
qd->QmfDomainIn[ch].hQmfSlotsImag[ts] = ptrOv;
ptrOv += nProcBands;
}
for (; ts < (gc->nQmfOvTimeSlots + gc->nQmfTimeSlots); ts++) {
qd->QmfDomainIn[ch].hQmfSlotsReal[ts] = FDK_getWorkBuffer(
ptr, workBufferOffset, workBufferSectSize, nProcBands);
workBufferOffset += nProcBands;
qd->QmfDomainIn[ch].hQmfSlotsImag[ts] = FDK_getWorkBuffer(
ptr, workBufferOffset, workBufferSectSize, nProcBands);
workBufferOffset += nProcBands;
}
err |= qmfInitAnalysisFilterBank(
&qd->QmfDomainIn[ch].fb, qd->QmfDomainIn[ch].pAnaQmfStates, noCols,
(qd->QmfDomainIn[ch].fb.lsb == 0) ? lsb : qd->QmfDomainIn[ch].fb.lsb,
(qd->QmfDomainIn[ch].fb.usb == 0) ? usb : qd->QmfDomainIn[ch].fb.usb,
gc->nBandsAnalysis, gc->flags | extra_flags);
}
for (ch = 0; ch < gc->nOutputChannels; ch++) {
FIXP_DBL outGain_m = qd->QmfDomainOut[ch].fb.outGain_m;
int outGain_e = qd->QmfDomainOut[ch].fb.outGain_e;
int outScale = qmfGetOutScalefactor(&qd->QmfDomainOut[ch].fb);
err |= qmfInitSynthesisFilterBank(
&qd->QmfDomainOut[ch].fb, qd->QmfDomainOut[ch].pSynQmfStates, noCols,
(qd->QmfDomainOut[ch].fb.lsb == 0) ? lsb : qd->QmfDomainOut[ch].fb.lsb,
(qd->QmfDomainOut[ch].fb.usb == 0) ? usb : qd->QmfDomainOut[ch].fb.usb,
gc->nBandsSynthesis, gc->flags | extra_flags);
if (outGain_m != (FIXP_DBL)0) {
qmfChangeOutGain(&qd->QmfDomainOut[ch].fb, outGain_m, outGain_e);
}
if (outScale) {
qmfChangeOutScalefactor(&qd->QmfDomainOut[ch].fb, outScale);
}
}
return err;
}
void FDK_QmfDomain_SaveOverlap(HANDLE_FDK_QMF_DOMAIN_IN qd_ch, int offset) {
FDK_ASSERT(qd_ch != NULL);
int ts;
HANDLE_FDK_QMF_DOMAIN_GC gc = qd_ch->pGlobalConf;
int ovSlots = gc->nQmfOvTimeSlots;
int nCols = gc->nQmfTimeSlots;
int nProcBands = gc->nQmfProcBands;
FIXP_DBL **qmfReal = qd_ch->hQmfSlotsReal;
FIXP_DBL **qmfImag = qd_ch->hQmfSlotsImag;
QMF_SCALE_FACTOR *pScaling = &qd_ch->scaling;
/* for high part it would be enough to save only used part of overlap area */
if (qmfImag != NULL) {
for (ts = offset; ts < ovSlots; ts++) {
FDKmemcpy(qmfReal[ts], qmfReal[nCols + ts],
sizeof(FIXP_DBL) * nProcBands);
FDKmemcpy(qmfImag[ts], qmfImag[nCols + ts],
sizeof(FIXP_DBL) * nProcBands);
}
} else {
for (ts = 0; ts < ovSlots; ts++) {
FDKmemcpy(qmfReal[ts], qmfReal[nCols + ts],
sizeof(FIXP_DBL) * nProcBands);
}
}
pScaling->ov_lb_scale = pScaling->lb_scale;
}
/* Convert headroom bits to exponent */
#define SCALE2EXP(s) (15 - (s))
#define EXP2SCALE(e) (15 - (e))
void FDK_QmfDomain_GetSlot(const HANDLE_FDK_QMF_DOMAIN_IN qd_ch, const int ts,
const int start_band, const int stop_band,
FIXP_DBL *pQmfOutReal, FIXP_DBL *pQmfOutImag,
const int exp_out) {
FDK_ASSERT(qd_ch != NULL);
FDK_ASSERT(pQmfOutReal != NULL);
HANDLE_FDK_QMF_DOMAIN_GC gc = qd_ch->pGlobalConf;
const FIXP_DBL *real = qd_ch->hQmfSlotsReal[ts];
const FIXP_DBL *imag = qd_ch->hQmfSlotsImag[ts];
const int ovSlots = gc->nQmfOvTimeSlots;
const int exp_lb = SCALE2EXP((ts < ovSlots) ? qd_ch->scaling.ov_lb_scale
: qd_ch->scaling.lb_scale);
const int exp_hb = SCALE2EXP(qd_ch->scaling.hb_scale);
const int lsb = qd_ch->fb.lsb;
const int usb = qd_ch->fb.usb;
int b = start_band;
int lb_sf, hb_sf;
int target_exp =
ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK + qd_ch->fb.filterScale;
FDK_ASSERT(ts < (gc->nQmfTimeSlots + gc->nQmfOvTimeSlots));
FDK_ASSERT(start_band >= 0);
FDK_ASSERT(stop_band <= gc->nQmfProcBands);
if (qd_ch->fb.no_channels == 24) {
target_exp -= 1;
}
/* Limit scaling factors to maximum negative value to avoid faulty behaviour
due to right-shifts. Corresponding asserts were observed during robustness
testing.
*/
lb_sf = fMax(exp_lb - target_exp - exp_out, -31);
FDK_ASSERT(lb_sf < 32);
hb_sf = fMax(exp_hb - target_exp - exp_out, -31);
FDK_ASSERT(hb_sf < 32);
if (pQmfOutImag == NULL) {
for (; b < fMin(lsb, stop_band); b++) {
pQmfOutReal[b] = scaleValue(real[b], lb_sf);
}
for (; b < fMin(usb, stop_band); b++) {
pQmfOutReal[b] = scaleValue(real[b], hb_sf);
}
for (; b < stop_band; b++) {
pQmfOutReal[b] = (FIXP_DBL)0;
}
} else {
FDK_ASSERT(imag != NULL);
for (; b < fMin(lsb, stop_band); b++) {
pQmfOutReal[b] = scaleValue(real[b], lb_sf);
pQmfOutImag[b] = scaleValue(imag[b], lb_sf);
}
for (; b < fMin(usb, stop_band); b++) {
pQmfOutReal[b] = scaleValue(real[b], hb_sf);
pQmfOutImag[b] = scaleValue(imag[b], hb_sf);
}
for (; b < stop_band; b++) {
pQmfOutReal[b] = (FIXP_DBL)0;
pQmfOutImag[b] = (FIXP_DBL)0;
}
}
}
void FDK_QmfDomain_GetWorkBuffer(const HANDLE_FDK_QMF_DOMAIN_IN qd_ch,
const int ts, FIXP_DBL **ppQmfReal,
FIXP_DBL **ppQmfImag) {
FDK_ASSERT(qd_ch != NULL);
FDK_ASSERT(ppQmfReal != NULL);
FDK_ASSERT(ppQmfImag != NULL);
const int bands = qd_ch->workBuf_nBands;
FIXP_DBL **pWorkBuf = qd_ch->pWorkBuffer;
USHORT workBufferOffset = qd_ch->workBufferOffset;
USHORT workBufferSectSize = qd_ch->workBufferSectSize;
FDK_ASSERT(bands > 0);
FDK_ASSERT(ts < qd_ch->workBuf_nTimeSlots);
*ppQmfReal = FDK_getWorkBuffer(
pWorkBuf, workBufferOffset + (ts * CMPLX_MOD + 0) * bands,
workBufferSectSize, bands);
*ppQmfImag = FDK_getWorkBuffer(
pWorkBuf, workBufferOffset + (ts * CMPLX_MOD + 1) * bands,
workBufferSectSize, bands);
}
void FDK_QmfDomain_WorkBuffer2ProcChannel(
const HANDLE_FDK_QMF_DOMAIN_IN qd_ch) {
FDK_ASSERT(qd_ch != NULL);
HANDLE_FDK_QMF_DOMAIN_GC gc = qd_ch->pGlobalConf;
FIXP_DBL **pWorkBuf = qd_ch->pWorkBuffer;
USHORT workBufferOffset = qd_ch->workBufferOffset;
USHORT workBufferSectSize = qd_ch->workBufferSectSize;
if (FDK_getWorkBuffer(pWorkBuf, workBufferOffset, workBufferSectSize,
qd_ch->workBuf_nBands) ==
qd_ch->hQmfSlotsReal[gc->nQmfOvTimeSlots]) {
/* work buffer is part of processing channel => nothing to do */
return;
} else {
/* copy parked new QMF data to processing channel */
const int bands = qd_ch->workBuf_nBands;
const int slots = qd_ch->workBuf_nTimeSlots;
int ts;
for (ts = 0; ts < slots; ts++) {
FDKmemcpy(qd_ch->hQmfSlotsReal[gc->nQmfOvTimeSlots + ts],
FDK_getWorkBuffer(pWorkBuf, workBufferOffset,
workBufferSectSize, bands),
sizeof(FIXP_DBL) * bands); // parkBuf_to_anaMatrix
workBufferOffset += bands;
FDKmemcpy(qd_ch->hQmfSlotsImag[gc->nQmfOvTimeSlots + ts],
FDK_getWorkBuffer(pWorkBuf, workBufferOffset,
workBufferSectSize, bands),
sizeof(FIXP_DBL) * bands);
workBufferOffset += bands;
}
}
}
void FDK_QmfDomain_QmfData2HBE(HANDLE_FDK_QMF_DOMAIN_IN qd_ch,
FIXP_DBL **ppQmfReal, FIXP_DBL **ppQmfImag) {
FDK_ASSERT(qd_ch != NULL);
FDK_ASSERT(ppQmfReal != NULL);
FDK_ASSERT(ppQmfImag != NULL);
HANDLE_FDK_QMF_DOMAIN_GC gc = qd_ch->pGlobalConf;
FIXP_DBL **pWorkBuf = qd_ch->pWorkBuffer;
USHORT workBufferOffset = qd_ch->workBufferOffset;
USHORT workBufferSectSize = qd_ch->workBufferSectSize;
if (FDK_getWorkBuffer(pWorkBuf, workBufferOffset, workBufferSectSize,
qd_ch->workBuf_nBands) ==
qd_ch->hQmfSlotsReal[gc->nQmfOvTimeSlots]) { // left channel (anaMatrix)
int ts;
const int bands = gc->nBandsAnalysis;
const int slots = qd_ch->workBuf_nTimeSlots;
FDK_ASSERT(bands <= 64);
for (ts = 0; ts < slots; ts++) {
/* copy current data of processing channel */
FIXP_DBL tmp[64]; // one slot
/* real */
FDKmemcpy(tmp, qd_ch->hQmfSlotsReal[gc->nQmfOvTimeSlots + ts],
sizeof(FIXP_DBL) * bands); // anaMatrix_to_tmp
FDKmemcpy(qd_ch->hQmfSlotsReal[gc->nQmfOvTimeSlots + ts], ppQmfReal[ts],
sizeof(FIXP_DBL) * bands); // HBE_to_anaMatrix
FDKmemcpy(ppQmfReal[ts], tmp, sizeof(FIXP_DBL) * bands); // tmp_to_HBE
/* imag */
FDKmemcpy(tmp, qd_ch->hQmfSlotsImag[gc->nQmfOvTimeSlots + ts],
sizeof(FIXP_DBL) * bands);
FDKmemcpy(qd_ch->hQmfSlotsImag[gc->nQmfOvTimeSlots + ts], ppQmfImag[ts],
sizeof(FIXP_DBL) * bands);
FDKmemcpy(ppQmfImag[ts], tmp, sizeof(FIXP_DBL) * bands);
}
} else { // right channel (parkBuf)
const int bands = qd_ch->workBuf_nBands;
const int slots = qd_ch->workBuf_nTimeSlots;
int ts;
FDK_ASSERT(qd_ch->workBuf_nBands == gc->nBandsAnalysis);
for (ts = 0; ts < slots; ts++) {
/* copy HBE QMF data buffer to processing channel */
FDKmemcpy(qd_ch->hQmfSlotsReal[gc->nQmfOvTimeSlots + ts], ppQmfReal[ts],
sizeof(FIXP_DBL) * bands); // HBE_to_anaMatrix
FDKmemcpy(qd_ch->hQmfSlotsImag[gc->nQmfOvTimeSlots + ts], ppQmfImag[ts],
sizeof(FIXP_DBL) * bands);
/* copy parked new QMF data to HBE QMF data buffer */
FDKmemcpy(ppQmfReal[ts],
FDK_getWorkBuffer(pWorkBuf, workBufferOffset,
workBufferSectSize, bands),
sizeof(FIXP_DBL) * bands); // parkBuf_to_HBE
workBufferOffset += bands;
FDKmemcpy(ppQmfImag[ts],
FDK_getWorkBuffer(pWorkBuf, workBufferOffset,
workBufferSectSize, bands),
sizeof(FIXP_DBL) * bands);
workBufferOffset += bands;
}
}
}
void FDK_QmfDomain_ClearRequested(HANDLE_FDK_QMF_DOMAIN_GC hgc) {
hgc->qmfDomainExplicitConfig = 0;
hgc->flags_requested = 0;
hgc->nInputChannels_requested = 0;
hgc->nOutputChannels_requested = 0;
hgc->parkChannel_requested = 0;
hgc->nBandsAnalysis_requested = 0;
hgc->nBandsSynthesis_requested = 0;
hgc->nQmfTimeSlots_requested = 0;
hgc->nQmfOvTimeSlots_requested = 0;
hgc->nQmfProcBands_requested = 0;
hgc->nQmfProcChannels_requested = 0;
}
static void FDK_QmfDomain_ClearConfigured(HANDLE_FDK_QMF_DOMAIN_GC hgc) {
hgc->flags = 0;
hgc->nInputChannels = 0;
hgc->nOutputChannels = 0;
hgc->parkChannel = 0;
hgc->nBandsAnalysis = 0;
hgc->nBandsSynthesis = 0;
hgc->nQmfTimeSlots = 0;
hgc->nQmfOvTimeSlots = 0;
hgc->nQmfProcBands = 0;
hgc->nQmfProcChannels = 0;
}
static void FDK_QmfDomain_ClearFilterBank(HANDLE_FDK_QMF_DOMAIN hqd) {
int ch;
for (ch = 0; ch < ((8) + (1)); ch++) {
FDKmemclear(&hqd->QmfDomainIn[ch].fb, sizeof(hqd->QmfDomainIn[ch].fb));
}
for (ch = 0; ch < ((8) + (1)); ch++) {
FDKmemclear(&hqd->QmfDomainOut[ch].fb, sizeof(hqd->QmfDomainIn[ch].fb));
}
}
QMF_DOMAIN_ERROR FDK_QmfDomain_Configure(HANDLE_FDK_QMF_DOMAIN hqd) {
FDK_ASSERT(hqd != NULL);
QMF_DOMAIN_ERROR err = QMF_DOMAIN_OK;
int i, size_main, size, size_temp = 0;
HANDLE_FDK_QMF_DOMAIN_GC hgc = &hqd->globalConf;
FIXP_DBL **pWorkBuffer = hgc->pWorkBuffer;
int hasChanged = 0;
if ((hgc->nQmfProcChannels_requested > 0) &&
(hgc->nQmfProcBands_requested != 64)) {
return QMF_DOMAIN_INIT_ERROR;
}
if (hgc->nBandsAnalysis_requested > hgc->nQmfProcBands_requested) {
/* In general the output of the qmf analysis is written to QMF memory slots
which size is defined by nQmfProcBands. nBandsSynthesis may be larger
than nQmfProcBands. This is e.g. the case if the QMF based resampler is
used.
*/
return QMF_DOMAIN_INIT_ERROR;
}
/* 1. adjust change of processing channels by comparison of current and
* requested parameters */
if ((hgc->nQmfProcChannels != hgc->nQmfProcChannels_requested) ||
(hgc->nQmfProcBands != hgc->nQmfProcBands_requested) ||
(hgc->nQmfTimeSlots != hgc->nQmfTimeSlots_requested)) {
for (i = 0; i < hgc->nQmfProcChannels_requested; i++) {
hqd->QmfDomainIn[i].workBuf_nBands = hgc->nQmfProcBands_requested;
hgc->nQmfProcBands = hgc->nQmfProcBands_requested;
hqd->QmfDomainIn[i].workBuf_nTimeSlots = hgc->nQmfTimeSlots_requested;
}
hgc->nQmfProcChannels =
hgc->nQmfProcChannels_requested; /* keep highest value encountered so
far as allocated */
hasChanged = 1;
}
/* 2. reallocate persistent memory if necessary (analysis state-buffers,
* timeslot-pointer-array, overlap-buffers, synthesis state-buffers) */
if ((hgc->nInputChannels != hgc->nInputChannels_requested) ||
(hgc->nBandsAnalysis != hgc->nBandsAnalysis_requested) ||
(hgc->nQmfTimeSlots != hgc->nQmfTimeSlots_requested) ||
(hgc->nQmfOvTimeSlots != hgc->nQmfOvTimeSlots_requested) ||
(hgc->nOutputChannels != hgc->nOutputChannels_requested) ||
(hgc->nBandsSynthesis != hgc->nBandsSynthesis_requested) ||
(hgc->parkChannel != hgc->parkChannel_requested)) {
hgc->nInputChannels = hgc->nInputChannels_requested;
hgc->nBandsAnalysis = hgc->nBandsAnalysis_requested;
hgc->nQmfTimeSlots = hgc->nQmfTimeSlots_requested;
hgc->nQmfOvTimeSlots = hgc->nQmfOvTimeSlots_requested;
hgc->nOutputChannels = hgc->nOutputChannels_requested;
hgc->nBandsSynthesis = hgc->nBandsSynthesis_requested;
hgc->parkChannel = hgc->parkChannel_requested;
if (FDK_QmfDomain_AllocatePersistentMemory(hqd)) {
err = QMF_DOMAIN_OUT_OF_MEMORY;
goto bail;
}
/* 3. set request-flag for downsampled SBR */
if ((hgc->nBandsAnalysis == 32) && (hgc->nBandsSynthesis == 32) &&
!(hgc->flags & (QMF_FLAG_CLDFB | QMF_FLAG_MPSLDFB))) {
hgc->flags_requested |= QMF_FLAG_DOWNSAMPLED;
}
hasChanged = 1;
}
/* 4. initialize tables and buffer for QMF-resampler */
/* 5. set requested flags */
if (hgc->flags != hgc->flags_requested) {
if ((hgc->flags_requested & QMF_FLAG_MPSLDFB) &&
(hgc->flags_requested & QMF_FLAG_CLDFB)) {
hgc->flags_requested &= ~QMF_FLAG_CLDFB;
}
hgc->flags = hgc->flags_requested;
hasChanged = 1;
}
if (hasChanged) {
/* 6. recalculate and check size of required workbuffer-space */
if (hgc->parkChannel && (hqd->globalConf.nQmfProcChannels == 1)) {
/* configure temp QMF buffer for parking right channel MPS212 output,
* (USAC stereoConfigIndex 3 only) */
hqd->QmfDomainIn[1].workBuf_nBands = hqd->globalConf.nBandsAnalysis;
hqd->QmfDomainIn[1].workBuf_nTimeSlots = hqd->globalConf.nQmfTimeSlots;
size_temp = hqd->QmfDomainIn[1].workBuf_nBands *
hqd->QmfDomainIn[1].workBuf_nTimeSlots * CMPLX_MOD;
}
size_main = hqd->QmfDomainIn[0].workBuf_nBands *
hqd->QmfDomainIn[0].workBuf_nTimeSlots * CMPLX_MOD;
size = size_main * hgc->nQmfProcChannels + size_temp;
if (size > (QMF_MAX_WB_SECTIONS * QMF_WB_SECTION_SIZE)) {
err = QMF_DOMAIN_OUT_OF_MEMORY;
goto bail;
}
/* 7. allocate additional workbuffer if necessary */
if ((size > 0 /* *QMF_WB_SECTION_SIZE */) && (pWorkBuffer[0] == NULL)) {
/* get work buffer of size QMF_WB_SECTION_SIZE */
pWorkBuffer[0] = GetQmfWorkBufferCore6();
}
if ((size > 1 * QMF_WB_SECTION_SIZE) && (pWorkBuffer[1] == NULL)) {
/* get work buffer of size QMF_WB_SECTION_SIZE */
pWorkBuffer[1] = GetQmfWorkBufferCore1();
}
if ((size > 2 * QMF_WB_SECTION_SIZE) && (pWorkBuffer[2] == NULL)) {
/* get work buffer of size QMF_WB_SECTION_SIZE */
pWorkBuffer[2] = GetQmfWorkBufferCore3();
}
if ((size > 3 * QMF_WB_SECTION_SIZE) && (pWorkBuffer[3] == NULL)) {
/* get work buffer of size QMF_WB_SECTION_SIZE */
pWorkBuffer[3] = GetQmfWorkBufferCore4();
}
if ((size > 4 * QMF_WB_SECTION_SIZE) && (pWorkBuffer[4] == NULL)) {
/* get work buffer of size QMF_WB_SECTION_SIZE */
pWorkBuffer[4] = GetQmfWorkBufferCore5();
}
/* 8. distribute workbuffer over processing channels */
for (i = 0; i < hgc->nQmfProcChannels; i++) {
FDK_QmfDomain_FeedWorkBuffer(hqd, i, pWorkBuffer, size_main * i,
QMF_WB_SECTION_SIZE, size_main);
}
if (hgc->parkChannel) {
for (; i < hgc->nInputChannels; i++) {
FDK_QmfDomain_FeedWorkBuffer(hqd, 1, pWorkBuffer,
size_main * hgc->nQmfProcChannels,
QMF_WB_SECTION_SIZE, size_temp);
}
}
/* 9. (re-)init filterbank */
for (i = 0; i < hgc->nOutputChannels; i++) {
if ((hqd->QmfDomainOut[i].fb.lsb == 0) &&
(hqd->QmfDomainOut[i].fb.usb == 0)) {
/* Although lsb and usb are set in the SBR module, they are initialized
* at this point due to the case of using MPS without SBR. */
hqd->QmfDomainOut[i].fb.lsb = hgc->nBandsAnalysis_requested;
hqd->QmfDomainOut[i].fb.usb =
fMin((INT)hgc->nBandsSynthesis_requested, 64);
}
}
if (FDK_QmfDomain_InitFilterBank(hqd, 0)) {
err = QMF_DOMAIN_INIT_ERROR;
}
}
bail:
if (err) {
FDK_QmfDomain_FreeMem(hqd);
}
return err;
}
static void FDK_QmfDomain_FreeWorkBuffer(HANDLE_FDK_QMF_DOMAIN hqd) {
FIXP_DBL **pWorkBuffer = hqd->globalConf.pWorkBuffer;
if (pWorkBuffer[0]) FreeQmfWorkBufferCore6(&pWorkBuffer[0]);
if (pWorkBuffer[1]) FreeQmfWorkBufferCore1(&pWorkBuffer[1]);
if (pWorkBuffer[2]) FreeQmfWorkBufferCore3(&pWorkBuffer[2]);
if (pWorkBuffer[3]) FreeQmfWorkBufferCore4(&pWorkBuffer[3]);
if (pWorkBuffer[4]) FreeQmfWorkBufferCore5(&pWorkBuffer[4]);
}
void FDK_QmfDomain_FreeMem(HANDLE_FDK_QMF_DOMAIN hqd) {
FDK_QmfDomain_FreeWorkBuffer(hqd);
FDK_QmfDomain_FreePersistentMemory(hqd);
FDK_QmfDomain_ClearFilterBank(hqd);
FDK_QmfDomain_ClearConfigured(&hqd->globalConf);
FDK_QmfDomain_ClearRequested(&hqd->globalConf);
}
void FDK_QmfDomain_Close(HANDLE_FDK_QMF_DOMAIN hqd) {
FDK_QmfDomain_FreeWorkBuffer(hqd);
FDK_QmfDomain_FreePersistentMemory(hqd);
}
|