aboutsummaryrefslogtreecommitdiffstats
path: root/libSBRenc/src/ps_encode.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libSBRenc/src/ps_encode.cpp')
-rw-r--r--libSBRenc/src/ps_encode.cpp1054
1 files changed, 1054 insertions, 0 deletions
diff --git a/libSBRenc/src/ps_encode.cpp b/libSBRenc/src/ps_encode.cpp
new file mode 100644
index 0000000..e60f83d
--- /dev/null
+++ b/libSBRenc/src/ps_encode.cpp
@@ -0,0 +1,1054 @@
+
+/* -----------------------------------------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
+ All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
+the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
+This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
+audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
+independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
+of the MPEG specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
+may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
+individually for the purpose of encoding or decoding bit streams in products that are compliant with
+the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
+these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
+software may already be covered under those patent licenses when it is used for those licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
+are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
+applications information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification, are permitted without
+payment of copyright license fees provided that you satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
+your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation and/or other materials
+provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
+You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived from this library without
+prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
+software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
+and the date of any change. For modified versions of the FDK AAC Codec, the term
+"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
+"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
+ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
+respect to this software.
+
+You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
+by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
+"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
+of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
+including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
+or business interruption, however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of this software, even if
+advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------------------------------------- */
+
+/***************************** MPEG Audio Encoder ***************************
+
+ Initial Authors: M. Neuendorf, N. Rettelbach, M. Multrus
+ Contents/Description: PS parameter extraction, encoding
+
+******************************************************************************/
+/*!
+ \file
+ \brief PS parameter extraction, encoding functions
+*/
+
+#include "ps_main.h"
+
+
+#include "sbr_ram.h"
+#include "ps_encode.h"
+
+#include "qmf.h"
+
+#include "ps_const.h"
+#include "sbr_misc.h"
+
+#include "genericStds.h"
+
+inline void FDKsbrEnc_addFIXP_DBL(const FIXP_DBL *X, const FIXP_DBL *Y, FIXP_DBL *Z, INT n)
+{
+ for (INT i=0; i<n; i++)
+ Z[i] = (X[i]>>1) + (Y[i]>>1);
+}
+
+#define LOG10_2_10 3.01029995664f /* 10.0f*log10(2.f) */
+
+static const INT iidGroupBordersLoRes[QMF_GROUPS_LO_RES + SUBQMF_GROUPS_LO_RES + 1] =
+{
+ 0, 1, 2, 3, 4, 5, /* 6 subqmf subbands - 0th qmf subband */
+ 6, 7, /* 2 subqmf subbands - 1st qmf subband */
+ 8, 9, /* 2 subqmf subbands - 2nd qmf subband */
+ 10, 11, 12, 13, 14, 15, 16, 18, 21, 25, 30, 42, 71
+};
+
+static const UCHAR iidGroupWidthLdLoRes[QMF_GROUPS_LO_RES + SUBQMF_GROUPS_LO_RES] =
+{
+ 0, 0, 0, 0, 0, 0,
+ 0, 0,
+ 0, 0,
+ 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 4, 5
+};
+
+
+static const INT subband2parameter20[QMF_GROUPS_LO_RES + SUBQMF_GROUPS_LO_RES] =
+{
+ 1, 0, 0, 1, 2, 3, /* 6 subqmf subbands - 0th qmf subband */
+ 4, 5, /* 2 subqmf subbands - 1st qmf subband */
+ 6, 7, /* 2 subqmf subbands - 2nd qmf subband */
+ 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
+};
+
+
+typedef enum {
+ MAX_TIME_DIFF_FRAMES = 20,
+ MAX_PS_NOHEADER_CNT = 10,
+ MAX_NOENV_CNT = 10,
+ DO_NOT_USE_THIS_MODE = 0x7FFFFF
+} __PS_CONSTANTS;
+
+
+
+static const FIXP_DBL iidQuant_fx[15] = {
+ 0xce000000, 0xdc000000, 0xe4000000, 0xec000000, 0xf2000000, 0xf8000000, 0xfc000000, 0x00000000,
+ 0x04000000, 0x08000000, 0x0e000000, 0x14000000, 0x1c000000, 0x24000000, 0x32000000
+};
+
+static const FIXP_DBL iidQuantFine_fx[31] = {
+ 0x9c000001, 0xa6000001, 0xb0000001, 0xba000001, 0xc4000000, 0xce000000, 0xd4000000, 0xda000000,
+ 0xe0000000, 0xe6000000, 0xec000000, 0xf0000000, 0xf4000000, 0xf8000000, 0xfc000000, 0x00000000,
+ 0x04000000, 0x08000000, 0x0c000000, 0x10000000, 0x14000000, 0x1a000000, 0x20000000, 0x26000000,
+ 0x2c000000, 0x32000000, 0x3c000000, 0x45ffffff, 0x4fffffff, 0x59ffffff, 0x63ffffff
+};
+
+
+
+static const FIXP_DBL iccQuant[8] = {
+ 0x7fffffff, 0x77ef9d7f, 0x6babc97f, 0x4ceaf27f, 0x2f0ed3c0, 0x00000000, 0xb49ba601, 0x80000000
+};
+
+static FDK_PSENC_ERROR InitPSData(
+ HANDLE_PS_DATA hPsData
+ )
+{
+ FDK_PSENC_ERROR error = PSENC_OK;
+
+ if(hPsData == NULL) {
+ error = PSENC_INVALID_HANDLE;
+ }
+ else {
+ int i, env;
+ FDKmemclear(hPsData,sizeof(PS_DATA));
+
+ for (i=0; i<PS_MAX_BANDS; i++) {
+ hPsData->iidIdxLast[i] = 0;
+ hPsData->iccIdxLast[i] = 0;
+ }
+
+ hPsData->iidEnable = hPsData->iidEnableLast = 0;
+ hPsData->iccEnable = hPsData->iccEnableLast = 0;
+ hPsData->iidQuantMode = hPsData->iidQuantModeLast = PS_IID_RES_COARSE;
+ hPsData->iccQuantMode = hPsData->iccQuantModeLast = PS_ICC_ROT_A;
+
+ for(env=0; env<PS_MAX_ENVELOPES; env++) {
+ hPsData->iccDiffMode[env] = PS_DELTA_FREQ;
+ hPsData->iccDiffMode[env] = PS_DELTA_FREQ;
+
+ for (i=0; i<PS_MAX_BANDS; i++) {
+ hPsData->iidIdx[env][i] = 0;
+ hPsData->iccIdx[env][i] = 0;
+ }
+ }
+
+ hPsData->nEnvelopesLast = 0;
+
+ hPsData->headerCnt = MAX_PS_NOHEADER_CNT;
+ hPsData->iidTimeCnt = MAX_TIME_DIFF_FRAMES;
+ hPsData->iccTimeCnt = MAX_TIME_DIFF_FRAMES;
+ hPsData->noEnvCnt = MAX_NOENV_CNT;
+ }
+
+ return error;
+}
+
+static FIXP_DBL quantizeCoef( const FIXP_DBL *RESTRICT input,
+ const INT nBands,
+ const FIXP_DBL *RESTRICT quantTable,
+ const INT idxOffset,
+ const INT nQuantSteps,
+ INT *RESTRICT quantOut)
+{
+ INT idx, band;
+ FIXP_DBL quantErr = FL2FXCONST_DBL(0.f);
+
+ for (band=0; band<nBands;band++) {
+ for(idx=0; idx<nQuantSteps-1; idx++){
+ if( fixp_abs((input[band]>>1)-(quantTable[idx+1]>>1)) >
+ fixp_abs((input[band]>>1)-(quantTable[idx]>>1)) )
+ {
+ break;
+ }
+ }
+ quantErr += (fixp_abs(input[band]-quantTable[idx])>>PS_QUANT_SCALE); /* don't scale before subtraction; diff smaller (64-25)/64 */
+ quantOut[band] = idx - idxOffset;
+ }
+
+ return quantErr;
+}
+
+static INT getICCMode(const INT nBands,
+ const INT rotType)
+{
+ INT mode = 0;
+
+ switch(nBands) {
+ case PS_BANDS_COARSE:
+ mode = PS_RES_COARSE;
+ break;
+ case PS_BANDS_MID:
+ mode = PS_RES_MID;
+ break;
+ default:
+ mode = 0;
+ }
+ if(rotType==PS_ICC_ROT_B){
+ mode += 3;
+ }
+
+ return mode;
+}
+
+
+static INT getIIDMode(const INT nBands,
+ const INT iidRes)
+{
+ INT mode = 0;
+
+ switch(nBands) {
+ case PS_BANDS_COARSE:
+ mode = PS_RES_COARSE;
+ break;
+ case PS_BANDS_MID:
+ mode = PS_RES_MID;
+ break;
+ default:
+ mode = 0;
+ break;
+ }
+
+ if(iidRes == PS_IID_RES_FINE){
+ mode += 3;
+ }
+
+ return mode;
+}
+
+
+static INT envelopeReducible(FIXP_DBL iid[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ FIXP_DBL icc[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ INT psBands,
+ INT nEnvelopes)
+{
+ #define THRESH_SCALE 7
+
+ INT reducible = 1; /* true */
+ INT e = 0, b = 0;
+ FIXP_DBL dIid = FL2FXCONST_DBL(0.f);
+ FIXP_DBL dIcc = FL2FXCONST_DBL(0.f);
+
+ FIXP_DBL iidErrThreshold, iccErrThreshold;
+ FIXP_DBL iidMeanError, iccMeanError;
+
+ /* square values to prevent sqrt,
+ multiply bands to prevent division; bands shifted DFRACT_BITS instead (DFRACT_BITS-1) because fMultDiv2 used*/
+ iidErrThreshold = fMultDiv2 ( FL2FXCONST_DBL(6.5f*6.5f/(IID_SCALE_FT*IID_SCALE_FT)), (FIXP_DBL)(psBands<<((DFRACT_BITS)-THRESH_SCALE)) );
+ iccErrThreshold = fMultDiv2 ( FL2FXCONST_DBL(0.75f*0.75f), (FIXP_DBL)(psBands<<((DFRACT_BITS)-THRESH_SCALE)) );
+
+ if (nEnvelopes <= 1) {
+ reducible = 0;
+ } else {
+
+ /* mean error criterion */
+ for (e=0; (e < nEnvelopes/2) && (reducible!=0 ) ; e++) {
+ iidMeanError = iccMeanError = FL2FXCONST_DBL(0.f);
+ for(b=0; b<psBands; b++) {
+ dIid = (iid[2*e][b]>>1) - (iid[2*e+1][b]>>1); /* scale 1 bit; squared -> 2 bit */
+ dIcc = (icc[2*e][b]>>1) - (icc[2*e+1][b]>>1);
+ iidMeanError += fPow2Div2(dIid)>>(5-1); /* + (bands=20) scale = 5 */
+ iccMeanError += fPow2Div2(dIcc)>>(5-1);
+ } /* --> scaling = 7 bit = THRESH_SCALE !! */
+
+ /* instead sqrt values are squared!
+ instead of division, multiply threshold with psBands
+ scaling necessary!! */
+
+ /* quit as soon as threshold is reached */
+ if ( (iidMeanError > (iidErrThreshold)) ||
+ (iccMeanError > (iccErrThreshold)) ) {
+ reducible = 0;
+ }
+ }
+ } /* nEnvelopes != 1 */
+
+ return reducible;
+}
+
+
+static void processIidData(PS_DATA *psData,
+ FIXP_DBL iid[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ const INT psBands,
+ const INT nEnvelopes,
+ const FIXP_DBL quantErrorThreshold)
+{
+ INT iidIdxFine [PS_MAX_ENVELOPES][PS_MAX_BANDS];
+ INT iidIdxCoarse[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+
+ FIXP_DBL errIID = FL2FXCONST_DBL(0.f);
+ FIXP_DBL errIIDFine = FL2FXCONST_DBL(0.f);
+ INT bitsIidFreq = 0;
+ INT bitsIidTime = 0;
+ INT bitsFineTot = 0;
+ INT bitsCoarseTot = 0;
+ INT error = 0;
+ INT env, band;
+ INT diffMode[PS_MAX_ENVELOPES], diffModeFine[PS_MAX_ENVELOPES];
+ INT loudnDiff = 0;
+ INT iidTransmit = 0;
+
+ bitsIidFreq = bitsIidTime = 0;
+
+ /* Quantize IID coefficients */
+ for(env=0;env<nEnvelopes; env++) {
+ errIID += quantizeCoef(iid[env], psBands, iidQuant_fx, 7, 15, iidIdxCoarse[env]);
+ errIIDFine += quantizeCoef(iid[env], psBands, iidQuantFine_fx, 15, 31, iidIdxFine[env]);
+ }
+
+ /* normalize error to number of envelopes, ps bands
+ errIID /= psBands*nEnvelopes;
+ errIIDFine /= psBands*nEnvelopes; */
+
+
+ /* Check if IID coefficients should be used in this frame */
+ psData->iidEnable = 0;
+ for(env=0;env<nEnvelopes; env++) {
+ for(band=0;band<psBands;band++) {
+ loudnDiff += fixp_abs(iidIdxCoarse[env][band]);
+ iidTransmit ++;
+ }
+ }
+
+ if(loudnDiff > fMultI(FL2FXCONST_DBL(0.7f),iidTransmit)){ /* 0.7f empiric value */
+ psData->iidEnable = 1;
+ }
+
+ /* if iid not active -> RESET data */
+ if(psData->iidEnable==0) {
+ psData->iidTimeCnt = MAX_TIME_DIFF_FRAMES;
+ for(env=0;env<nEnvelopes; env++) {
+ psData->iidDiffMode[env] = PS_DELTA_FREQ;
+ FDKmemclear(psData->iidIdx[env], sizeof(INT)*psBands);
+ }
+ return;
+ }
+
+ /* count COARSE quantization bits for first envelope*/
+ bitsIidFreq = FDKsbrEnc_EncodeIid(NULL, iidIdxCoarse[0], NULL, psBands, PS_IID_RES_COARSE, PS_DELTA_FREQ, &error);
+
+ if( (psData->iidTimeCnt>=MAX_TIME_DIFF_FRAMES) || (psData->iidQuantModeLast==PS_IID_RES_FINE) ) {
+ bitsIidTime = DO_NOT_USE_THIS_MODE;
+ }
+ else {
+ bitsIidTime = FDKsbrEnc_EncodeIid(NULL, iidIdxCoarse[0], psData->iidIdxLast, psBands, PS_IID_RES_COARSE, PS_DELTA_TIME, &error);
+ }
+
+ /* decision DELTA_FREQ vs DELTA_TIME */
+ if(bitsIidTime>bitsIidFreq) {
+ diffMode[0] = PS_DELTA_FREQ;
+ bitsCoarseTot = bitsIidFreq;
+ }
+ else {
+ diffMode[0] = PS_DELTA_TIME;
+ bitsCoarseTot = bitsIidTime;
+ }
+
+ /* count COARSE quantization bits for following envelopes*/
+ for(env=1;env<nEnvelopes; env++) {
+ bitsIidFreq = FDKsbrEnc_EncodeIid(NULL, iidIdxCoarse[env], NULL, psBands, PS_IID_RES_COARSE, PS_DELTA_FREQ, &error);
+ bitsIidTime = FDKsbrEnc_EncodeIid(NULL, iidIdxCoarse[env], iidIdxCoarse[env-1], psBands, PS_IID_RES_COARSE, PS_DELTA_TIME, &error);
+
+ /* decision DELTA_FREQ vs DELTA_TIME */
+ if(bitsIidTime>bitsIidFreq) {
+ diffMode[env] = PS_DELTA_FREQ;
+ bitsCoarseTot += bitsIidFreq;
+ }
+ else {
+ diffMode[env] = PS_DELTA_TIME;
+ bitsCoarseTot += bitsIidTime;
+ }
+ }
+
+
+ /* count FINE quantization bits for first envelope*/
+ bitsIidFreq = FDKsbrEnc_EncodeIid(NULL, iidIdxFine[0], NULL, psBands, PS_IID_RES_FINE, PS_DELTA_FREQ, &error);
+
+ if( (psData->iidTimeCnt>=MAX_TIME_DIFF_FRAMES) || (psData->iidQuantModeLast==PS_IID_RES_COARSE) ) {
+ bitsIidTime = DO_NOT_USE_THIS_MODE;
+ }
+ else {
+ bitsIidTime = FDKsbrEnc_EncodeIid(NULL, iidIdxFine[0], psData->iidIdxLast, psBands, PS_IID_RES_FINE, PS_DELTA_TIME, &error);
+ }
+
+ /* decision DELTA_FREQ vs DELTA_TIME */
+ if(bitsIidTime>bitsIidFreq) {
+ diffModeFine[0] = PS_DELTA_FREQ;
+ bitsFineTot = bitsIidFreq;
+ }
+ else {
+ diffModeFine[0] = PS_DELTA_TIME;
+ bitsFineTot = bitsIidTime;
+ }
+
+ /* count FINE quantization bits for following envelopes*/
+ for(env=1;env<nEnvelopes; env++) {
+ bitsIidFreq = FDKsbrEnc_EncodeIid(NULL, iidIdxFine[env], NULL, psBands, PS_IID_RES_FINE, PS_DELTA_FREQ, &error);
+ bitsIidTime = FDKsbrEnc_EncodeIid(NULL, iidIdxFine[env], iidIdxFine[env-1], psBands, PS_IID_RES_FINE, PS_DELTA_TIME, &error);
+
+ /* decision DELTA_FREQ vs DELTA_TIME */
+ if(bitsIidTime>bitsIidFreq) {
+ diffModeFine[env] = PS_DELTA_FREQ;
+ bitsFineTot += bitsIidFreq;
+ }
+ else {
+ diffModeFine[env] = PS_DELTA_TIME;
+ bitsFineTot += bitsIidTime;
+ }
+ }
+
+ if(bitsFineTot == bitsCoarseTot){
+ /* if same number of bits is needed, use the quantization with lower error */
+ if(errIIDFine < errIID){
+ bitsCoarseTot = DO_NOT_USE_THIS_MODE;
+ } else {
+ bitsFineTot = DO_NOT_USE_THIS_MODE;
+ }
+ } else {
+ /* const FIXP_DBL minThreshold = FL2FXCONST_DBL(0.2f/(IID_SCALE_FT*PS_QUANT_SCALE_FT)*(psBands*nEnvelopes)); */
+ const FIXP_DBL minThreshold = (FIXP_DBL)((LONG)0x00019999 * (psBands*nEnvelopes));
+
+ /* decision RES_FINE vs RES_COARSE */
+ /* test if errIIDFine*quantErrorThreshold < errIID */
+ /* shiftVal 2 comes from scaling of quantErrorThreshold */
+ if(fixMax(((errIIDFine>>1)+(minThreshold>>1))>>1, fMult(quantErrorThreshold,errIIDFine)) < (errIID>>2) ) {
+ bitsCoarseTot = DO_NOT_USE_THIS_MODE;
+ }
+ else if(fixMax(((errIID>>1)+(minThreshold>>1))>>1, fMult(quantErrorThreshold,errIID)) < (errIIDFine>>2) ) {
+ bitsFineTot = DO_NOT_USE_THIS_MODE;
+ }
+ }
+
+ /* decision RES_FINE vs RES_COARSE */
+ if(bitsFineTot<bitsCoarseTot) {
+ psData->iidQuantMode = PS_IID_RES_FINE;
+ for(env=0;env<nEnvelopes; env++) {
+ psData->iidDiffMode[env] = diffModeFine[env];
+ FDKmemcpy(psData->iidIdx[env], iidIdxFine[env], psBands*sizeof(INT));
+ }
+ }
+ else {
+ psData->iidQuantMode = PS_IID_RES_COARSE;
+ for(env=0;env<nEnvelopes; env++) {
+ psData->iidDiffMode[env] = diffMode[env];
+ FDKmemcpy(psData->iidIdx[env], iidIdxCoarse[env], psBands*sizeof(INT));
+ }
+ }
+
+ /* Count DELTA_TIME encoding streaks */
+ for(env=0;env<nEnvelopes; env++) {
+ if(psData->iidDiffMode[env]==PS_DELTA_TIME)
+ psData->iidTimeCnt++;
+ else
+ psData->iidTimeCnt=0;
+ }
+}
+
+
+static INT similarIid(PS_DATA *psData,
+ const INT psBands,
+ const INT nEnvelopes)
+{
+ const INT diffThr = (psData->iidQuantMode == PS_IID_RES_COARSE) ? 2 : 3;
+ const INT sumDiffThr = diffThr * psBands/4;
+ INT similar = 0;
+ INT diff = 0;
+ INT sumDiff = 0;
+ INT env = 0;
+ INT b = 0;
+ if ((nEnvelopes == psData->nEnvelopesLast) && (nEnvelopes==1)) {
+ similar = 1;
+ for (env=0; env<nEnvelopes; env++) {
+ sumDiff = 0;
+ b = 0;
+ do {
+ diff = fixp_abs(psData->iidIdx[env][b] - psData->iidIdxLast[b]);
+ sumDiff += diff;
+ if ( (diff > diffThr) /* more than x quantization steps in any band */
+ || (sumDiff > sumDiffThr) ) { /* more than x quantisations steps overall difference */
+ similar = 0;
+ }
+ b++;
+ } while ((b<psBands) && (similar>0));
+ }
+ } /* nEnvelopes==1 */
+
+ return similar;
+}
+
+
+static INT similarIcc(PS_DATA *psData,
+ const INT psBands,
+ const INT nEnvelopes)
+{
+ const INT diffThr = 2;
+ const INT sumDiffThr = diffThr * psBands/4;
+ INT similar = 0;
+ INT diff = 0;
+ INT sumDiff = 0;
+ INT env = 0;
+ INT b = 0;
+ if ((nEnvelopes == psData->nEnvelopesLast) && (nEnvelopes==1)) {
+ similar = 1;
+ for (env=0; env<nEnvelopes; env++) {
+ sumDiff = 0;
+ b = 0;
+ do {
+ diff = fixp_abs(psData->iccIdx[env][b] - psData->iccIdxLast[b]);
+ sumDiff += diff;
+ if ( (diff > diffThr) /* more than x quantisation step in any band */
+ || (sumDiff > sumDiffThr) ) { /* more than x quantisations steps overall difference */
+ similar = 0;
+ }
+ b++;
+ } while ((b<psBands) && (similar>0));
+ }
+ } /* nEnvelopes==1 */
+
+ return similar;
+}
+
+static void processIccData(PS_DATA *psData,
+ FIXP_DBL icc[PS_MAX_ENVELOPES][PS_MAX_BANDS], /* const input values: unable to declare as const, since it does not poINT to const memory */
+ const INT psBands,
+ const INT nEnvelopes)
+{
+ FIXP_DBL errICC = FL2FXCONST_DBL(0.f);
+ INT env, band;
+ INT bitsIccFreq, bitsIccTime;
+ INT error = 0;
+ INT inCoherence=0, iccTransmit=0;
+ INT *iccIdxLast;
+
+ iccIdxLast = psData->iccIdxLast;
+
+ /* Quantize ICC coefficients */
+ for(env=0;env<nEnvelopes; env++) {
+ errICC += quantizeCoef(icc[env], psBands, iccQuant, 0, 8, psData->iccIdx[env]);
+ }
+
+ /* Check if ICC coefficients should be used */
+ psData->iccEnable = 0;
+ for(env=0;env<nEnvelopes; env++) {
+ for(band=0;band<psBands;band++) {
+ inCoherence += psData->iccIdx[env][band];
+ iccTransmit ++;
+ }
+ }
+ if(inCoherence > fMultI(FL2FXCONST_DBL(0.5f),iccTransmit)){ /* 0.5f empiric value */
+ psData->iccEnable = 1;
+ }
+
+ if(psData->iccEnable==0) {
+ psData->iccTimeCnt = MAX_TIME_DIFF_FRAMES;
+ for(env=0;env<nEnvelopes; env++) {
+ psData->iccDiffMode[env] = PS_DELTA_FREQ;
+ FDKmemclear(psData->iccIdx[env], sizeof(INT)*psBands);
+ }
+ return;
+ }
+
+ for(env=0;env<nEnvelopes; env++) {
+ bitsIccFreq = FDKsbrEnc_EncodeIcc(NULL, psData->iccIdx[env], NULL, psBands, PS_DELTA_FREQ, &error);
+
+ if(psData->iccTimeCnt<MAX_TIME_DIFF_FRAMES) {
+ bitsIccTime = FDKsbrEnc_EncodeIcc(NULL, psData->iccIdx[env], iccIdxLast, psBands, PS_DELTA_TIME, &error);
+ }
+ else {
+ bitsIccTime = DO_NOT_USE_THIS_MODE;
+ }
+
+ if(bitsIccFreq>bitsIccTime) {
+ psData->iccDiffMode[env] = PS_DELTA_TIME;
+ psData->iccTimeCnt++;
+ }
+ else {
+ psData->iccDiffMode[env] = PS_DELTA_FREQ;
+ psData->iccTimeCnt=0;
+ }
+ iccIdxLast = psData->iccIdx[env];
+ }
+}
+
+static void calculateIID(FIXP_DBL ldPwrL[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ FIXP_DBL ldPwrR[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ FIXP_DBL iid[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ INT nEnvelopes,
+ INT psBands)
+{
+ INT i=0;
+ INT env=0;
+ for(env=0; env<nEnvelopes;env++) {
+ for (i=0; i<psBands; i++) {
+
+ /* iid[env][i] = 10.0f*(float)log10(pwrL[env][i]/pwrR[env][i]);
+ */
+ FIXP_DBL IID = fMultDiv2( FL2FXCONST_DBL(LOG10_2_10/IID_SCALE_FT), (ldPwrL[env][i]-ldPwrR[env][i]) );
+
+ IID = fixMin( IID, (FIXP_DBL)(MAXVAL_DBL>>(LD_DATA_SHIFT+1)) );
+ IID = fixMax( IID, (FIXP_DBL)(MINVAL_DBL>>(LD_DATA_SHIFT+1)) );
+ iid[env][i] = IID << (LD_DATA_SHIFT+1);
+ }
+ }
+}
+
+static void calculateICC(FIXP_DBL ldPwrL[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ FIXP_DBL ldPwrR[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ FIXP_DBL pwrCr[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ FIXP_DBL pwrCi[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ FIXP_DBL icc[PS_MAX_ENVELOPES][PS_MAX_BANDS],
+ INT nEnvelopes,
+ INT psBands)
+{
+ INT i = 0;
+ INT env = 0;
+ INT border = psBands;
+
+ switch (psBands) {
+ case PS_BANDS_COARSE:
+ border = 5;
+ break;
+ case PS_BANDS_MID:
+ border = 11;
+ break;
+ default:
+ break;
+ }
+
+ for(env=0; env<nEnvelopes;env++) {
+ for (i=0; i<border; i++) {
+
+ /* icc[env][i] = min( pwrCr[env][i] / (float) sqrt(pwrL[env][i] * pwrR[env][i]) , 1.f);
+ */
+ FIXP_DBL ICC, invNrg = CalcInvLdData ( -((ldPwrL[env][i]>>1) + (ldPwrR[env][i]>>1) + (FIXP_DBL)1) );
+ INT scale, invScale = CountLeadingBits(invNrg);
+
+ scale = (DFRACT_BITS-1) - invScale;
+ ICC = fMult(pwrCr[env][i], invNrg<<invScale) ;
+ icc[env][i] = SATURATE_LEFT_SHIFT(ICC, scale, DFRACT_BITS);
+ }
+
+ for (; i<psBands; i++) {
+ INT sc1, sc2;
+ FIXP_DBL cNrgR, cNrgI, ICC;
+
+ sc1 = CountLeadingBits( fixMax(fixp_abs(pwrCr[env][i]),fixp_abs(pwrCi[env][i])) ) ;
+ cNrgR = fPow2Div2((pwrCr[env][i]<<sc1)); /* squared nrg's expect explicit scaling */
+ cNrgI = fPow2Div2((pwrCi[env][i]<<sc1));
+
+ ICC = CalcInvLdData( (CalcLdData((cNrgR + cNrgI)>>1)>>1) - (FIXP_DBL)((sc1-1)<<(DFRACT_BITS-1-LD_DATA_SHIFT)) );
+
+ FIXP_DBL invNrg = CalcInvLdData ( -((ldPwrL[env][i]>>1) + (ldPwrR[env][i]>>1) + (FIXP_DBL)1) );
+ sc1 = CountLeadingBits(invNrg);
+ invNrg <<= sc1;
+
+ sc2 = CountLeadingBits(ICC);
+ ICC = fMult(ICC<<sc2,invNrg);
+
+ sc1 = ( (DFRACT_BITS-1) - sc1 - sc2 );
+ if (sc1 < 0) {
+ ICC >>= -sc1;
+ }
+ else {
+ if (ICC >= ((FIXP_DBL)MAXVAL_DBL>>sc1) )
+ ICC = (FIXP_DBL)MAXVAL_DBL;
+ else
+ ICC <<= sc1;
+ }
+
+ icc[env][i] = ICC;
+ }
+ }
+}
+
+void FDKsbrEnc_initPsBandNrgScale(HANDLE_PS_ENCODE hPsEncode)
+{
+ INT group, bin;
+ INT nIidGroups = hPsEncode->nQmfIidGroups + hPsEncode->nSubQmfIidGroups;
+
+ FDKmemclear(hPsEncode->psBandNrgScale, PS_MAX_BANDS*sizeof(SCHAR));
+
+ for (group=0; group < nIidGroups; group++) {
+ /* Translate group to bin */
+ bin = hPsEncode->subband2parameterIndex[group];
+
+ /* Translate from 20 bins to 10 bins */
+ if (hPsEncode->psEncMode == PS_BANDS_COARSE) {
+ bin = bin>>1;
+ }
+
+ hPsEncode->psBandNrgScale[bin] = (hPsEncode->psBandNrgScale[bin]==0)
+ ? (hPsEncode->iidGroupWidthLd[group] + 5)
+ : (fixMax(hPsEncode->iidGroupWidthLd[group],hPsEncode->psBandNrgScale[bin]) + 1) ;
+
+ }
+}
+
+FDK_PSENC_ERROR FDKsbrEnc_CreatePSEncode(
+ HANDLE_PS_ENCODE *phPsEncode
+ )
+{
+ FDK_PSENC_ERROR error = PSENC_OK;
+
+ if (phPsEncode==NULL) {
+ error = PSENC_INVALID_HANDLE;
+ }
+ else {
+ HANDLE_PS_ENCODE hPsEncode = NULL;
+ if (NULL==(hPsEncode = GetRam_PsEncode())) {
+ error = PSENC_MEMORY_ERROR;
+ goto bail;
+ }
+ FDKmemclear(hPsEncode,sizeof(PS_ENCODE));
+ *phPsEncode = hPsEncode; /* return allocated handle */
+ }
+bail:
+ return error;
+}
+
+FDK_PSENC_ERROR FDKsbrEnc_InitPSEncode(
+ HANDLE_PS_ENCODE hPsEncode,
+ const PS_BANDS psEncMode,
+ const FIXP_DBL iidQuantErrorThreshold
+ )
+{
+ FDK_PSENC_ERROR error = PSENC_OK;
+
+ if (NULL==hPsEncode) {
+ error = PSENC_INVALID_HANDLE;
+ }
+ else {
+ if (PSENC_OK != (InitPSData(&hPsEncode->psData))) {
+ goto bail;
+ }
+
+ switch(psEncMode){
+ case PS_BANDS_COARSE:
+ case PS_BANDS_MID:
+ hPsEncode->nQmfIidGroups = QMF_GROUPS_LO_RES;
+ hPsEncode->nSubQmfIidGroups = SUBQMF_GROUPS_LO_RES;
+ FDKmemcpy(hPsEncode->iidGroupBorders, iidGroupBordersLoRes, (hPsEncode->nQmfIidGroups + hPsEncode->nSubQmfIidGroups + 1)*sizeof(INT));
+ FDKmemcpy(hPsEncode->subband2parameterIndex, subband2parameter20, (hPsEncode->nQmfIidGroups + hPsEncode->nSubQmfIidGroups) *sizeof(INT));
+ FDKmemcpy(hPsEncode->iidGroupWidthLd, iidGroupWidthLdLoRes, (hPsEncode->nQmfIidGroups + hPsEncode->nSubQmfIidGroups) *sizeof(UCHAR));
+ break;
+ default:
+ error = PSENC_INIT_ERROR;
+ goto bail;
+ }
+
+ hPsEncode->psEncMode = psEncMode;
+ hPsEncode->iidQuantErrorThreshold = iidQuantErrorThreshold;
+ FDKsbrEnc_initPsBandNrgScale(hPsEncode);
+ }
+bail:
+ return error;
+}
+
+
+FDK_PSENC_ERROR FDKsbrEnc_DestroyPSEncode(
+ HANDLE_PS_ENCODE *phPsEncode
+ )
+{
+ FDK_PSENC_ERROR error = PSENC_OK;
+
+ if (NULL !=phPsEncode) {
+ FreeRam_PsEncode(phPsEncode);
+ }
+
+ return error;
+}
+
+typedef struct {
+ FIXP_DBL pwrL[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+ FIXP_DBL pwrR[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+ FIXP_DBL ldPwrL[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+ FIXP_DBL ldPwrR[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+ FIXP_DBL pwrCr[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+ FIXP_DBL pwrCi[PS_MAX_ENVELOPES][PS_MAX_BANDS];
+
+} PS_PWR_DATA;
+
+
+FDK_PSENC_ERROR FDKsbrEnc_PSEncode(
+ HANDLE_PS_ENCODE hPsEncode,
+ HANDLE_PS_OUT hPsOut,
+ UCHAR *dynBandScale,
+ UINT maxEnvelopes,
+ FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],
+ const INT frameSize,
+ const INT sendHeader
+ )
+{
+ FDK_PSENC_ERROR error = PSENC_OK;
+
+ HANDLE_PS_DATA hPsData = &hPsEncode->psData;
+ FIXP_DBL iid [PS_MAX_ENVELOPES][PS_MAX_BANDS];
+ FIXP_DBL icc [PS_MAX_ENVELOPES][PS_MAX_BANDS];
+ int envBorder[PS_MAX_ENVELOPES+1];
+
+ int group, bin, col, subband, band;
+ int i = 0;
+
+ int env = 0;
+ int psBands = (int) hPsEncode->psEncMode;
+ int nIidGroups = hPsEncode->nQmfIidGroups + hPsEncode->nSubQmfIidGroups;
+ int nEnvelopes = fixMin(maxEnvelopes, (UINT)PS_MAX_ENVELOPES);
+
+ C_ALLOC_SCRATCH_START(pwrData, PS_PWR_DATA, 1);
+
+ for(env=0; env<nEnvelopes+1;env++) {
+ envBorder[env] = fMultI(GetInvInt(nEnvelopes),frameSize*env);
+ }
+
+ for(env=0; env<nEnvelopes;env++) {
+
+ /* clear energy array */
+ for (band=0; band<psBands; band++) {
+ pwrData->pwrL[env][band] = pwrData->pwrR[env][band] = pwrData->pwrCr[env][band] = pwrData->pwrCi[env][band] = FIXP_DBL(1);
+ }
+
+ /**** calculate energies and correlation ****/
+
+ /* start with hybrid data */
+ for (group=0; group < nIidGroups; group++) {
+ /* Translate group to bin */
+ bin = hPsEncode->subband2parameterIndex[group];
+
+ /* Translate from 20 bins to 10 bins */
+ if (hPsEncode->psEncMode == PS_BANDS_COARSE) {
+ bin >>= 1;
+ }
+
+ /* determine group border */
+ int bScale = hPsEncode->psBandNrgScale[bin];
+
+ FIXP_DBL pwrL_env_bin = pwrData->pwrL[env][bin];
+ FIXP_DBL pwrR_env_bin = pwrData->pwrR[env][bin];
+ FIXP_DBL pwrCr_env_bin = pwrData->pwrCr[env][bin];
+ FIXP_DBL pwrCi_env_bin = pwrData->pwrCi[env][bin];
+
+ int scale = (int)dynBandScale[bin];
+ for (col=envBorder[env]; col<envBorder[env+1]; col++) {
+ for (subband = hPsEncode->iidGroupBorders[group]; subband < hPsEncode->iidGroupBorders[group+1]; subband++) {
+ FIXP_QMF l_real = (hybridData[col][0][0][subband]) << scale;
+ FIXP_QMF l_imag = (hybridData[col][0][1][subband]) << scale;
+ FIXP_QMF r_real = (hybridData[col][1][0][subband]) << scale;
+ FIXP_QMF r_imag = (hybridData[col][1][1][subband]) << scale;
+
+ pwrL_env_bin += (fPow2Div2(l_real) + fPow2Div2(l_imag)) >> bScale;
+ pwrR_env_bin += (fPow2Div2(r_real) + fPow2Div2(r_imag)) >> bScale;
+ pwrCr_env_bin += (fMultDiv2(l_real, r_real) + fMultDiv2(l_imag, r_imag)) >> bScale;
+ pwrCi_env_bin += (fMultDiv2(r_real, l_imag) - fMultDiv2(l_real, r_imag)) >> bScale;
+ }
+ }
+ /* assure, nrg's of left and right channel are not negative; necessary on 16 bit multiply units */
+ pwrData->pwrL[env][bin] = fixMax((FIXP_DBL)0,pwrL_env_bin);
+ pwrData->pwrR[env][bin] = fixMax((FIXP_DBL)0,pwrR_env_bin);
+
+ pwrData->pwrCr[env][bin] = pwrCr_env_bin;
+ pwrData->pwrCi[env][bin] = pwrCi_env_bin;
+
+ } /* nIidGroups */
+
+ /* calc logarithmic energy */
+ LdDataVector(pwrData->pwrL[env], pwrData->ldPwrL[env], psBands);
+ LdDataVector(pwrData->pwrR[env], pwrData->ldPwrR[env], psBands);
+
+ } /* nEnvelopes */
+
+ /* calculate iid and icc */
+ calculateIID(pwrData->ldPwrL, pwrData->ldPwrR, iid, nEnvelopes, psBands);
+ calculateICC(pwrData->ldPwrL, pwrData->ldPwrR, pwrData->pwrCr, pwrData->pwrCi, icc, nEnvelopes, psBands);
+
+ /*** Envelope Reduction ***/
+ while (envelopeReducible(iid,icc,psBands,nEnvelopes)) {
+ int e=0;
+ /* sum energies of two neighboring envelopes */
+ nEnvelopes >>= 1;
+ for (e=0; e<nEnvelopes; e++) {
+ FDKsbrEnc_addFIXP_DBL(pwrData->pwrL[2*e], pwrData->pwrL[2*e+1], pwrData->pwrL[e], psBands);
+ FDKsbrEnc_addFIXP_DBL(pwrData->pwrR[2*e], pwrData->pwrR[2*e+1], pwrData->pwrR[e], psBands);
+ FDKsbrEnc_addFIXP_DBL(pwrData->pwrCr[2*e],pwrData->pwrCr[2*e+1],pwrData->pwrCr[e],psBands);
+ FDKsbrEnc_addFIXP_DBL(pwrData->pwrCi[2*e],pwrData->pwrCi[2*e+1],pwrData->pwrCi[e],psBands);
+
+ /* calc logarithmic energy */
+ LdDataVector(pwrData->pwrL[e], pwrData->ldPwrL[e], psBands);
+ LdDataVector(pwrData->pwrR[e], pwrData->ldPwrR[e], psBands);
+
+ /* reduce number of envelopes and adjust borders */
+ envBorder[e] = envBorder[2*e];
+ }
+ envBorder[nEnvelopes] = envBorder[2*nEnvelopes];
+
+ /* re-calculate iid and icc */
+ calculateIID(pwrData->ldPwrL, pwrData->ldPwrR, iid, nEnvelopes, psBands);
+ calculateICC(pwrData->ldPwrL, pwrData->ldPwrR, pwrData->pwrCr, pwrData->pwrCi, icc, nEnvelopes, psBands);
+ }
+
+
+ /* */
+ if(sendHeader) {
+ hPsData->headerCnt = MAX_PS_NOHEADER_CNT;
+ hPsData->iidTimeCnt = MAX_TIME_DIFF_FRAMES;
+ hPsData->iccTimeCnt = MAX_TIME_DIFF_FRAMES;
+ hPsData->noEnvCnt = MAX_NOENV_CNT;
+ }
+
+ /*** Parameter processing, quantisation etc ***/
+ processIidData(hPsData, iid, psBands, nEnvelopes, hPsEncode->iidQuantErrorThreshold);
+ processIccData(hPsData, icc, psBands, nEnvelopes);
+
+
+ /*** Initialize output struct ***/
+
+ /* PS Header on/off ? */
+ if( (hPsData->headerCnt<MAX_PS_NOHEADER_CNT)
+ && ( (hPsData->iidQuantMode == hPsData->iidQuantModeLast) && (hPsData->iccQuantMode == hPsData->iccQuantModeLast) )
+ && ( (hPsData->iidEnable == hPsData->iidEnableLast) && (hPsData->iccEnable == hPsData->iccEnableLast) ) ) {
+ hPsOut->enablePSHeader = 0;
+ }
+ else {
+ hPsOut->enablePSHeader = 1;
+ hPsData->headerCnt = 0;
+ }
+
+ /* nEnvelopes = 0 ? */
+ if ( (hPsData->noEnvCnt < MAX_NOENV_CNT)
+ && (similarIid(hPsData, psBands, nEnvelopes))
+ && (similarIcc(hPsData, psBands, nEnvelopes)) ) {
+ hPsOut->nEnvelopes = nEnvelopes = 0;
+ hPsData->noEnvCnt++;
+ } else {
+ hPsData->noEnvCnt = 0;
+ }
+
+
+ if (nEnvelopes>0) {
+
+ hPsOut->enableIID = hPsData->iidEnable;
+ hPsOut->iidMode = getIIDMode(psBands, hPsData->iidQuantMode);
+
+ hPsOut->enableICC = hPsData->iccEnable;
+ hPsOut->iccMode = getICCMode(psBands, hPsData->iccQuantMode);
+
+ hPsOut->enableIpdOpd = 0;
+ hPsOut->frameClass = 0;
+ hPsOut->nEnvelopes = nEnvelopes;
+
+ for(env=0; env<nEnvelopes; env++) {
+ hPsOut->frameBorder[env] = envBorder[env+1];
+ }
+
+ for(env=0; env<hPsOut->nEnvelopes; env++) {
+ hPsOut->deltaIID[env] = (PS_DELTA)hPsData->iidDiffMode[env];
+
+ for(band=0; band<psBands; band++) {
+ hPsOut->iid[env][band] = hPsData->iidIdx[env][band];
+ }
+ }
+
+ for(env=0; env<hPsOut->nEnvelopes; env++) {
+ hPsOut->deltaICC[env] = (PS_DELTA)hPsData->iccDiffMode[env];
+ for(band=0; band<psBands; band++) {
+ hPsOut->icc[env][band] = hPsData->iccIdx[env][band];
+ }
+ }
+
+ /* IPD OPD not supported right now */
+ FDKmemclear(hPsOut->ipd, PS_MAX_ENVELOPES*PS_MAX_BANDS*sizeof(PS_DELTA));
+ for(env=0; env<PS_MAX_ENVELOPES; env++) {
+ hPsOut->deltaIPD[env] = PS_DELTA_FREQ;
+ hPsOut->deltaOPD[env] = PS_DELTA_FREQ;
+ }
+
+ FDKmemclear(hPsOut->ipdLast, PS_MAX_BANDS*sizeof(INT));
+ FDKmemclear(hPsOut->opdLast, PS_MAX_BANDS*sizeof(INT));
+
+ for(band=0; band<PS_MAX_BANDS; band++) {
+ hPsOut->iidLast[band] = hPsData->iidIdxLast[band];
+ hPsOut->iccLast[band] = hPsData->iccIdxLast[band];
+ }
+
+ /* save iids and iccs for differential time coding in the next frame */
+ hPsData->nEnvelopesLast = nEnvelopes;
+ hPsData->iidEnableLast = hPsData->iidEnable;
+ hPsData->iccEnableLast = hPsData->iccEnable;
+ hPsData->iidQuantModeLast = hPsData->iidQuantMode;
+ hPsData->iccQuantModeLast = hPsData->iccQuantMode;
+ for (i=0; i<psBands; i++) {
+ hPsData->iidIdxLast[i] = hPsData->iidIdx[nEnvelopes-1][i];
+ hPsData->iccIdxLast[i] = hPsData->iccIdx[nEnvelopes-1][i];
+ }
+ } /* Envelope > 0 */
+
+ C_ALLOC_SCRATCH_END(pwrData, PS_PWR_DATA, 1)
+
+ return error;
+}
+