aboutsummaryrefslogtreecommitdiffstats
path: root/libAACenc/src/aacenc_tns.cpp
blob: 4462600c377cbbfe8d7eb16bc68c39e5d29a5baf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:

You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.

You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */

/**************************** AAC encoder library ******************************

   Author(s):   Alex Groeschel, Tobias Chalupka

   Description: Temporal noise shaping

*******************************************************************************/

#include "aacenc_tns.h"
#include "psy_const.h"
#include "psy_configuration.h"
#include "tns_func.h"
#include "aacEnc_rom.h"
#include "aacenc_tns.h"
#include "FDK_lpc.h"

#define FILTER_DIRECTION 0 /* 0 = up, 1 = down */

static const FIXP_DBL acfWindowLong[12 + 3 + 1] = {
    0x7fffffff, 0x7fb80000, 0x7ee00000, 0x7d780000, 0x7b800000, 0x78f80000,
    0x75e00000, 0x72380000, 0x6e000000, 0x69380000, 0x63e00000, 0x5df80000,
    0x57800000, 0x50780000, 0x48e00000, 0x40b80000};

static const FIXP_DBL acfWindowShort[4 + 3 + 1] = {
    0x7fffffff, 0x7e000000, 0x78000000, 0x6e000000,
    0x60000000, 0x4e000000, 0x38000000, 0x1e000000};

typedef struct {
  INT bitRateFrom[2];                  /* noneSbr=0, useSbr=1 */
  INT bitRateTo[2];                    /* noneSbr=0, useSbr=1 */
  TNS_PARAMETER_TABULATED paramTab[2]; /* mono=0, stereo=1 */

} TNS_INFO_TAB;

#define TNS_TIMERES_SCALE (1)
#define FL2_TIMERES_FIX(a) (FL2FXCONST_DBL(a / (float)(1 << TNS_TIMERES_SCALE)))

static const TNS_INFO_TAB tnsInfoTab[] = {
    {{16000, 13500},
     {32000, 28000},
     {{{1, 1},
       {1437, 1500},
       {1400, 600},
       {12, 12},
       {FILTER_DIRECTION, FILTER_DIRECTION},
       {3, 1},
       {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.2f)},
       1},
      {{1, 1},
       {1437, 1500},
       {1400, 600},
       {12, 12},
       {FILTER_DIRECTION, FILTER_DIRECTION},
       {3, 1},
       {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.2f)},
       1}}},
    {{32001, 28001},
     {60000, 52000},
     {{{1, 1},
       {1437, 1500},
       {1400, 600},
       {12, 10},
       {FILTER_DIRECTION, FILTER_DIRECTION},
       {3, 1},
       {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.0f)},
       1},
      {{1, 1},
       {1437, 1500},
       {1400, 600},
       {12, 10},
       {FILTER_DIRECTION, FILTER_DIRECTION},
       {3, 1},
       {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.0f)},
       1}}},
    {{60001, 52001},
     {384000, 384000},
     {{{1, 1},
       {1437, 1500},
       {1400, 600},
       {12, 8},
       {FILTER_DIRECTION, FILTER_DIRECTION},
       {3, 1},
       {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.0f)},
       1},
      {{1, 1},
       {1437, 1500},
       {1400, 600},
       {12, 8},
       {FILTER_DIRECTION, FILTER_DIRECTION},
       {3, 1},
       {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.0f)},
       1}}}};

typedef struct {
  INT samplingRate;
  SCHAR maxBands[2]; /* long=0; short=1 */

} TNS_MAX_TAB_ENTRY;

static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab1024[] = {
    {96000, {31, 9}},  {88200, {31, 9}},  {64000, {34, 10}}, {48000, {40, 14}},
    {44100, {42, 14}}, {32000, {51, 14}}, {24000, {46, 14}}, {22050, {46, 14}},
    {16000, {42, 14}}, {12000, {42, 14}}, {11025, {42, 14}}, {8000, {39, 14}}};

static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab120[] = {
    {48000, {12, -1}}, /* 48000 */
    {44100, {12, -1}}, /* 44100 */
    {32000, {15, -1}}, /* 32000 */
    {24000, {15, -1}}, /* 24000 */
    {22050, {15, -1}}  /* 22050 */
};

static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab128[] = {
    {48000, {12, -1}}, /* 48000 */
    {44100, {12, -1}}, /* 44100 */
    {32000, {15, -1}}, /* 32000 */
    {24000, {15, -1}}, /* 24000 */
    {22050, {15, -1}}  /* 22050 */
};

static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab240[] = {
    {96000, {22, -1}}, /* 96000 */
    {48000, {22, -1}}, /* 48000 */
    {44100, {22, -1}}, /* 44100 */
    {32000, {21, -1}}, /* 32000 */
    {24000, {21, -1}}, /* 24000 */
    {22050, {21, -1}}  /* 22050 */
};

static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab256[] = {
    {96000, {25, -1}}, /* 96000 */
    {48000, {25, -1}}, /* 48000 */
    {44100, {25, -1}}, /* 44100 */
    {32000, {24, -1}}, /* 32000 */
    {24000, {24, -1}}, /* 24000 */
    {22050, {24, -1}}  /* 22050 */
};
static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab480[] = {{48000, {31, -1}},
                                                      {44100, {32, -1}},
                                                      {32000, {37, -1}},
                                                      {24000, {30, -1}},
                                                      {22050, {30, -1}}};

static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab512[] = {{48000, {31, -1}},
                                                      {44100, {32, -1}},
                                                      {32000, {37, -1}},
                                                      {24000, {31, -1}},
                                                      {22050, {31, -1}}};

static void FDKaacEnc_Parcor2Index(const FIXP_LPC *parcor, INT *RESTRICT index,
                                   const INT order, const INT bitsPerCoeff);

static void FDKaacEnc_Index2Parcor(const INT *index, FIXP_LPC *RESTRICT parcor,
                                   const INT order, const INT bitsPerCoeff);

static void FDKaacEnc_CalcGaussWindow(FIXP_DBL *win, const int winSize,
                                      const INT samplingRate,
                                      const INT transformResolution,
                                      const FIXP_DBL timeResolution,
                                      const INT timeResolution_e);

static const TNS_PARAMETER_TABULATED *FDKaacEnc_GetTnsParam(const INT bitRate,
                                                            const INT channels,
                                                            const INT sbrLd) {
  int i;
  const TNS_PARAMETER_TABULATED *tnsConfigTab = NULL;

  for (i = 0; i < (int)(sizeof(tnsInfoTab) / sizeof(TNS_INFO_TAB)); i++) {
    if ((bitRate >= tnsInfoTab[i].bitRateFrom[sbrLd ? 1 : 0]) &&
        bitRate <= tnsInfoTab[i].bitRateTo[sbrLd ? 1 : 0]) {
      tnsConfigTab = &tnsInfoTab[i].paramTab[(channels == 1) ? 0 : 1];
    }
  }

  return tnsConfigTab;
}

static INT getTnsMaxBands(const INT sampleRate, const INT granuleLength,
                          const INT isShortBlock) {
  int i;
  INT numBands = -1;
  const TNS_MAX_TAB_ENTRY *pMaxBandsTab = NULL;
  int maxBandsTabSize = 0;

  switch (granuleLength) {
    case 960:
    case 1024:
      pMaxBandsTab = tnsMaxBandsTab1024;
      maxBandsTabSize = sizeof(tnsMaxBandsTab1024) / sizeof(TNS_MAX_TAB_ENTRY);
      break;
    case 120:
      pMaxBandsTab = tnsMaxBandsTab120;
      maxBandsTabSize = sizeof(tnsMaxBandsTab120) / sizeof(TNS_MAX_TAB_ENTRY);
      break;
    case 128:
      pMaxBandsTab = tnsMaxBandsTab128;
      maxBandsTabSize = sizeof(tnsMaxBandsTab128) / sizeof(TNS_MAX_TAB_ENTRY);
      break;
    case 240:
      pMaxBandsTab = tnsMaxBandsTab240;
      maxBandsTabSize = sizeof(tnsMaxBandsTab240) / sizeof(TNS_MAX_TAB_ENTRY);
      break;
    case 256:
      pMaxBandsTab = tnsMaxBandsTab256;
      maxBandsTabSize = sizeof(tnsMaxBandsTab256) / sizeof(TNS_MAX_TAB_ENTRY);
      break;
    case 480:
      pMaxBandsTab = tnsMaxBandsTab480;
      maxBandsTabSize = sizeof(tnsMaxBandsTab480) / sizeof(TNS_MAX_TAB_ENTRY);
      break;
    case 512:
      pMaxBandsTab = tnsMaxBandsTab512;
      maxBandsTabSize = sizeof(tnsMaxBandsTab512) / sizeof(TNS_MAX_TAB_ENTRY);
      break;
    default:
      numBands = -1;
  }

  if (pMaxBandsTab != NULL) {
    for (i = 0; i < maxBandsTabSize; i++) {
      numBands = pMaxBandsTab[i].maxBands[(!isShortBlock) ? 0 : 1];
      if (sampleRate >= pMaxBandsTab[i].samplingRate) {
        break;
      }
    }
  }

  return numBands;
}

/***************************************************************************/
/*!
  \brief     FDKaacEnc_FreqToBandWidthRounding

  Returns index of nearest band border

  \param frequency
  \param sampling frequency
  \param total number of bands
  \param pointer to table of band borders

  \return band border
****************************************************************************/

INT FDKaacEnc_FreqToBandWidthRounding(const INT freq, const INT fs,
                                      const INT numOfBands,
                                      const INT *bandStartOffset) {
  INT lineNumber, band;

  /*  assert(freq >= 0);  */
  lineNumber = (freq * bandStartOffset[numOfBands] * 4 / fs + 1) / 2;

  /* freq > fs/2 */
  if (lineNumber >= bandStartOffset[numOfBands]) return numOfBands;

  /* find band the line number lies in */
  for (band = 0; band < numOfBands; band++) {
    if (bandStartOffset[band + 1] > lineNumber) break;
  }

  /* round to nearest band border */
  if (lineNumber - bandStartOffset[band] >
      bandStartOffset[band + 1] - lineNumber) {
    band++;
  }

  return (band);
}

/*****************************************************************************

    functionname: FDKaacEnc_InitTnsConfiguration
    description:  fill TNS_CONFIG structure with sensible content
    returns:
    input:        bitrate, samplerate, number of channels,
                  blocktype (long or short),
                  TNS Config struct (modified),
                  psy config struct,
                  tns active flag
    output:

*****************************************************************************/
AAC_ENCODER_ERROR FDKaacEnc_InitTnsConfiguration(
    INT bitRate, INT sampleRate, INT channels, INT blockType, INT granuleLength,
    INT isLowDelay, INT ldSbrPresent, TNS_CONFIG *tC, PSY_CONFIGURATION *pC,
    INT active, INT useTnsPeak) {
  int i;
  // float acfTimeRes   = (blockType == SHORT_WINDOW) ? 0.125f : 0.046875f;

  if (channels <= 0) return (AAC_ENCODER_ERROR)1;

  tC->isLowDelay = isLowDelay;

  /* initialize TNS filter flag, order, and coefficient resolution (in bits per
   * coeff) */
  tC->tnsActive = (active) ? TRUE : FALSE;
  tC->maxOrder = (blockType == SHORT_WINDOW) ? 5 : 12; /* maximum: 7, 20 */
  if (bitRate < 16000) tC->maxOrder -= 2;
  tC->coefRes = (blockType == SHORT_WINDOW) ? 3 : 4;

  /* LPC stop line: highest MDCT line to be coded, but do not go beyond
   * TNS_MAX_BANDS! */
  tC->lpcStopBand = getTnsMaxBands(sampleRate, granuleLength,
                                   (blockType == SHORT_WINDOW) ? 1 : 0);

  if (tC->lpcStopBand < 0) {
    return (AAC_ENCODER_ERROR)1;
  }

  tC->lpcStopBand = fMin(tC->lpcStopBand, pC->sfbActive);
  tC->lpcStopLine = pC->sfbOffset[tC->lpcStopBand];

  switch (granuleLength) {
    case 960:
    case 1024:
      /* TNS start line: skip lower MDCT lines to prevent artifacts due to
       * filter mismatch */
      if (blockType == SHORT_WINDOW) {
        tC->lpcStartBand[LOFILT] = 0;
      } else {
        tC->lpcStartBand[LOFILT] =
            (sampleRate < 9391) ? 2 : ((sampleRate < 18783) ? 4 : 8);
      }
      tC->lpcStartLine[LOFILT] = pC->sfbOffset[tC->lpcStartBand[LOFILT]];

      i = tC->lpcStopBand;
      while (pC->sfbOffset[i] >
             (tC->lpcStartLine[LOFILT] +
              (tC->lpcStopLine - tC->lpcStartLine[LOFILT]) / 4))
        i--;
      tC->lpcStartBand[HIFILT] = i;
      tC->lpcStartLine[HIFILT] = pC->sfbOffset[i];

      tC->confTab.threshOn[HIFILT] = 1437;
      tC->confTab.threshOn[LOFILT] = 1500;

      tC->confTab.tnsLimitOrder[HIFILT] = tC->maxOrder;
      tC->confTab.tnsLimitOrder[LOFILT] = fMax(0, tC->maxOrder - 7);

      tC->confTab.tnsFilterDirection[HIFILT] = FILTER_DIRECTION;
      tC->confTab.tnsFilterDirection[LOFILT] = FILTER_DIRECTION;

      tC->confTab.acfSplit[HIFILT] =
          -1; /* signal Merged4to2QuartersAutoCorrelation in
                 FDKaacEnc_MergedAutoCorrelation*/
      tC->confTab.acfSplit[LOFILT] =
          -1; /* signal Merged4to2QuartersAutoCorrelation in
                 FDKaacEnc_MergedAutoCorrelation */

      tC->confTab.filterEnabled[HIFILT] = 1;
      tC->confTab.filterEnabled[LOFILT] = 1;
      tC->confTab.seperateFiltersAllowed = 1;

      /* compute autocorrelation window based on maximum filter order for given
       * block type */
      /* for (i = 0; i <= tC->maxOrder + 3; i++) {
           float acfWinTemp = acfTimeRes * i;
           acfWindow[i] = FL2FXCONST_DBL(1.0f - acfWinTemp * acfWinTemp);
         }
      */
      if (blockType == SHORT_WINDOW) {
        FDKmemcpy(tC->acfWindow[HIFILT], acfWindowShort,
                  fMin((LONG)sizeof(acfWindowShort),
                       (LONG)sizeof(tC->acfWindow[HIFILT])));
        FDKmemcpy(tC->acfWindow[LOFILT], acfWindowShort,
                  fMin((LONG)sizeof(acfWindowShort),
                       (LONG)sizeof(tC->acfWindow[HIFILT])));
      } else {
        FDKmemcpy(tC->acfWindow[HIFILT], acfWindowLong,
                  fMin((LONG)sizeof(acfWindowLong),
                       (LONG)sizeof(tC->acfWindow[HIFILT])));
        FDKmemcpy(tC->acfWindow[LOFILT], acfWindowLong,
                  fMin((LONG)sizeof(acfWindowLong),
                       (LONG)sizeof(tC->acfWindow[HIFILT])));
      }
      break;
    case 480:
    case 512: {
      const TNS_PARAMETER_TABULATED *pCfg =
          FDKaacEnc_GetTnsParam(bitRate, channels, ldSbrPresent);
      if (pCfg != NULL) {
        FDKmemcpy(&(tC->confTab), pCfg, sizeof(tC->confTab));

        tC->lpcStartBand[HIFILT] = FDKaacEnc_FreqToBandWidthRounding(
            pCfg->filterStartFreq[HIFILT], sampleRate, pC->sfbCnt,
            pC->sfbOffset);
        tC->lpcStartLine[HIFILT] = pC->sfbOffset[tC->lpcStartBand[HIFILT]];
        tC->lpcStartBand[LOFILT] = FDKaacEnc_FreqToBandWidthRounding(
            pCfg->filterStartFreq[LOFILT], sampleRate, pC->sfbCnt,
            pC->sfbOffset);
        tC->lpcStartLine[LOFILT] = pC->sfbOffset[tC->lpcStartBand[LOFILT]];

        FDKaacEnc_CalcGaussWindow(
            tC->acfWindow[HIFILT], tC->maxOrder + 1, sampleRate, granuleLength,
            pCfg->tnsTimeResolution[HIFILT], TNS_TIMERES_SCALE);
        FDKaacEnc_CalcGaussWindow(
            tC->acfWindow[LOFILT], tC->maxOrder + 1, sampleRate, granuleLength,
            pCfg->tnsTimeResolution[LOFILT], TNS_TIMERES_SCALE);
      } else {
        tC->tnsActive =
            FALSE; /* no configuration available, disable tns tool */
      }
    } break;
    default:
      tC->tnsActive = FALSE; /* no configuration available, disable tns tool */
  }

  return AAC_ENC_OK;
}

/***************************************************************************/
/*!
  \brief     FDKaacEnc_ScaleUpSpectrum

  Scales up spectrum lines in a given frequency section

  \param scaled spectrum
  \param original spectrum
  \param frequency line to start scaling
  \param frequency line to enc scaling

  \return scale factor

****************************************************************************/
static inline INT FDKaacEnc_ScaleUpSpectrum(FIXP_DBL *dest, const FIXP_DBL *src,
                                            const INT startLine,
                                            const INT stopLine) {
  INT i, scale;

  FIXP_DBL maxVal = FL2FXCONST_DBL(0.f);

  /* Get highest value in given spectrum */
  for (i = startLine; i < stopLine; i++) {
    maxVal = fixMax(maxVal, fixp_abs(src[i]));
  }
  scale = CountLeadingBits(maxVal);

  /* Scale spectrum according to highest value */
  for (i = startLine; i < stopLine; i++) {
    dest[i] = src[i] << scale;
  }

  return scale;
}

/***************************************************************************/
/*!
  \brief     FDKaacEnc_CalcAutoCorrValue

  Calculate autocorellation value for one lag

  \param pointer to spectrum
  \param start line
  \param stop line
  \param lag to be calculated
  \param scaling of the lag

****************************************************************************/
static inline FIXP_DBL FDKaacEnc_CalcAutoCorrValue(const FIXP_DBL *spectrum,
                                                   const INT startLine,
                                                   const INT stopLine,
                                                   const INT lag,
                                                   const INT scale) {
  int i;
  FIXP_DBL result = FL2FXCONST_DBL(0.f);

  /* This versions allows to save memory accesses, when computing pow2 */
  /* It is of interest for ARM, XTENSA without parallel memory access  */
  if (lag == 0) {
    for (i = startLine; i < stopLine; i++) {
      result += (fPow2(spectrum[i]) >> scale);
    }
  } else {
    for (i = startLine; i < (stopLine - lag); i++) {
      result += (fMult(spectrum[i], spectrum[i + lag]) >> scale);
    }
  }

  return result;
}

/***************************************************************************/
/*!
  \brief     FDKaacEnc_AutoCorrNormFac

  Autocorrelation function for 1st and 2nd half of the spectrum

  \param pointer to spectrum
  \param pointer to autocorrelation window
  \param filter start line

****************************************************************************/
static inline FIXP_DBL FDKaacEnc_AutoCorrNormFac(const FIXP_DBL value,
                                                 const INT scale, INT *sc) {
#define HLM_MIN_NRG 0.0000000037252902984619140625f /* 2^-28 */
#define MAX_INV_NRGFAC (1.f / HLM_MIN_NRG)

  FIXP_DBL retValue;
  FIXP_DBL A, B;

  if (scale >= 0) {
    A = value;
    B = FL2FXCONST_DBL(HLM_MIN_NRG) >> fixMin(DFRACT_BITS - 1, scale);
  } else {
    A = value >> fixMin(DFRACT_BITS - 1, (-scale));
    B = FL2FXCONST_DBL(HLM_MIN_NRG);
  }

  if (A > B) {
    int shift = 0;
    FIXP_DBL tmp = invSqrtNorm2(value, &shift);

    retValue = fMult(tmp, tmp);
    *sc += (2 * shift);
  } else {
    /* MAX_INV_NRGFAC*FDKpow(2,-28) = 1/2^-28 * 2^-28 = 1.0 */
    retValue =
        /*FL2FXCONST_DBL(MAX_INV_NRGFAC*FDKpow(2,-28))*/ (FIXP_DBL)MAXVAL_DBL;
    *sc += scale + 28;
  }

  return retValue;
}

static void FDKaacEnc_MergedAutoCorrelation(
    const FIXP_DBL *spectrum, const INT isLowDelay,
    const FIXP_DBL acfWindow[MAX_NUM_OF_FILTERS][TNS_MAX_ORDER + 3 + 1],
    const INT lpcStartLine[MAX_NUM_OF_FILTERS], const INT lpcStopLine,
    const INT maxOrder, const INT acfSplit[MAX_NUM_OF_FILTERS], FIXP_DBL *_rxx1,
    FIXP_DBL *_rxx2) {
  int i, idx0, idx1, idx2, idx3, idx4, lag;
  FIXP_DBL rxx1_0, rxx2_0, rxx3_0, rxx4_0;

  /* buffer for temporal spectrum */
  C_ALLOC_SCRATCH_START(pSpectrum, FIXP_DBL, (1024))

  /* MDCT line indices separating the 1st, 2nd, 3rd, and 4th analysis quarters
   */
  if ((acfSplit[LOFILT] == -1) || (acfSplit[HIFILT] == -1)) {
    /* autocorrelation function for 1st, 2nd, 3rd, and 4th quarter of the
     * spectrum */
    idx0 = lpcStartLine[LOFILT];
    i = lpcStopLine - lpcStartLine[LOFILT];
    idx1 = idx0 + i / 4;
    idx2 = idx0 + i / 2;
    idx3 = idx0 + i * 3 / 4;
    idx4 = lpcStopLine;
  } else {
    FDK_ASSERT(acfSplit[LOFILT] == 1);
    FDK_ASSERT(acfSplit[HIFILT] == 3);
    i = (lpcStopLine - lpcStartLine[HIFILT]) / 3;
    idx0 = lpcStartLine[LOFILT];
    idx1 = lpcStartLine[HIFILT];
    idx2 = idx1 + i;
    idx3 = idx2 + i;
    idx4 = lpcStopLine;
  }

  /* copy spectrum to temporal buffer and scale up as much as possible */
  INT sc1 = FDKaacEnc_ScaleUpSpectrum(pSpectrum, spectrum, idx0, idx1);
  INT sc2 = FDKaacEnc_ScaleUpSpectrum(pSpectrum, spectrum, idx1, idx2);
  INT sc3 = FDKaacEnc_ScaleUpSpectrum(pSpectrum, spectrum, idx2, idx3);
  INT sc4 = FDKaacEnc_ScaleUpSpectrum(pSpectrum, spectrum, idx3, idx4);

  /* get scaling values for summation */
  INT nsc1, nsc2, nsc3, nsc4;
  for (nsc1 = 1; (1 << nsc1) < (idx1 - idx0); nsc1++)
    ;
  for (nsc2 = 1; (1 << nsc2) < (idx2 - idx1); nsc2++)
    ;
  for (nsc3 = 1; (1 << nsc3) < (idx3 - idx2); nsc3++)
    ;
  for (nsc4 = 1; (1 << nsc4) < (idx4 - idx3); nsc4++)
    ;

  /* compute autocorrelation value at lag zero, i. e. energy, for each quarter
   */
  rxx1_0 = FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx0, idx1, 0, nsc1);
  rxx2_0 = FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx1, idx2, 0, nsc2);
  rxx3_0 = FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx2, idx3, 0, nsc3);
  rxx4_0 = FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx3, idx4, 0, nsc4);

  /* compute energy normalization factors, i. e. 1/energy (saves some divisions)
   */
  if (rxx1_0 != FL2FXCONST_DBL(0.f)) {
    INT sc_fac1 = -1;
    FIXP_DBL fac1 =
        FDKaacEnc_AutoCorrNormFac(rxx1_0, ((-2 * sc1) + nsc1), &sc_fac1);
    _rxx1[0] = scaleValue(fMult(rxx1_0, fac1), sc_fac1);

    if (isLowDelay) {
      for (lag = 1; lag <= maxOrder; lag++) {
        /* compute energy-normalized and windowed autocorrelation values at this
         * lag */
        FIXP_DBL x1 =
            FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx0, idx1, lag, nsc1);
        _rxx1[lag] =
            fMult(scaleValue(fMult(x1, fac1), sc_fac1), acfWindow[LOFILT][lag]);
      }
    } else {
      for (lag = 1; lag <= maxOrder; lag++) {
        if ((3 * lag) <= maxOrder + 3) {
          FIXP_DBL x1 =
              FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx0, idx1, lag, nsc1);
          _rxx1[lag] = fMult(scaleValue(fMult(x1, fac1), sc_fac1),
                             acfWindow[LOFILT][3 * lag]);
        }
      }
    }
  }

  /* auto corr over upper 3/4 of spectrum */
  if (!((rxx2_0 == FL2FXCONST_DBL(0.f)) && (rxx3_0 == FL2FXCONST_DBL(0.f)) &&
        (rxx4_0 == FL2FXCONST_DBL(0.f)))) {
    FIXP_DBL fac2, fac3, fac4;
    fac2 = fac3 = fac4 = FL2FXCONST_DBL(0.f);
    INT sc_fac2, sc_fac3, sc_fac4;
    sc_fac2 = sc_fac3 = sc_fac4 = 0;

    if (rxx2_0 != FL2FXCONST_DBL(0.f)) {
      fac2 = FDKaacEnc_AutoCorrNormFac(rxx2_0, ((-2 * sc2) + nsc2), &sc_fac2);
      sc_fac2 -= 2;
    }
    if (rxx3_0 != FL2FXCONST_DBL(0.f)) {
      fac3 = FDKaacEnc_AutoCorrNormFac(rxx3_0, ((-2 * sc3) + nsc3), &sc_fac3);
      sc_fac3 -= 2;
    }
    if (rxx4_0 != FL2FXCONST_DBL(0.f)) {
      fac4 = FDKaacEnc_AutoCorrNormFac(rxx4_0, ((-2 * sc4) + nsc4), &sc_fac4);
      sc_fac4 -= 2;
    }

    _rxx2[0] = scaleValue(fMult(rxx2_0, fac2), sc_fac2) +
               scaleValue(fMult(rxx3_0, fac3), sc_fac3) +
               scaleValue(fMult(rxx4_0, fac4), sc_fac4);

    for (lag = 1; lag <= maxOrder; lag++) {
      /* merge quarters 2, 3, 4 into one autocorrelation; quarter 1 stays
       * separate */
      FIXP_DBL x2 = scaleValue(fMult(FDKaacEnc_CalcAutoCorrValue(
                                         pSpectrum, idx1, idx2, lag, nsc2),
                                     fac2),
                               sc_fac2) +
                    scaleValue(fMult(FDKaacEnc_CalcAutoCorrValue(
                                         pSpectrum, idx2, idx3, lag, nsc3),
                                     fac3),
                               sc_fac3) +
                    scaleValue(fMult(FDKaacEnc_CalcAutoCorrValue(
                                         pSpectrum, idx3, idx4, lag, nsc4),
                                     fac4),
                               sc_fac4);

      _rxx2[lag] = fMult(x2, acfWindow[HIFILT][lag]);
    }
  }

  C_ALLOC_SCRATCH_END(pSpectrum, FIXP_DBL, (1024))
}

/*****************************************************************************
    functionname: FDKaacEnc_TnsDetect
    description:  do decision, if TNS shall be used or not
    returns:
    input:        tns data structure (modified),
                  tns config structure,
                  scalefactor size and table,
                  spectrum,
                  subblock num, blocktype,
                  sfb-wise energy.

*****************************************************************************/
INT FDKaacEnc_TnsDetect(TNS_DATA *tnsData, const TNS_CONFIG *tC,
                        TNS_INFO *tnsInfo, INT sfbCnt, const FIXP_DBL *spectrum,
                        INT subBlockNumber, INT blockType) {
  /* autocorrelation function for 1st, 2nd, 3rd, and 4th quarter of the
   * spectrum. */
  FIXP_DBL rxx1[TNS_MAX_ORDER + 1]; /* higher part */
  FIXP_DBL rxx2[TNS_MAX_ORDER + 1]; /* lower part */
  FIXP_LPC parcor_tmp[TNS_MAX_ORDER];

  int i;

  FDKmemclear(rxx1, sizeof(rxx1));
  FDKmemclear(rxx2, sizeof(rxx2));

  TNS_SUBBLOCK_INFO *tsbi =
      (blockType == SHORT_WINDOW)
          ? &tnsData->dataRaw.Short.subBlockInfo[subBlockNumber]
          : &tnsData->dataRaw.Long.subBlockInfo;

  tnsData->filtersMerged = FALSE;

  tsbi->tnsActive[HIFILT] = FALSE;
  tsbi->predictionGain[HIFILT] = 1000;
  tsbi->tnsActive[LOFILT] = FALSE;
  tsbi->predictionGain[LOFILT] = 1000;

  tnsInfo->numOfFilters[subBlockNumber] = 0;
  tnsInfo->coefRes[subBlockNumber] = tC->coefRes;
  for (i = 0; i < tC->maxOrder; i++) {
    tnsInfo->coef[subBlockNumber][HIFILT][i] =
        tnsInfo->coef[subBlockNumber][LOFILT][i] = 0;
  }

  tnsInfo->length[subBlockNumber][HIFILT] =
      tnsInfo->length[subBlockNumber][LOFILT] = 0;
  tnsInfo->order[subBlockNumber][HIFILT] =
      tnsInfo->order[subBlockNumber][LOFILT] = 0;

  if ((tC->tnsActive) && (tC->maxOrder > 0)) {
    int sumSqrCoef;

    FDKaacEnc_MergedAutoCorrelation(
        spectrum, tC->isLowDelay, tC->acfWindow, tC->lpcStartLine,
        tC->lpcStopLine, tC->maxOrder, tC->confTab.acfSplit, rxx1, rxx2);

    /* compute higher TNS filter coefficients in lattice form (ParCor) with
     * LeRoux-Gueguen/Schur algorithm */
    {
      FIXP_DBL predictionGain_m;
      INT predictionGain_e;

      CLpc_AutoToParcor(rxx2, 0, parcor_tmp, tC->confTab.tnsLimitOrder[HIFILT],
                        &predictionGain_m, &predictionGain_e);
      tsbi->predictionGain[HIFILT] =
          (INT)fMultNorm(predictionGain_m, predictionGain_e, 1000, 31, 31);
    }

    /* non-linear quantization of TNS lattice coefficients with given resolution
     */
    FDKaacEnc_Parcor2Index(parcor_tmp, tnsInfo->coef[subBlockNumber][HIFILT],
                           tC->confTab.tnsLimitOrder[HIFILT], tC->coefRes);

    /* reduce filter order by truncating trailing zeros, compute sum(abs(coefs))
     */
    for (i = tC->confTab.tnsLimitOrder[HIFILT] - 1; i >= 0; i--) {
      if (tnsInfo->coef[subBlockNumber][HIFILT][i] != 0) {
        break;
      }
    }

    tnsInfo->order[subBlockNumber][HIFILT] = i + 1;

    sumSqrCoef = 0;
    for (; i >= 0; i--) {
      sumSqrCoef += tnsInfo->coef[subBlockNumber][HIFILT][i] *
                    tnsInfo->coef[subBlockNumber][HIFILT][i];
    }

    tnsInfo->direction[subBlockNumber][HIFILT] =
        tC->confTab.tnsFilterDirection[HIFILT];
    tnsInfo->length[subBlockNumber][HIFILT] = sfbCnt - tC->lpcStartBand[HIFILT];

    /* disable TNS if predictionGain is less than 3dB or sumSqrCoef is too small
     */
    if ((tsbi->predictionGain[HIFILT] > tC->confTab.threshOn[HIFILT]) ||
        (sumSqrCoef > (tC->confTab.tnsLimitOrder[HIFILT] / 2 + 2))) {
      tsbi->tnsActive[HIFILT] = TRUE;
      tnsInfo->numOfFilters[subBlockNumber]++;

      /* compute second filter for lower quarter; only allowed for long windows!
       */
      if ((blockType != SHORT_WINDOW) && (tC->confTab.filterEnabled[LOFILT]) &&
          (tC->confTab.seperateFiltersAllowed)) {
        /* compute second filter for lower frequencies */

        /* compute TNS filter in lattice (ParCor) form with LeRoux-Gueguen
         * algorithm */
        INT predGain;
        {
          FIXP_DBL predictionGain_m;
          INT predictionGain_e;

          CLpc_AutoToParcor(rxx1, 0, parcor_tmp,
                            tC->confTab.tnsLimitOrder[LOFILT],
                            &predictionGain_m, &predictionGain_e);
          predGain =
              (INT)fMultNorm(predictionGain_m, predictionGain_e, 1000, 31, 31);
        }

        /* non-linear quantization of TNS lattice coefficients with given
         * resolution */
        FDKaacEnc_Parcor2Index(parcor_tmp,
                               tnsInfo->coef[subBlockNumber][LOFILT],
                               tC->confTab.tnsLimitOrder[LOFILT], tC->coefRes);

        /* reduce filter order by truncating trailing zeros, compute
         * sum(abs(coefs)) */
        for (i = tC->confTab.tnsLimitOrder[LOFILT] - 1; i >= 0; i--) {
          if (tnsInfo->coef[subBlockNumber][LOFILT][i] != 0) {
            break;
          }
        }
        tnsInfo->order[subBlockNumber][LOFILT] = i + 1;

        sumSqrCoef = 0;
        for (; i >= 0; i--) {
          sumSqrCoef += tnsInfo->coef[subBlockNumber][LOFILT][i] *
                        tnsInfo->coef[subBlockNumber][LOFILT][i];
        }

        tnsInfo->direction[subBlockNumber][LOFILT] =
            tC->confTab.tnsFilterDirection[LOFILT];
        tnsInfo->length[subBlockNumber][LOFILT] =
            tC->lpcStartBand[HIFILT] - tC->lpcStartBand[LOFILT];

        /* filter lower quarter if gain is high enough, but not if it's too high
         */
        if (((predGain > tC->confTab.threshOn[LOFILT]) &&
             (predGain < (16000 * tC->confTab.tnsLimitOrder[LOFILT]))) ||
            ((sumSqrCoef > 9) &&
             (sumSqrCoef < 22 * tC->confTab.tnsLimitOrder[LOFILT]))) {
          /* compare lower to upper filter; if they are very similar, merge them
           */
          tsbi->tnsActive[LOFILT] = TRUE;
          sumSqrCoef = 0;
          for (i = 0; i < tC->confTab.tnsLimitOrder[LOFILT]; i++) {
            sumSqrCoef += fAbs(tnsInfo->coef[subBlockNumber][HIFILT][i] -
                               tnsInfo->coef[subBlockNumber][LOFILT][i]);
          }
          if ((sumSqrCoef < 2) &&
              (tnsInfo->direction[subBlockNumber][LOFILT] ==
               tnsInfo->direction[subBlockNumber][HIFILT])) {
            tnsData->filtersMerged = TRUE;
            tnsInfo->length[subBlockNumber][HIFILT] =
                sfbCnt - tC->lpcStartBand[LOFILT];
            for (; i < tnsInfo->order[subBlockNumber][HIFILT]; i++) {
              if (fAbs(tnsInfo->coef[subBlockNumber][HIFILT][i]) > 1) {
                break;
              }
            }
            for (i--; i >= 0; i--) {
              if (tnsInfo->coef[subBlockNumber][HIFILT][i] != 0) {
                break;
              }
            }
            if (i < tnsInfo->order[subBlockNumber][HIFILT]) {
              tnsInfo->order[subBlockNumber][HIFILT] = i + 1;
            }
          } else {
            tnsInfo->numOfFilters[subBlockNumber]++;
          }
        } /* filter lower part */
        tsbi->predictionGain[LOFILT] = predGain;

      } /* second filter allowed  */
    }   /* if predictionGain > 1437 ... */
  }     /* maxOrder > 0 && tnsActive */

  return 0;
}

/***************************************************************************/
/*!
  \brief     FDKaacLdEnc_TnsSync

  synchronize TNS parameters when TNS gain difference small (relative)

  \param pointer to TNS data structure (destination)
  \param pointer to TNS data structure (source)
  \param pointer to TNS config structure
  \param number of sub-block
  \param block type

  \return void
****************************************************************************/
void FDKaacEnc_TnsSync(TNS_DATA *tnsDataDest, const TNS_DATA *tnsDataSrc,
                       TNS_INFO *tnsInfoDest, TNS_INFO *tnsInfoSrc,
                       const INT blockTypeDest, const INT blockTypeSrc,
                       const TNS_CONFIG *tC) {
  int i, w, absDiff, nWindows;
  TNS_SUBBLOCK_INFO *sbInfoDest;
  const TNS_SUBBLOCK_INFO *sbInfoSrc;

  /* if one channel contains short blocks and the other not, do not synchronize
   */
  if ((blockTypeSrc == SHORT_WINDOW && blockTypeDest != SHORT_WINDOW) ||
      (blockTypeDest == SHORT_WINDOW && blockTypeSrc != SHORT_WINDOW)) {
    return;
  }

  if (blockTypeDest != SHORT_WINDOW) {
    sbInfoDest = &tnsDataDest->dataRaw.Long.subBlockInfo;
    sbInfoSrc = &tnsDataSrc->dataRaw.Long.subBlockInfo;
    nWindows = 1;
  } else {
    sbInfoDest = &tnsDataDest->dataRaw.Short.subBlockInfo[0];
    sbInfoSrc = &tnsDataSrc->dataRaw.Short.subBlockInfo[0];
    nWindows = 8;
  }

  for (w = 0; w < nWindows; w++) {
    const TNS_SUBBLOCK_INFO *pSbInfoSrcW = sbInfoSrc + w;
    TNS_SUBBLOCK_INFO *pSbInfoDestW = sbInfoDest + w;
    INT doSync = 1, absDiffSum = 0;

    /* if TNS is active in at least one channel, check if ParCor coefficients of
     * higher filter are similar */
    if (pSbInfoDestW->tnsActive[HIFILT] || pSbInfoSrcW->tnsActive[HIFILT]) {
      for (i = 0; i < tC->maxOrder; i++) {
        absDiff = fAbs(tnsInfoDest->coef[w][HIFILT][i] -
                       tnsInfoSrc->coef[w][HIFILT][i]);
        absDiffSum += absDiff;
        /* if coefficients diverge too much between channels, do not synchronize
         */
        if ((absDiff > 1) || (absDiffSum > 2)) {
          doSync = 0;
          break;
        }
      }

      if (doSync) {
        /* if no significant difference was detected, synchronize coefficient
         * sets */
        if (pSbInfoSrcW->tnsActive[HIFILT]) {
          /* no dest filter, or more dest than source filters: use one dest
           * filter */
          if ((!pSbInfoDestW->tnsActive[HIFILT]) ||
              ((pSbInfoDestW->tnsActive[HIFILT]) &&
               (tnsInfoDest->numOfFilters[w] > tnsInfoSrc->numOfFilters[w]))) {
            pSbInfoDestW->tnsActive[HIFILT] = tnsInfoDest->numOfFilters[w] = 1;
          }
          tnsDataDest->filtersMerged = tnsDataSrc->filtersMerged;
          tnsInfoDest->order[w][HIFILT] = tnsInfoSrc->order[w][HIFILT];
          tnsInfoDest->length[w][HIFILT] = tnsInfoSrc->length[w][HIFILT];
          tnsInfoDest->direction[w][HIFILT] = tnsInfoSrc->direction[w][HIFILT];
          tnsInfoDest->coefCompress[w][HIFILT] =
              tnsInfoSrc->coefCompress[w][HIFILT];

          for (i = 0; i < tC->maxOrder; i++) {
            tnsInfoDest->coef[w][HIFILT][i] = tnsInfoSrc->coef[w][HIFILT][i];
          }
        } else
          pSbInfoDestW->tnsActive[HIFILT] = tnsInfoDest->numOfFilters[w] = 0;
      }
    }
  }
}

/***************************************************************************/
/*!
  \brief     FDKaacEnc_TnsEncode

  perform TNS encoding

  \param pointer to TNS info structure
  \param pointer to TNS data structure
  \param number of sfbs
  \param pointer to TNS config structure
  \param low-pass line
  \param pointer to spectrum
  \param number of sub-block
  \param block type

  \return ERROR STATUS
****************************************************************************/
INT FDKaacEnc_TnsEncode(TNS_INFO *tnsInfo, TNS_DATA *tnsData,
                        const INT numOfSfb, const TNS_CONFIG *tC,
                        const INT lowPassLine, FIXP_DBL *spectrum,
                        const INT subBlockNumber, const INT blockType) {
  INT i, startLine, stopLine;

  if (((blockType == SHORT_WINDOW) &&
       (!tnsData->dataRaw.Short.subBlockInfo[subBlockNumber]
             .tnsActive[HIFILT])) ||
      ((blockType != SHORT_WINDOW) &&
       (!tnsData->dataRaw.Long.subBlockInfo.tnsActive[HIFILT]))) {
    return 1;
  }

  startLine = (tnsData->filtersMerged) ? tC->lpcStartLine[LOFILT]
                                       : tC->lpcStartLine[HIFILT];
  stopLine = tC->lpcStopLine;

  for (i = 0; i < tnsInfo->numOfFilters[subBlockNumber]; i++) {
    INT lpcGainFactor;
    FIXP_LPC LpcCoeff[TNS_MAX_ORDER];
    FIXP_DBL workBuffer[TNS_MAX_ORDER];
    FIXP_LPC parcor_tmp[TNS_MAX_ORDER];

    FDKaacEnc_Index2Parcor(tnsInfo->coef[subBlockNumber][i], parcor_tmp,
                           tnsInfo->order[subBlockNumber][i], tC->coefRes);

    lpcGainFactor = CLpc_ParcorToLpc(
        parcor_tmp, LpcCoeff, tnsInfo->order[subBlockNumber][i], workBuffer);

    FDKmemclear(workBuffer, TNS_MAX_ORDER * sizeof(FIXP_DBL));
    CLpc_Analysis(&spectrum[startLine], stopLine - startLine, LpcCoeff,
                  lpcGainFactor, tnsInfo->order[subBlockNumber][i], workBuffer,
                  NULL);

    /* update for second filter */
    startLine = tC->lpcStartLine[LOFILT];
    stopLine = tC->lpcStartLine[HIFILT];
  }

  return (0);
}

static void FDKaacEnc_CalcGaussWindow(FIXP_DBL *win, const int winSize,
                                      const INT samplingRate,
                                      const INT transformResolution,
                                      const FIXP_DBL timeResolution,
                                      const INT timeResolution_e) {
#define PI_E (2)
#define PI_M FL2FXCONST_DBL(3.1416f / (float)(1 << PI_E))

#define EULER_E (2)
#define EULER_M FL2FXCONST_DBL(2.7183 / (float)(1 << EULER_E))

#define COEFF_LOOP_SCALE (4)

  INT i, e1, e2, gaussExp_e;
  FIXP_DBL gaussExp_m;

  /* calc. window exponent from time resolution:
   *
   *   gaussExp = PI * samplingRate * 0.001f * timeResolution /
   * transformResolution; gaussExp = -0.5f * gaussExp * gaussExp;
   */
  gaussExp_m = fMultNorm(
      timeResolution,
      fMult(PI_M,
            fDivNorm((FIXP_DBL)(samplingRate),
                     (FIXP_DBL)(LONG)(transformResolution * 1000.f), &e1)),
      &e2);
  gaussExp_m = -fPow2Div2(gaussExp_m);
  gaussExp_e = 2 * (e1 + e2 + timeResolution_e + PI_E);

  FDK_ASSERT(winSize < (1 << COEFF_LOOP_SCALE));

  /* calc. window coefficients
   *   win[i] = (float)exp( gaussExp * (i+0.5) * (i+0.5) );
   */
  for (i = 0; i < winSize; i++) {
    win[i] = fPow(
        EULER_M, EULER_E,
        fMult(gaussExp_m,
              fPow2((i * FL2FXCONST_DBL(1.f / (float)(1 << COEFF_LOOP_SCALE)) +
                     FL2FXCONST_DBL(.5f / (float)(1 << COEFF_LOOP_SCALE))))),
        gaussExp_e + 2 * COEFF_LOOP_SCALE, &e1);

    win[i] = scaleValueSaturate(win[i], e1);
  }
}

static INT FDKaacEnc_Search3(FIXP_LPC parcor) {
  INT i, index = 0;

  for (i = 0; i < 8; i++) {
    if (parcor > FDKaacEnc_tnsCoeff3Borders[i]) index = i;
  }
  return (index - 4);
}

static INT FDKaacEnc_Search4(FIXP_LPC parcor) {
  INT i, index = 0;

  for (i = 0; i < 16; i++) {
    if (parcor > FDKaacEnc_tnsCoeff4Borders[i]) index = i;
  }
  return (index - 8);
}

/*****************************************************************************

    functionname: FDKaacEnc_Parcor2Index

*****************************************************************************/
static void FDKaacEnc_Parcor2Index(const FIXP_LPC *parcor, INT *RESTRICT index,
                                   const INT order, const INT bitsPerCoeff) {
  INT i;
  for (i = 0; i < order; i++) {
    if (bitsPerCoeff == 3)
      index[i] = FDKaacEnc_Search3(parcor[i]);
    else
      index[i] = FDKaacEnc_Search4(parcor[i]);
  }
}

/*****************************************************************************

    functionname: FDKaacEnc_Index2Parcor
    description:  inverse quantization for reflection coefficients
    returns:      -
    input:        quantized values, ptr. to reflection coefficients,
                  no. of coefficients, resolution
    output:       reflection coefficients

*****************************************************************************/
static void FDKaacEnc_Index2Parcor(const INT *index, FIXP_LPC *RESTRICT parcor,
                                   const INT order, const INT bitsPerCoeff) {
  INT i;
  for (i = 0; i < order; i++)
    parcor[i] = bitsPerCoeff == 4 ? FDKaacEnc_tnsEncCoeff4[index[i] + 8]
                                  : FDKaacEnc_tnsEncCoeff3[index[i] + 4];
}