1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
|
/* -----------------------------------------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
� Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
of the MPEG specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
individually for the purpose of encoding or decoding bit streams in products that are compliant with
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
software may already be covered under those patent licenses when it is used for those licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
applications information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification, are permitted without
payment of copyright license fees provided that you satisfy the following conditions:
You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation and/or other materials
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived from this library without
prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
and the date of any change. For modified versions of the FDK AAC Codec, the term
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
respect to this software.
You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
or business interruption, however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of this software, even if
advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------------------------------------- */
/********************** Fraunhofer IIS FDK AAC Encoder lib ******************
Author(s): M. Neusinger
Description: Compressor for AAC Metadata Generator
******************************************************************************/
#include "metadata_compressor.h"
#include "channel_map.h"
#define LOG2 0.69314718056f /* natural logarithm of 2 */
#define ILOG2 1.442695041f /* 1/LOG2 */
#define FIXP_ILOG2_DIV2 (FL2FXCONST_DBL(ILOG2/2))
/*----------------- defines ----------------------*/
#define MAX_DRC_CHANNELS (8) /*!< Max number of audio input channels. */
#define DOWNMIX_SHIFT (3) /*!< Max 8 channel. */
#define WEIGHTING_FILTER_SHIFT (2) /*!< Scaling used in weighting filter. */
#define METADATA_INT_BITS 10
#define METADATA_LINT_BITS 20
#define METADATA_INT_SCALE (INT64(1)<<(METADATA_INT_BITS))
#define METADATA_FRACT_BITS (DFRACT_BITS-1-METADATA_INT_BITS)
#define METADATA_FRACT_SCALE (INT64(1)<<(METADATA_FRACT_BITS))
/**
* Enum for channel assignment.
*/
enum {
L = 0,
R = 1,
C = 2,
LFE = 3,
LS = 4,
RS = 5,
S = 6,
LS2 = 7,
RS2 = 8
};
/*--------------- structure definitions --------------------*/
/**
* Structure holds weighting filter filter states.
*/
struct WEIGHTING_STATES {
FIXP_DBL x1;
FIXP_DBL x2;
FIXP_DBL y1;
FIXP_DBL y2;
};
/**
* Dynamic Range Control compressor structure.
*/
struct DRC_COMP {
FIXP_DBL maxBoostThr[2]; /*!< Max boost threshold. */
FIXP_DBL boostThr[2]; /*!< Boost threshold. */
FIXP_DBL earlyCutThr[2]; /*!< Early cut threshold. */
FIXP_DBL cutThr[2]; /*!< Cut threshold. */
FIXP_DBL maxCutThr[2]; /*!< Max cut threshold. */
FIXP_DBL boostFac[2]; /*!< Precalculated factor for boost compression. */
FIXP_DBL earlyCutFac[2]; /*!< Precalculated factor for early cut compression. */
FIXP_DBL cutFac[2]; /*!< Precalculated factor for cut compression. */
FIXP_DBL maxBoost[2]; /*!< Maximum boost. */
FIXP_DBL maxCut[2]; /*!< Maximum cut. */
FIXP_DBL maxEarlyCut[2]; /*!< Maximum early cut. */
FIXP_DBL fastAttack[2]; /*!< Fast attack coefficient. */
FIXP_DBL fastDecay[2]; /*!< Fast release coefficient. */
FIXP_DBL slowAttack[2]; /*!< Slow attack coefficient. */
FIXP_DBL slowDecay[2]; /*!< Slow release coefficient. */
UINT holdOff[2]; /*!< Hold time in blocks. */
FIXP_DBL attackThr[2]; /*!< Slow/fast attack threshold. */
FIXP_DBL decayThr[2]; /*!< Slow/fast release threshold. */
DRC_PROFILE profile[2]; /*!< DRC profile. */
INT blockLength; /*!< Block length in samples. */
UINT sampleRate; /*!< Sample rate. */
CHANNEL_MODE chanConfig; /*!< Channel configuration. */
UCHAR useWeighting; /*!< Use weighting filter. */
UINT channels; /*!< Number of channels. */
UINT fullChannels; /*!< Number of full range channels. */
INT channelIdx[9]; /*!< Offsets of interleaved channel samples (L, R, C, LFE, Ls, Rs, S, Ls2, Rs2). */
FIXP_DBL smoothLevel[2]; /*!< level smoothing states */
FIXP_DBL smoothGain[2]; /*!< gain smoothing states */
UINT holdCnt[2]; /*!< hold counter */
FIXP_DBL limGain[2]; /*!< limiter gain */
FIXP_DBL limDecay; /*!< limiter decay (linear) */
FIXP_DBL prevPeak[2]; /*!< max peak of previous block (stereo/mono)*/
WEIGHTING_STATES filter[MAX_DRC_CHANNELS]; /*!< array holds weighting filter states */
};
/*---------------- constants -----------------------*/
/**
* Profile tables.
*/
static const FIXP_DBL tabMaxBoostThr[] = {
(FIXP_DBL)(int)((unsigned)-43<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-53<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-55<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-65<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-50<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-40<<METADATA_FRACT_BITS)
};
static const FIXP_DBL tabBoostThr[] = {
(FIXP_DBL)(int)((unsigned)-31<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-41<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-31<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-41<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-31<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-31<<METADATA_FRACT_BITS)
};
static const FIXP_DBL tabEarlyCutThr[] = {
(FIXP_DBL)(int)((unsigned)-26<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-21<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-26<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-21<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-26<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-20<<METADATA_FRACT_BITS)
};
static const FIXP_DBL tabCutThr[] = {
(FIXP_DBL)(int)((unsigned)-16<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-11<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-16<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-21<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-16<<METADATA_FRACT_BITS),
(FIXP_DBL)(int)((unsigned)-10<<METADATA_FRACT_BITS)
};
static const FIXP_DBL tabMaxCutThr[] = {
(FIXP_DBL)(4<<METADATA_FRACT_BITS),
(FIXP_DBL)(9<<METADATA_FRACT_BITS),
(FIXP_DBL)(4<<METADATA_FRACT_BITS),
(FIXP_DBL)(9<<METADATA_FRACT_BITS),
(FIXP_DBL)(4<<METADATA_FRACT_BITS),
(FIXP_DBL)(4<<METADATA_FRACT_BITS)
};
static const FIXP_DBL tabBoostRatio[] = {
FL2FXCONST_DBL( ((1.f/2.f) - 1.f) ),
FL2FXCONST_DBL( ((1.f/2.f) - 1.f) ),
FL2FXCONST_DBL( ((1.f/2.f) - 1.f) ),
FL2FXCONST_DBL( ((1.f/2.f) - 1.f) ),
FL2FXCONST_DBL( ((1.f/5.f) - 1.f) ),
FL2FXCONST_DBL( ((1.f/5.f) - 1.f) )
};
static const FIXP_DBL tabEarlyCutRatio[] = {
FL2FXCONST_DBL( ((1.f/2.f) - 1.f) ),
FL2FXCONST_DBL( ((1.f/2.f) - 1.f) ),
FL2FXCONST_DBL( ((1.f/2.f) - 1.f) ),
FL2FXCONST_DBL( ((1.f/1.f) - 1.f) ),
FL2FXCONST_DBL( ((1.f/2.f) - 1.f) ),
FL2FXCONST_DBL( ((1.f/2.f) - 1.f) )
};
static const FIXP_DBL tabCutRatio[] = {
FL2FXCONST_DBL( ((1.f/20.f) - 1.f) ),
FL2FXCONST_DBL( ((1.f/20.f) - 1.f) ),
FL2FXCONST_DBL( ((1.f/20.f) - 1.f) ),
FL2FXCONST_DBL( ((1.f/ 2.f) - 1.f) ),
FL2FXCONST_DBL( ((1.f/20.f) - 1.f) ),
FL2FXCONST_DBL( ((1.f/20.f) - 1.f) )
};
static const FIXP_DBL tabMaxBoost[] = {
(FIXP_DBL)( 6<<METADATA_FRACT_BITS),
(FIXP_DBL)( 6<<METADATA_FRACT_BITS),
(FIXP_DBL)(12<<METADATA_FRACT_BITS),
(FIXP_DBL)(12<<METADATA_FRACT_BITS),
(FIXP_DBL)(15<<METADATA_FRACT_BITS),
(FIXP_DBL)(15<<METADATA_FRACT_BITS)
};
static const FIXP_DBL tabMaxCut[] = {
(FIXP_DBL)(24<<METADATA_FRACT_BITS),
(FIXP_DBL)(24<<METADATA_FRACT_BITS),
(FIXP_DBL)(24<<METADATA_FRACT_BITS),
(FIXP_DBL)(15<<METADATA_FRACT_BITS),
(FIXP_DBL)(24<<METADATA_FRACT_BITS),
(FIXP_DBL)(24<<METADATA_FRACT_BITS)
};
static const FIXP_DBL tabFastAttack[] = {
FL2FXCONST_DBL((10.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL((10.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL((10.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL((10.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL((10.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL( (0.f/1000.f)/METADATA_INT_SCALE)
};
static const FIXP_DBL tabFastDecay[] = {
FL2FXCONST_DBL((1000.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL((1000.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL((1000.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL((1000.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL( (200.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL( (0.f/1000.f)/METADATA_INT_SCALE)
};
static const FIXP_DBL tabSlowAttack[] = {
FL2FXCONST_DBL((100.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL((100.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL((100.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL((100.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL((100.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL( (0.f/1000.f)/METADATA_INT_SCALE)
};
static const FIXP_DBL tabSlowDecay[] = {
FL2FXCONST_DBL( (3000.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL( (3000.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL((10000.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL( (3000.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL( (1000.f/1000.f)/METADATA_INT_SCALE),
FL2FXCONST_DBL( (0.f/1000.f)/METADATA_INT_SCALE)
};
static const INT tabHoldOff[] = { 10, 10, 10, 10, 10, 0 };
static const FIXP_DBL tabAttackThr[] = {
(FIXP_DBL)(15<<METADATA_FRACT_BITS),
(FIXP_DBL)(15<<METADATA_FRACT_BITS),
(FIXP_DBL)(15<<METADATA_FRACT_BITS),
(FIXP_DBL)(15<<METADATA_FRACT_BITS),
(FIXP_DBL)(10<<METADATA_FRACT_BITS),
(FIXP_DBL)(0<<METADATA_FRACT_BITS)
};
static const FIXP_DBL tabDecayThr[] = {
(FIXP_DBL)(20<<METADATA_FRACT_BITS),
(FIXP_DBL)(20<<METADATA_FRACT_BITS),
(FIXP_DBL)(20<<METADATA_FRACT_BITS),
(FIXP_DBL)(20<<METADATA_FRACT_BITS),
(FIXP_DBL)(10<<METADATA_FRACT_BITS),
(FIXP_DBL)( 0<<METADATA_FRACT_BITS)
};
/**
* Weighting filter coefficients (biquad bandpass).
*/
static const FIXP_DBL b0 = FL2FXCONST_DBL(0.53050662f); /* b1 = 0, b2 = -b0 */
static const FIXP_DBL a1 = FL2FXCONST_DBL(-0.95237983f), a2 = FL2FXCONST_DBL(-0.02248836f); /* a0 = 1 */
/*------------- function definitions ----------------*/
/**
* \brief Calculate scaling factor for denoted processing block.
*
* \param blockLength Length of processing block.
*
* \return shiftFactor
*/
static UINT getShiftFactor(
const UINT length
)
{
UINT ldN;
for(ldN=1;(((UINT)1)<<ldN) < length;ldN++);
return ldN;
}
/**
* \brief Sum up fixpoint values with best possible accuracy.
*
* \param value1 First input value.
* \param q1 Scaling factor of first input value.
* \param pValue2 Pointer to second input value, will be modified on return.
* \param pQ2 Pointer to second scaling factor, will be modified on return.
*
* \return void
*/
static void fixpAdd(
const FIXP_DBL value1,
const int q1,
FIXP_DBL *const pValue2,
int *const pQ2
)
{
const int headroom1 = fNormz(fixp_abs(value1))-1;
const int headroom2 = fNormz(fixp_abs(*pValue2))-1;
int resultScale = fixMax(q1-headroom1, (*pQ2)-headroom2);
if ( (value1!=FL2FXCONST_DBL(0.f)) && (*pValue2!=FL2FXCONST_DBL(0.f)) ) {
resultScale++;
}
*pValue2 = scaleValue(value1, q1-resultScale) + scaleValue(*pValue2, (*pQ2)-resultScale);
*pQ2 = (*pValue2!=(FIXP_DBL)0) ? resultScale : DFRACT_BITS-1;
}
/**
* \brief Function for converting time constant to filter coefficient.
*
* \param t Time constant.
* \param sampleRate Sampling rate in Hz.
* \param blockLength Length of processing block in samples per channel.
*
* \return result = 1.0 - exp(-1.0/((t) * (f)))
*/
static FIXP_DBL tc2Coeff(
const FIXP_DBL t,
const INT sampleRate,
const INT blockLength
)
{
FIXP_DBL sampleRateFract;
FIXP_DBL blockLengthFract;
FIXP_DBL f, product;
FIXP_DBL exponent, result;
INT e_res;
/* f = sampleRate/blockLength */
sampleRateFract = (FIXP_DBL)(sampleRate<<(DFRACT_BITS-1-METADATA_LINT_BITS));
blockLengthFract = (FIXP_DBL)(blockLength<<(DFRACT_BITS-1-METADATA_LINT_BITS));
f = fDivNorm(sampleRateFract, blockLengthFract, &e_res);
f = scaleValue(f, e_res-METADATA_INT_BITS); /* convert to METADATA_FRACT */
/* product = t*f */
product = fMultNorm(t, f, &e_res);
product = scaleValue(product, e_res+METADATA_INT_BITS); /* convert to METADATA_FRACT */
/* exponent = (-1.0/((t) * (f))) */
exponent = fDivNorm(METADATA_FRACT_SCALE, product, &e_res);
exponent = scaleValue(exponent, e_res-METADATA_INT_BITS); /* convert to METADATA_FRACT */
/* exponent * ld(e) */
exponent = fMult(exponent,FIXP_ILOG2_DIV2)<<1; /* e^(x) = 2^(x*ld(e)) */
/* exp(-1.0/((t) * (f))) */
result = f2Pow(-exponent, DFRACT_BITS-1-METADATA_FRACT_BITS, &e_res);
/* result = 1.0 - exp(-1.0/((t) * (f))) */
result = (FIXP_DBL)MAXVAL_DBL - scaleValue(result, e_res);
return result;
}
INT FDK_DRC_Generator_Open(
HDRC_COMP *phDrcComp
)
{
INT err = 0;
HDRC_COMP hDcComp = NULL;
if (phDrcComp == NULL) {
err = -1;
goto bail;
}
/* allocate memory */
hDcComp = (HDRC_COMP)FDKcalloc(1, sizeof(DRC_COMP));
if (hDcComp == NULL) {
err = -1;
goto bail;
}
FDKmemclear(hDcComp, sizeof(DRC_COMP));
/* Return drc compressor instance */
*phDrcComp = hDcComp;
return err;
bail:
FDK_DRC_Generator_Close(&hDcComp);
return err;
}
INT FDK_DRC_Generator_Close(
HDRC_COMP *phDrcComp
)
{
if (phDrcComp == NULL) {
return -1;
}
if (*phDrcComp != NULL) {
FDKfree(*phDrcComp);
*phDrcComp = NULL;
}
return 0;
}
INT FDK_DRC_Generator_Initialize(
HDRC_COMP drcComp,
const DRC_PROFILE profileLine,
const DRC_PROFILE profileRF,
const INT blockLength,
const UINT sampleRate,
const CHANNEL_MODE channelMode,
const CHANNEL_ORDER channelOrder,
const UCHAR useWeighting
)
{
int i;
CHANNEL_MAPPING channelMapping;
drcComp->limDecay = FL2FXCONST_DBL( ((0.006f / 256) * blockLength) / METADATA_INT_SCALE );
/* Save parameters. */
drcComp->blockLength = blockLength;
drcComp->sampleRate = sampleRate;
drcComp->chanConfig = channelMode;
drcComp->useWeighting = useWeighting;
if (FDK_DRC_Generator_setDrcProfile(drcComp, profileLine, profileRF)!=0) { /* expects initialized blockLength and sampleRate */
return (-1);
}
/* Set number of channels and channel offsets. */
if (FDKaacEnc_InitChannelMapping(channelMode, channelOrder, &channelMapping)!=AAC_ENC_OK) {
return (-2);
}
for (i = 0; i < 9; i++) drcComp->channelIdx[i] = -1;
switch (channelMode) {
case MODE_1: /* mono */
drcComp->channelIdx[C] = channelMapping.elInfo[0].ChannelIndex[0];
break;
case MODE_2: /* stereo */
drcComp->channelIdx[L] = channelMapping.elInfo[0].ChannelIndex[0];
drcComp->channelIdx[R] = channelMapping.elInfo[0].ChannelIndex[1];
break;
case MODE_1_2: /* 3ch */
drcComp->channelIdx[L] = channelMapping.elInfo[1].ChannelIndex[0];
drcComp->channelIdx[R] = channelMapping.elInfo[1].ChannelIndex[1];
drcComp->channelIdx[C] = channelMapping.elInfo[0].ChannelIndex[0];
break;
case MODE_1_2_1: /* 4ch */
drcComp->channelIdx[L] = channelMapping.elInfo[1].ChannelIndex[0];
drcComp->channelIdx[R] = channelMapping.elInfo[1].ChannelIndex[1];
drcComp->channelIdx[C] = channelMapping.elInfo[0].ChannelIndex[0];
drcComp->channelIdx[S] = channelMapping.elInfo[2].ChannelIndex[0];
break;
case MODE_1_2_2: /* 5ch */
drcComp->channelIdx[L] = channelMapping.elInfo[1].ChannelIndex[0];
drcComp->channelIdx[R] = channelMapping.elInfo[1].ChannelIndex[1];
drcComp->channelIdx[C] = channelMapping.elInfo[0].ChannelIndex[0];
drcComp->channelIdx[LS] = channelMapping.elInfo[2].ChannelIndex[0];
drcComp->channelIdx[RS] = channelMapping.elInfo[2].ChannelIndex[1];
break;
case MODE_1_2_2_1: /* 5.1 ch */
drcComp->channelIdx[L] = channelMapping.elInfo[1].ChannelIndex[0];
drcComp->channelIdx[R] = channelMapping.elInfo[1].ChannelIndex[1];
drcComp->channelIdx[C] = channelMapping.elInfo[0].ChannelIndex[0];
drcComp->channelIdx[LFE] = channelMapping.elInfo[3].ChannelIndex[0];
drcComp->channelIdx[LS] = channelMapping.elInfo[2].ChannelIndex[0];
drcComp->channelIdx[RS] = channelMapping.elInfo[2].ChannelIndex[1];
break;
case MODE_1_2_2_2_1: /* 7.1 ch */
case MODE_7_1_FRONT_CENTER:
drcComp->channelIdx[L] = channelMapping.elInfo[2].ChannelIndex[0]; /* l */
drcComp->channelIdx[R] = channelMapping.elInfo[2].ChannelIndex[1]; /* r */
drcComp->channelIdx[C] = channelMapping.elInfo[0].ChannelIndex[0]; /* c */
drcComp->channelIdx[LFE] = channelMapping.elInfo[4].ChannelIndex[0]; /* lfe */
drcComp->channelIdx[LS] = channelMapping.elInfo[3].ChannelIndex[0]; /* ls */
drcComp->channelIdx[RS] = channelMapping.elInfo[3].ChannelIndex[1]; /* rs */
drcComp->channelIdx[LS2] = channelMapping.elInfo[1].ChannelIndex[0]; /* lc */
drcComp->channelIdx[RS2] = channelMapping.elInfo[1].ChannelIndex[1]; /* rc */
break;
case MODE_7_1_REAR_SURROUND:
drcComp->channelIdx[L] = channelMapping.elInfo[1].ChannelIndex[0]; /* l */
drcComp->channelIdx[R] = channelMapping.elInfo[1].ChannelIndex[1]; /* r */
drcComp->channelIdx[C] = channelMapping.elInfo[0].ChannelIndex[0]; /* c */
drcComp->channelIdx[LFE] = channelMapping.elInfo[4].ChannelIndex[0]; /* lfe */
drcComp->channelIdx[LS] = channelMapping.elInfo[3].ChannelIndex[0]; /* lrear */
drcComp->channelIdx[RS] = channelMapping.elInfo[3].ChannelIndex[1]; /* rrear */
drcComp->channelIdx[LS2] = channelMapping.elInfo[2].ChannelIndex[0]; /* ls */
drcComp->channelIdx[RS2] = channelMapping.elInfo[2].ChannelIndex[1]; /* rs */
break;
case MODE_1_1:
case MODE_1_1_1_1:
case MODE_1_1_1_1_1_1:
case MODE_1_1_1_1_1_1_1_1:
case MODE_1_1_1_1_1_1_1_1_1_1_1_1:
case MODE_2_2:
case MODE_2_2_2:
case MODE_2_2_2_2:
case MODE_2_2_2_2_2_2:
default:
return (-1);
}
drcComp->fullChannels = channelMapping.nChannelsEff;
drcComp->channels = channelMapping.nChannels;
/* Init states. */
drcComp->smoothLevel[0] = drcComp->smoothLevel[1] = (FIXP_DBL)(int)((unsigned)-135<<METADATA_FRACT_BITS);
FDKmemclear(drcComp->smoothGain, sizeof(drcComp->smoothGain));
FDKmemclear(drcComp->holdCnt, sizeof(drcComp->holdCnt));
FDKmemclear(drcComp->limGain, sizeof(drcComp->limGain));
FDKmemclear(drcComp->prevPeak, sizeof(drcComp->prevPeak));
FDKmemclear(drcComp->filter, sizeof(drcComp->filter));
return (0);
}
INT FDK_DRC_Generator_setDrcProfile(
HDRC_COMP drcComp,
const DRC_PROFILE profileLine,
const DRC_PROFILE profileRF
)
{
int profileIdx, i;
drcComp->profile[0] = profileLine;
drcComp->profile[1] = profileRF;
for (i = 0; i < 2; i++) {
/* get profile index */
switch (drcComp->profile[i]) {
case DRC_NONE:
case DRC_FILMSTANDARD: profileIdx = 0; break;
case DRC_FILMLIGHT: profileIdx = 1; break;
case DRC_MUSICSTANDARD: profileIdx = 2; break;
case DRC_MUSICLIGHT: profileIdx = 3; break;
case DRC_SPEECH: profileIdx = 4; break;
case DRC_DELAY_TEST: profileIdx = 5; break;
default: return (-1);
}
/* get parameters for selected profile */
if (profileIdx >= 0) {
drcComp->maxBoostThr[i] = tabMaxBoostThr[profileIdx];
drcComp->boostThr[i] = tabBoostThr[profileIdx];
drcComp->earlyCutThr[i] = tabEarlyCutThr[profileIdx];
drcComp->cutThr[i] = tabCutThr[profileIdx];
drcComp->maxCutThr[i] = tabMaxCutThr[profileIdx];
drcComp->boostFac[i] = tabBoostRatio[profileIdx];
drcComp->earlyCutFac[i] = tabEarlyCutRatio[profileIdx];
drcComp->cutFac[i] = tabCutRatio[profileIdx];
drcComp->maxBoost[i] = tabMaxBoost[profileIdx];
drcComp->maxCut[i] = tabMaxCut[profileIdx];
drcComp->maxEarlyCut[i] = - fMult((drcComp->cutThr[i] - drcComp->earlyCutThr[i]), drcComp->earlyCutFac[i]); /* no scaling after mult needed, earlyCutFac is in FIXP_DBL */
drcComp->fastAttack[i] = tc2Coeff(tabFastAttack[profileIdx], drcComp->sampleRate, drcComp->blockLength);
drcComp->fastDecay[i] = tc2Coeff(tabFastDecay[profileIdx], drcComp->sampleRate, drcComp->blockLength);
drcComp->slowAttack[i] = tc2Coeff(tabSlowAttack[profileIdx], drcComp->sampleRate, drcComp->blockLength);
drcComp->slowDecay[i] = tc2Coeff(tabSlowDecay[profileIdx], drcComp->sampleRate, drcComp->blockLength);
drcComp->holdOff[i] = tabHoldOff[profileIdx] * 256 / drcComp->blockLength;
drcComp->attackThr[i] = tabAttackThr[profileIdx];
drcComp->decayThr[i] = tabDecayThr[profileIdx];
}
drcComp->smoothGain[i] = FL2FXCONST_DBL(0.f);
}
return (0);
}
INT FDK_DRC_Generator_Calc(
HDRC_COMP drcComp,
const INT_PCM * const inSamples,
const INT dialnorm,
const INT drc_TargetRefLevel,
const INT comp_TargetRefLevel,
FIXP_DBL clev,
FIXP_DBL slev,
INT * const pDynrng,
INT * const pCompr
)
{
int i, c;
FIXP_DBL peak[2];
/**************************************************************************
* compressor
**************************************************************************/
if ((drcComp->profile[0] != DRC_NONE) || (drcComp->profile[1] != DRC_NONE)) {
/* Calc loudness level */
FIXP_DBL level_b = FL2FXCONST_DBL(0.f);
int level_e = DFRACT_BITS-1;
/* Increase energy time resolution with shorter processing blocks. 32 is an empiric value. */
const int granuleLength = fixMin(32, drcComp->blockLength);
if (drcComp->useWeighting) {
FIXP_DBL x1, x2, y, y1, y2;
/* sum of filter coefficients about 2.5 -> squared value is 6.25
WEIGHTING_FILTER_SHIFT is 2 -> scaling about 16, therefore reduce granuleShift by 1.
*/
const int granuleShift = getShiftFactor(granuleLength)-1;
for (c = 0; c < (int)drcComp->channels; c++) {
const INT_PCM* pSamples = &inSamples[c];
if (c == drcComp->channelIdx[LFE]) {
continue; /* skip LFE */
}
/* get filter states */
x1 = drcComp->filter[c].x1;
x2 = drcComp->filter[c].x2;
y1 = drcComp->filter[c].y1;
y2 = drcComp->filter[c].y2;
i = 0;
do {
int offset = i;
FIXP_DBL accu = FL2FXCONST_DBL(0.f);
for (i=offset; i < fixMin(offset+granuleLength,drcComp->blockLength); i++) {
/* apply weighting filter */
FIXP_DBL x = FX_PCM2FX_DBL((FIXP_PCM)pSamples[i*drcComp->channels]) >> WEIGHTING_FILTER_SHIFT;
/* y = b0 * (x - x2) - a1 * y1 - a2 * y2; */
y = fMult(b0,x-x2) - fMult(a1,y1) - fMult(a2,y2);
x2 = x1;
x1 = x;
y2 = y1;
y1 = y;
accu += fPow2Div2(y)>>(granuleShift-1); /* partial energy */
} /* i */
fixpAdd(accu, granuleShift+2*WEIGHTING_FILTER_SHIFT, &level_b, &level_e); /* sup up partial energies */
} while ( i < drcComp->blockLength );
/* save filter states */
drcComp->filter[c].x1 = x1;
drcComp->filter[c].x2 = x2;
drcComp->filter[c].y1 = y1;
drcComp->filter[c].y2 = y2;
} /* c */
} /* weighting */
else {
const int granuleShift = getShiftFactor(granuleLength);
for (c = 0; c < (int)drcComp->channels; c++) {
const INT_PCM* pSamples = &inSamples[c];
if ((int)c == drcComp->channelIdx[LFE]) {
continue; /* skip LFE */
}
i = 0;
do {
int offset = i;
FIXP_DBL accu = FL2FXCONST_DBL(0.f);
for (i=offset; i < fixMin(offset+granuleLength,drcComp->blockLength); i++) {
/* partial energy */
accu += fPow2Div2((FIXP_PCM)pSamples[i*drcComp->channels])>>(granuleShift-1);
} /* i */
fixpAdd(accu, granuleShift, &level_b, &level_e); /* sup up partial energies */
} while ( i < drcComp->blockLength );
}
} /* weighting */
/*
* Convert to dBFS, apply dialnorm
*/
/* level scaling */
/* descaled level in ld64 representation */
FIXP_DBL ldLevel = CalcLdData(level_b) + (FIXP_DBL)((level_e-12)<<(DFRACT_BITS-1-LD_DATA_SHIFT)) - CalcLdData((FIXP_DBL)(drcComp->blockLength<<(DFRACT_BITS-1-12)));
/* if (level < 1e-10) level = 1e-10f; */
ldLevel = FDKmax(ldLevel, FL2FXCONST_DBL(-0.51905126482615036685473741085772f));
/* level = 10 * log(level)/log(10) + 3;
* = 10*log(2)/log(10) * ld(level) + 3;
* = 10 * 0.30102999566398119521373889472449 * ld(level) + 3
* = 10 * (0.30102999566398119521373889472449 * ld(level) + 0.3)
* = 10 * (0.30102999566398119521373889472449 * ld64(level) + 0.3/64) * 64
*
* additional scaling with METADATA_FRACT_BITS:
* = 10 * (0.30102999566398119521373889472449 * ld64(level) + 0.3/64) * 64 * 2^(METADATA_FRACT_BITS)
* = 10 * (0.30102999566398119521373889472449 * ld64(level) + 0.3/64) * 2^(METADATA_FRACT_BITS+LD_DATA_SHIFT)
* = 10*2^(METADATA_FRACT_BITS+LD_DATA_SHIFT) * ( 0.30102999566398119521373889472449 * ld64(level) + 0.3/64 )
* */
FIXP_DBL level = fMult((FIXP_DBL)(10<<(METADATA_FRACT_BITS+LD_DATA_SHIFT)), fMult( FL2FXCONST_DBL(0.30102999566398119521373889472449f), ldLevel) + (FIXP_DBL)(FL2FXCONST_DBL(0.3f)>>LD_DATA_SHIFT) );
/* level -= dialnorm + 31 */ /* this is fixed to Dolby-ReferenceLevel as compressor profiles are defined relative to this */
level -= ((FIXP_DBL)(dialnorm<<(METADATA_FRACT_BITS-16)) + (FIXP_DBL)(31<<METADATA_FRACT_BITS));
for (i = 0; i < 2; i++) {
if (drcComp->profile[i] == DRC_NONE) {
/* no compression */
drcComp->smoothGain[i] = FL2FXCONST_DBL(0.f);
}
else {
FIXP_DBL gain, alpha, lvl2smthlvl;
/* calc static gain */
if (level <= drcComp->maxBoostThr[i]) {
/* max boost */
gain = drcComp->maxBoost[i];
}
else if (level < drcComp->boostThr[i]) {
/* boost range */
gain = fMult((level - drcComp->boostThr[i]),drcComp->boostFac[i]);
}
else if (level <= drcComp->earlyCutThr[i]) {
/* null band */
gain = FL2FXCONST_DBL(0.f);
}
else if (level <= drcComp->cutThr[i]) {
/* early cut range */
gain = fMult((level - drcComp->earlyCutThr[i]), drcComp->earlyCutFac[i]);
}
else if (level < drcComp->maxCutThr[i]) {
/* cut range */
gain = fMult((level - drcComp->cutThr[i]), drcComp->cutFac[i]) - drcComp->maxEarlyCut[i];
}
else {
/* max cut */
gain = -drcComp->maxCut[i];
}
/* choose time constant */
lvl2smthlvl = level - drcComp->smoothLevel[i];
if (gain < drcComp->smoothGain[i]) {
/* attack */
if (lvl2smthlvl > drcComp->attackThr[i]) {
/* fast attack */
alpha = drcComp->fastAttack[i];
}
else {
/* slow attack */
alpha = drcComp->slowAttack[i];
}
}
else {
/* release */
if (lvl2smthlvl < -drcComp->decayThr[i]) {
/* fast release */
alpha = drcComp->fastDecay[i];
}
else {
/* slow release */
alpha = drcComp->slowDecay[i];
}
}
/* smooth gain & level */
if ((gain < drcComp->smoothGain[i]) || (drcComp->holdCnt[i] == 0)) { /* hold gain unless we have an attack or hold period is over */
FIXP_DBL accu;
/* drcComp->smoothLevel[i] = (1-alpha) * drcComp->smoothLevel[i] + alpha * level; */
accu = fMult(((FIXP_DBL)MAXVAL_DBL-alpha), drcComp->smoothLevel[i]);
accu += fMult(alpha,level);
drcComp->smoothLevel[i] = accu;
/* drcComp->smoothGain[i] = (1-alpha) * drcComp->smoothGain[i] + alpha * gain; */
accu = fMult(((FIXP_DBL)MAXVAL_DBL-alpha), drcComp->smoothGain[i]);
accu += fMult(alpha,gain);
drcComp->smoothGain[i] = accu;
}
/* hold counter */
if (drcComp->holdCnt[i]) {
drcComp->holdCnt[i]--;
}
if (gain < drcComp->smoothGain[i]) {
drcComp->holdCnt[i] = drcComp->holdOff[i];
}
} /* profile != DRC_NONE */
} /* for i=1..2 */
} else {
/* no compression */
drcComp->smoothGain[0] = FL2FXCONST_DBL(0.f);
drcComp->smoothGain[1] = FL2FXCONST_DBL(0.f);
}
/**************************************************************************
* limiter
**************************************************************************/
/* find peak level */
peak[0] = peak[1] = FL2FXCONST_DBL(0.f);
for (i = 0; i < drcComp->blockLength; i++) {
FIXP_DBL tmp;
const INT_PCM* pSamples = &inSamples[i*drcComp->channels];
INT_PCM maxSample = 0;
/* single channels */
for (c = 0; c < (int)drcComp->channels; c++) {
maxSample = FDKmax(maxSample, fAbs(pSamples[c]));
}
peak[0] = fixMax(peak[0], FX_PCM2FX_DBL(maxSample)>>DOWNMIX_SHIFT);
/* Lt/Rt downmix */
if (drcComp->fullChannels > 2) {
/* Lt */
tmp = FL2FXCONST_DBL(0.f);
if (drcComp->channelIdx[LS] >= 0) tmp -= fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[LS]])>>(DOWNMIX_SHIFT-1); /* Ls */
if (drcComp->channelIdx[LS2] >= 0) tmp -= fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[LS2]])>>(DOWNMIX_SHIFT-1); /* Ls2 */
if (drcComp->channelIdx[RS] >= 0) tmp -= fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[RS]])>>(DOWNMIX_SHIFT-1); /* Rs */
if (drcComp->channelIdx[RS2] >= 0) tmp -= fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[RS2]])>>(DOWNMIX_SHIFT-1); /* Rs2 */
if ((drcComp->channelIdx[LS] >= 0) && (drcComp->channelIdx[LS2] >= 0)) tmp = fMult(FL2FXCONST_DBL(0.707f), tmp); /* 7.1ch */
if (drcComp->channelIdx[S] >= 0) tmp -= fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[S]])>>(DOWNMIX_SHIFT-1); /* S */
if (drcComp->channelIdx[C] >= 0) tmp += fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[C]])>>(DOWNMIX_SHIFT-1); /* C */
tmp += (FX_PCM2FX_DBL((FIXP_PCM)pSamples[drcComp->channelIdx[L]])>>DOWNMIX_SHIFT); /* L */
peak[0] = fixMax(peak[0], fixp_abs(tmp));
/* Rt */
tmp = FL2FXCONST_DBL(0.f);
if (drcComp->channelIdx[LS] >= 0) tmp += fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[LS]])>>(DOWNMIX_SHIFT-1); /* Ls */
if (drcComp->channelIdx[LS2] >= 0) tmp += fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[LS2]])>>(DOWNMIX_SHIFT-1); /* Ls2 */
if (drcComp->channelIdx[RS] >= 0) tmp += fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[RS]])>>(DOWNMIX_SHIFT-1); /* Rs */
if (drcComp->channelIdx[RS2] >= 0) tmp += fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[RS2]])>>(DOWNMIX_SHIFT-1); /* Rs2 */
if ((drcComp->channelIdx[RS] >= 0) && (drcComp->channelIdx[RS2] >= 0)) tmp = fMult(FL2FXCONST_DBL(0.707f), tmp); /* 7.1ch */
if (drcComp->channelIdx[S] >= 0) tmp += fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[S]])>>(DOWNMIX_SHIFT-1); /* S */
if (drcComp->channelIdx[C] >= 0) tmp += fMultDiv2(FL2FXCONST_DBL(0.707f), (FIXP_PCM)pSamples[drcComp->channelIdx[C]])>>(DOWNMIX_SHIFT-1); /* C */
tmp += (FX_PCM2FX_DBL((FIXP_PCM)pSamples[drcComp->channelIdx[R]])>>DOWNMIX_SHIFT); /* R */
peak[0] = fixMax(peak[0], fixp_abs(tmp));
}
/* Lo/Ro downmix */
if (drcComp->fullChannels > 2) {
/* Lo */
tmp = FL2FXCONST_DBL(0.f);
if (drcComp->channelIdx[LS] >= 0) tmp += fMultDiv2(slev, (FIXP_PCM)pSamples[drcComp->channelIdx[LS]])>>(DOWNMIX_SHIFT-1); /* Ls */
if (drcComp->channelIdx[LS2] >= 0) tmp += fMultDiv2(slev, (FIXP_PCM)pSamples[drcComp->channelIdx[LS2]])>>(DOWNMIX_SHIFT-1); /* Ls2 */
if ((drcComp->channelIdx[LS] >= 0) && (drcComp->channelIdx[LS2] >= 0)) tmp = fMult(FL2FXCONST_DBL(0.707f), tmp); /* 7.1ch */
if (drcComp->channelIdx[S] >= 0) tmp += fMultDiv2(slev, fMult(FL2FXCONST_DBL(0.7f), (FIXP_PCM)pSamples[drcComp->channelIdx[S]]))>>(DOWNMIX_SHIFT-1); /* S */
if (drcComp->channelIdx[C] >= 0) tmp += fMultDiv2(clev, (FIXP_PCM)pSamples[drcComp->channelIdx[C]])>>(DOWNMIX_SHIFT-1); /* C */
tmp += (FX_PCM2FX_DBL((FIXP_PCM)pSamples[drcComp->channelIdx[L]])>>DOWNMIX_SHIFT); /* L */
peak[0] = fixMax(peak[0], fixp_abs(tmp));
/* Ro */
tmp = FL2FXCONST_DBL(0.f);
if (drcComp->channelIdx[RS] >= 0) tmp += fMultDiv2(slev, (FIXP_PCM)pSamples[drcComp->channelIdx[RS]])>>(DOWNMIX_SHIFT-1); /* Rs */
if (drcComp->channelIdx[RS2] >= 0) tmp += fMultDiv2(slev, (FIXP_PCM)pSamples[drcComp->channelIdx[RS2]])>>(DOWNMIX_SHIFT-1); /* Rs2 */
if ((drcComp->channelIdx[RS] >= 0) && (drcComp->channelIdx[RS2] >= 0)) tmp = fMult(FL2FXCONST_DBL(0.707f), tmp); /* 7.1ch */
if (drcComp->channelIdx[S] >= 0) tmp += fMultDiv2(slev, fMult(FL2FXCONST_DBL(0.7f), (FIXP_PCM)pSamples[drcComp->channelIdx[S]]))>>(DOWNMIX_SHIFT-1); /* S */
if (drcComp->channelIdx[C] >= 0) tmp += fMultDiv2(clev, (FIXP_PCM)pSamples[drcComp->channelIdx[C]])>>(DOWNMIX_SHIFT-1); /* C */
tmp += (FX_PCM2FX_DBL((FIXP_PCM)pSamples[drcComp->channelIdx[R]])>>DOWNMIX_SHIFT); /* R */
peak[0] = fixMax(peak[0], fixp_abs(tmp));
}
peak[1] = fixMax(peak[0], peak[1]);
/* Mono Downmix - for comp_val only */
if (drcComp->fullChannels > 1) {
tmp = FL2FXCONST_DBL(0.f);
if (drcComp->channelIdx[LS] >= 0) tmp += fMultDiv2(slev, (FIXP_PCM)pSamples[drcComp->channelIdx[LS]])>>(DOWNMIX_SHIFT-1); /* Ls */
if (drcComp->channelIdx[LS2] >= 0) tmp += fMultDiv2(slev, (FIXP_PCM)pSamples[drcComp->channelIdx[LS2]])>>(DOWNMIX_SHIFT-1); /* Ls2 */
if (drcComp->channelIdx[RS] >= 0) tmp += fMultDiv2(slev, (FIXP_PCM)pSamples[drcComp->channelIdx[RS]])>>(DOWNMIX_SHIFT-1); /* Rs */
if (drcComp->channelIdx[RS2] >= 0) tmp += fMultDiv2(slev, (FIXP_PCM)pSamples[drcComp->channelIdx[RS2]])>>(DOWNMIX_SHIFT-1); /* Rs2 */
if ((drcComp->channelIdx[LS] >= 0) && (drcComp->channelIdx[LS2] >= 0)) tmp = fMult(FL2FXCONST_DBL(0.707f), tmp); /* 7.1ch */
/*if ((drcComp->channelIdx[RS] >= 0) && (drcComp->channelIdx[RS2] >= 0)) tmp *=0.707f;*/ /* 7.1ch */
if (drcComp->channelIdx[S] >= 0) tmp += fMultDiv2(slev, fMult(FL2FXCONST_DBL(0.7f), (FIXP_PCM)pSamples[drcComp->channelIdx[S]]))>>(DOWNMIX_SHIFT-1); /* S */
if (drcComp->channelIdx[C] >= 0) tmp += fMult(clev, (FIXP_PCM)pSamples[drcComp->channelIdx[C]])>>(DOWNMIX_SHIFT-1); /* C (2*clev) */
tmp += (FX_PCM2FX_DBL((FIXP_PCM)pSamples[drcComp->channelIdx[L]])>>DOWNMIX_SHIFT); /* L */
tmp += (FX_PCM2FX_DBL((FIXP_PCM)pSamples[drcComp->channelIdx[R]])>>DOWNMIX_SHIFT); /* R */
peak[1] = fixMax(peak[1], fixp_abs(tmp));
}
}
for (i=0; i<2; i++) {
FIXP_DBL tmp = drcComp->prevPeak[i];
drcComp->prevPeak[i] = peak[i];
peak[i] = fixMax(peak[i], tmp);
/*
* Convert to dBFS, apply dialnorm
*/
/* descaled peak in ld64 representation */
FIXP_DBL ld_peak = CalcLdData(peak[i]) + (FIXP_DBL)((LONG)DOWNMIX_SHIFT<<(DFRACT_BITS-1-LD_DATA_SHIFT));
/* if (peak < 1e-6) level = 1e-6f; */
ld_peak = FDKmax(ld_peak, FL2FXCONST_DBL(-0.31143075889569022011284244651463f));
/* peak[i] = 20 * log(peak[i])/log(10) + 0.2f + (drcComp->smoothGain[i]*2^METADATA_FRACT_BITS)
* peak[i] = 20 * log(2)/log(10) * ld(peak[i]) + 0.2f + (drcComp->smoothGain[i]*2^METADATA_FRACT_BITS)
* peak[i] = 10 * 2*0.30102999566398119521373889472449 * ld(peak[i]) + 0.2f + (drcComp->smoothGain[i]*2^METADATA_FRACT_BITS)
*
* additional scaling with METADATA_FRACT_BITS:
* peak[i] = (10 * 2*0.30102999566398119521373889472449 * ld64(peak[i]) * 64 + 0.2f + (drcComp->smoothGain[i]*2^METADATA_FRACT_BITS))*2^(-METADATA_FRACT_BITS)
* peak[i] = 10*2^(METADATA_FRACT_BITS+LD_DATA_SHIFT) * 2*0.30102999566398119521373889472449 * ld64(peak[i])
* + 0.2f*2^(-METADATA_FRACT_BITS) + drcComp->smoothGain[i]
*/
peak[i] = fMult((FIXP_DBL)(10<<(METADATA_FRACT_BITS+LD_DATA_SHIFT)), fMult( FL2FX_DBL(2*0.30102999566398119521373889472449f), ld_peak));
peak[i] += (FL2FX_DBL(0.5f)>>METADATA_INT_BITS); /* add a little bit headroom */
peak[i] += drcComp->smoothGain[i];
}
/* peak -= dialnorm + 31; */ /* this is Dolby style only */
peak[0] -= (FIXP_DBL)((dialnorm-drc_TargetRefLevel)<<(METADATA_FRACT_BITS-16)); /* peak[0] -= dialnorm - drc_TargetRefLevel */
/* peak += 11; */ /* this is Dolby style only */ /* RF mode output is 11dB higher */
/*peak += comp_TargetRefLevel - drc_TargetRefLevel;*/
peak[1] -= (FIXP_DBL)((dialnorm-comp_TargetRefLevel)<<(METADATA_FRACT_BITS-16)); /* peak[1] -= dialnorm - comp_TargetRefLevel */
/* limiter gain */
drcComp->limGain[0] += drcComp->limDecay; /* linear limiter release */
drcComp->limGain[0] = fixMin(drcComp->limGain[0], -peak[0]);
drcComp->limGain[1] += 2*drcComp->limDecay; /* linear limiter release */
drcComp->limGain[1] = fixMin(drcComp->limGain[1], -peak[1]);
/*************************************************************************/
/* apply limiting, return DRC gains*/
{
FIXP_DBL tmp;
tmp = drcComp->smoothGain[0];
if (drcComp->limGain[0] < FL2FXCONST_DBL(0.f)) {
tmp += drcComp->limGain[0];
}
*pDynrng = (LONG) scaleValue(tmp, -(METADATA_FRACT_BITS-16));
tmp = drcComp->smoothGain[1];
if (drcComp->limGain[1] < FL2FXCONST_DBL(0.f)) {
tmp += drcComp->limGain[1];
}
*pCompr = (LONG) scaleValue(tmp, -(METADATA_FRACT_BITS-16));
}
return 0;
}
DRC_PROFILE FDK_DRC_Generator_getDrcProfile(const HDRC_COMP drcComp)
{
return drcComp->profile[0];
}
DRC_PROFILE FDK_DRC_Generator_getCompProfile(const HDRC_COMP drcComp)
{
return drcComp->profile[1];
}
|