aboutsummaryrefslogtreecommitdiffstats
path: root/libSBRenc/src/env_est.cpp
diff options
context:
space:
mode:
authorMartin Storsjo <martin@martin.st>2018-08-22 15:49:59 +0300
committerMartin Storsjo <martin@martin.st>2018-09-02 23:16:58 +0300
commitb95b15e51d8c692735df4d38c1335efc06aa0443 (patch)
treede32d94e69c5d00ab69724ab114415b1f74cba3d /libSBRenc/src/env_est.cpp
parente45ae429b9ca8f234eb861338a75b2d89cde206a (diff)
parent7027cd87488c2a60becbae7a139d18dbc0370459 (diff)
downloadfdk-aac-b95b15e51d8c692735df4d38c1335efc06aa0443.tar.gz
fdk-aac-b95b15e51d8c692735df4d38c1335efc06aa0443.tar.bz2
fdk-aac-b95b15e51d8c692735df4d38c1335efc06aa0443.zip
Merge remote-tracking branch 'aosp/master'
Diffstat (limited to 'libSBRenc/src/env_est.cpp')
-rw-r--r--libSBRenc/src/env_est.cpp1991
1 files changed, 973 insertions, 1018 deletions
diff --git a/libSBRenc/src/env_est.cpp b/libSBRenc/src/env_est.cpp
index 4fcda51..0eb8425 100644
--- a/libSBRenc/src/env_est.cpp
+++ b/libSBRenc/src/env_est.cpp
@@ -1,74 +1,85 @@
-
-/* -----------------------------------------------------------------------------------------------------------
+/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
-© Copyright 1995 - 2015 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- All rights reserved.
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
1. INTRODUCTION
-The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
-the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
-This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
-
-AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
-audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
-independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
-of the MPEG specifications.
-
-Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
-may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
-individually for the purpose of encoding or decoding bit streams in products that are compliant with
-the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
-these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
-software may already be covered under those patent licenses when it is used for those licensed purposes only.
-
-Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
-are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
-applications information and documentation.
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
2. COPYRIGHT LICENSE
-Redistribution and use in source and binary forms, with or without modification, are permitted without
-payment of copyright license fees provided that you satisfy the following conditions:
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
-You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
-your modifications thereto in source code form.
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
-You must retain the complete text of this software license in the documentation and/or other materials
-provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
-You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
-The name of Fraunhofer may not be used to endorse or promote products derived from this library without
-prior written permission.
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
-You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
-software or your modifications thereto.
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
-Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
-and the date of any change. For modified versions of the FDK AAC Codec, the term
-"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
-"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
3. NO PATENT LICENSE
-NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
-ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
-respect to this software.
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
-You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
-by appropriate patent licenses.
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
-This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
-"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
-of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
-CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
-including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
-or business interruption, however caused and on any theory of liability, whether in contract, strict
-liability, or tort (including negligence), arising in any way out of the use of this software, even if
-advised of the possibility of such damage.
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
@@ -79,7 +90,15 @@ Am Wolfsmantel 33
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
------------------------------------------------------------------------------------------------------------ */
+----------------------------------------------------------------------------- */
+
+/**************************** SBR encoder library ******************************
+
+ Author(s):
+
+ Description:
+
+*******************************************************************************/
#include "env_est.h"
#include "tran_det.h"
@@ -89,20 +108,18 @@ amm-info@iis.fraunhofer.de
#include "fram_gen.h"
#include "bit_sbr.h"
#include "cmondata.h"
-#include "sbr_ram.h"
-
+#include "sbrenc_ram.h"
#include "genericStds.h"
#define QUANT_ERROR_THRES 200
#define Y_NRG_SCALE 5 /* noCols = 32 -> shift(5) */
+#define MAX_NRG_SLOTS_LD 16
-
-static const UCHAR panTable[2][10] = { { 0, 2, 4, 6, 8,12,16,20,24},
- { 0, 2, 4, 8,12, 0, 0, 0, 0 } };
+static const UCHAR panTable[2][10] = {{0, 2, 4, 6, 8, 12, 16, 20, 24},
+ {0, 2, 4, 8, 12, 0, 0, 0, 0}};
static const UCHAR maxIndex[2] = {9, 5};
-
/******************************************************************************
Functionname: FDKsbrEnc_GetTonality
******************************************************************************/
@@ -124,64 +141,64 @@ static const UCHAR maxIndex[2] = {9, 5};
scaled by 2^(RELAXATION_SHIFT+2)*RELAXATION_FRACT
****************************************************************************/
-static FIXP_DBL FDKsbrEnc_GetTonality(
- const FIXP_DBL *const *quotaMatrix,
- const INT noEstPerFrame,
- const INT startIndex,
- const FIXP_DBL *const *Energies,
- const UCHAR startBand,
- const INT stopBand,
- const INT numberCols
- )
-{
+static FIXP_DBL FDKsbrEnc_GetTonality(const FIXP_DBL *const *quotaMatrix,
+ const INT noEstPerFrame,
+ const INT startIndex,
+ const FIXP_DBL *const *Energies,
+ const UCHAR startBand, const INT stopBand,
+ const INT numberCols) {
UCHAR b, e, k;
- INT no_enMaxBand[SBR_MAX_ENERGY_VALUES] = { -1, -1, -1, -1, -1 };
- FIXP_DBL energyMax[SBR_MAX_ENERGY_VALUES] = { FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f) };
+ INT no_enMaxBand[SBR_MAX_ENERGY_VALUES] = {-1, -1, -1, -1, -1};
+ FIXP_DBL energyMax[SBR_MAX_ENERGY_VALUES] = {
+ FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f),
+ FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f)};
FIXP_DBL energyMaxMin = MAXVAL_DBL; /* min. energy in energyMax array */
- UCHAR posEnergyMaxMin = 0; /* min. energy in energyMax array position */
- FIXP_DBL tonalityBand[SBR_MAX_ENERGY_VALUES] = { FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f) };
+ UCHAR posEnergyMaxMin = 0; /* min. energy in energyMax array position */
+ FIXP_DBL tonalityBand[SBR_MAX_ENERGY_VALUES] = {
+ FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f),
+ FL2FXCONST_DBL(0.0f), FL2FXCONST_DBL(0.0f)};
FIXP_DBL globalTonality = FL2FXCONST_DBL(0.0f);
- FIXP_DBL energyBand[QMF_CHANNELS];
- INT maxNEnergyValues; /* max. number of max. energy values */
+ FIXP_DBL energyBand[64];
+ INT maxNEnergyValues; /* max. number of max. energy values */
/*** Sum up energies for each band ***/
- FDK_ASSERT(numberCols==15||numberCols==16);
+ FDK_ASSERT(numberCols == 15 || numberCols == 16);
/* numberCols is always 15 or 16 for ELD. In case of 16 bands, the
energyBands are initialized with the [15]th column.
The rest of the column energies are added in the next step. */
- if (numberCols==15) {
- for (b=startBand; b<stopBand; b++) {
- energyBand[b]=FL2FXCONST_DBL(0.0f);
+ if (numberCols == 15) {
+ for (b = startBand; b < stopBand; b++) {
+ energyBand[b] = FL2FXCONST_DBL(0.0f);
}
} else {
- for (b=startBand; b<stopBand; b++) {
- energyBand[b]=Energies[15][b]>>4;
+ for (b = startBand; b < stopBand; b++) {
+ energyBand[b] = Energies[15][b] >> 4;
}
}
- for (k=0; k<15; k++) {
- for (b=startBand; b<stopBand; b++) {
- energyBand[b] += Energies[k][b]>>4;
+ for (k = 0; k < 15; k++) {
+ for (b = startBand; b < stopBand; b++) {
+ energyBand[b] += Energies[k][b] >> 4;
}
}
/*** Determine 5 highest band-energies ***/
- maxNEnergyValues = fMin(SBR_MAX_ENERGY_VALUES, stopBand-startBand);
+ maxNEnergyValues = fMin(SBR_MAX_ENERGY_VALUES, stopBand - startBand);
/* Get min. value in energyMax array */
energyMaxMin = energyMax[0] = energyBand[startBand];
no_enMaxBand[0] = startBand;
posEnergyMaxMin = 0;
- for (k=1; k<maxNEnergyValues; k++) {
- energyMax[k] = energyBand[startBand+k];
- no_enMaxBand[k] = startBand+k;
+ for (k = 1; k < maxNEnergyValues; k++) {
+ energyMax[k] = energyBand[startBand + k];
+ no_enMaxBand[k] = startBand + k;
if (energyMaxMin > energyMax[k]) {
energyMaxMin = energyMax[k];
posEnergyMaxMin = k;
}
}
- for (b=startBand+maxNEnergyValues; b<stopBand; b++) {
+ for (b = startBand + maxNEnergyValues; b < stopBand; b++) {
if (energyBand[b] > energyMaxMin) {
energyMax[posEnergyMaxMin] = energyBand[b];
no_enMaxBand[posEnergyMaxMin] = b;
@@ -189,7 +206,7 @@ static FIXP_DBL FDKsbrEnc_GetTonality(
/* Again, get min. value in energyMax array */
energyMaxMin = energyMax[0];
posEnergyMaxMin = 0;
- for (k=1; k<maxNEnergyValues; k++) {
+ for (k = 1; k < maxNEnergyValues; k++) {
if (energyMaxMin > energyMax[k]) {
energyMaxMin = energyMax[k];
posEnergyMaxMin = k;
@@ -200,12 +217,13 @@ static FIXP_DBL FDKsbrEnc_GetTonality(
/*** End determine 5 highest band-energies ***/
/* Get tonality values for 5 highest energies */
- for (e=0; e<maxNEnergyValues; e++) {
- tonalityBand[e]=FL2FXCONST_DBL(0.0f);
- for (k=0; k<noEstPerFrame; k++) {
+ for (e = 0; e < maxNEnergyValues; e++) {
+ tonalityBand[e] = FL2FXCONST_DBL(0.0f);
+ for (k = 0; k < noEstPerFrame; k++) {
tonalityBand[e] += quotaMatrix[startIndex + k][no_enMaxBand[e]] >> 1;
}
- globalTonality += tonalityBand[e] >> 2; /* headroom of 2+1 (max. 5 additions) */
+ globalTonality +=
+ tonalityBand[e] >> 2; /* headroom of 2+1 (max. 5 additions) */
}
return globalTonality;
@@ -221,34 +239,36 @@ static FIXP_DBL FDKsbrEnc_GetTonality(
****************************************************************************/
LNK_SECTION_CODE_L1
-static void
-FDKsbrEnc_getEnergyFromCplxQmfData(FIXP_DBL **RESTRICT energyValues,/*!< the result of the operation */
- FIXP_DBL **RESTRICT realValues, /*!< the real part of the QMF subsamples */
- FIXP_DBL **RESTRICT imagValues, /*!< the imaginary part of the QMF subsamples */
- INT numberBands, /*!< number of QMF bands */
- INT numberCols, /*!< number of QMF subsamples */
- INT *qmfScale, /*!< sclefactor of QMF subsamples */
- INT *energyScale) /*!< scalefactor of energies */
+static void FDKsbrEnc_getEnergyFromCplxQmfData(
+ FIXP_DBL **RESTRICT energyValues, /*!< the result of the operation */
+ FIXP_DBL **RESTRICT realValues, /*!< the real part of the QMF subsamples */
+ FIXP_DBL **RESTRICT
+ imagValues, /*!< the imaginary part of the QMF subsamples */
+ INT numberBands, /*!< number of QMF bands */
+ INT numberCols, /*!< number of QMF subsamples */
+ INT *qmfScale, /*!< sclefactor of QMF subsamples */
+ INT *energyScale) /*!< scalefactor of energies */
{
int j, k;
int scale;
FIXP_DBL max_val = FL2FXCONST_DBL(0.0f);
/* Get Scratch buffer */
- C_ALLOC_SCRATCH_START(tmpNrg, FIXP_DBL, QMF_CHANNELS*QMF_MAX_TIME_SLOTS/2);
+ C_ALLOC_SCRATCH_START(tmpNrg, FIXP_DBL, 32 * 64 / 2)
/* Get max possible scaling of QMF data */
scale = DFRACT_BITS;
- for (k=0; k<numberCols; k++) {
- scale = fixMin(scale, fixMin(getScalefactor(realValues[k], numberBands), getScalefactor(imagValues[k], numberBands)));
+ for (k = 0; k < numberCols; k++) {
+ scale = fixMin(scale, fixMin(getScalefactor(realValues[k], numberBands),
+ getScalefactor(imagValues[k], numberBands)));
}
/* Tweak scaling stability for zero signal to non-zero signal transitions */
- if (scale >= DFRACT_BITS-1) {
- scale = (FRACT_BITS-1-*qmfScale);
+ if (scale >= DFRACT_BITS - 1) {
+ scale = (FRACT_BITS - 1 - *qmfScale);
}
- /* prevent scaling of QFM values to -1.f */
- scale = fixMax(0,scale-1);
+ /* prevent scaling of QMF values to -1.f */
+ scale = fixMax(0, scale - 1);
/* Update QMF scale */
*qmfScale += scale;
@@ -259,22 +279,23 @@ FDKsbrEnc_getEnergyFromCplxQmfData(FIXP_DBL **RESTRICT energyValues,/*!< the res
*/
{
FIXP_DBL *nrgValues = tmpNrg;
- for (k=0; k<numberCols; k+=2)
- {
+ for (k = 0; k < numberCols; k += 2) {
/* Load band vector addresses of 2 consecutive timeslots */
FIXP_DBL *RESTRICT r0 = realValues[k];
FIXP_DBL *RESTRICT i0 = imagValues[k];
- FIXP_DBL *RESTRICT r1 = realValues[k+1];
- FIXP_DBL *RESTRICT i1 = imagValues[k+1];
- for (j=0; j<numberBands; j++)
- {
- FIXP_DBL energy;
- FIXP_DBL tr0,tr1,ti0,ti1;
+ FIXP_DBL *RESTRICT r1 = realValues[k + 1];
+ FIXP_DBL *RESTRICT i1 = imagValues[k + 1];
+ for (j = 0; j < numberBands; j++) {
+ FIXP_DBL energy;
+ FIXP_DBL tr0, tr1, ti0, ti1;
/* Read QMF values of 2 timeslots */
- tr0 = r0[j]; tr1 = r1[j]; ti0 = i0[j]; ti1 = i1[j];
+ tr0 = r0[j];
+ tr1 = r1[j];
+ ti0 = i0[j];
+ ti1 = i1[j];
- /* Scale QMF Values and Calc Energy of both timeslots */
+ /* Scale QMF Values and Calc Energy average of both timeslots */
tr0 <<= scale;
ti0 <<= scale;
energy = fPow2AddDiv2(fPow2Div2(tr0), ti0) >> 1;
@@ -288,18 +309,23 @@ FDKsbrEnc_getEnergyFromCplxQmfData(FIXP_DBL **RESTRICT energyValues,/*!< the res
max_val = fixMax(max_val, energy);
/* Write back scaled QMF values */
- r0[j] = tr0; r1[j] = tr1; i0[j] = ti0; i1[j] = ti1;
+ r0[j] = tr0;
+ r1[j] = tr1;
+ i0[j] = ti0;
+ i1[j] = ti1;
}
}
}
/* energyScale: scalefactor energies of current frame */
- *energyScale = 2*(*qmfScale)-1; /* if qmfScale > 0: nr of right shifts otherwise nr of left shifts */
+ *energyScale =
+ 2 * (*qmfScale) -
+ 1; /* if qmfScale > 0: nr of right shifts otherwise nr of left shifts */
/* Scale timeslot pair energies and write to output buffer */
scale = CountLeadingBits(max_val);
{
- FIXP_DBL *nrgValues = tmpNrg;
- for (k=0; k<numberCols>>1; k++) {
+ FIXP_DBL *nrgValues = tmpNrg;
+ for (k = 0; k<numberCols>> 1; k++) {
scaleValues(energyValues[k], nrgValues, numberBands, scale);
nrgValues += numberBands;
}
@@ -307,41 +333,43 @@ FDKsbrEnc_getEnergyFromCplxQmfData(FIXP_DBL **RESTRICT energyValues,/*!< the res
}
/* Free Scratch buffer */
- C_ALLOC_SCRATCH_END(tmpNrg, FIXP_DBL, QMF_CHANNELS*QMF_MAX_TIME_SLOTS/2);
+ C_ALLOC_SCRATCH_END(tmpNrg, FIXP_DBL, 32 * 64 / 2)
}
LNK_SECTION_CODE_L1
-static void
-FDKsbrEnc_getEnergyFromCplxQmfDataFull(FIXP_DBL **RESTRICT energyValues,/*!< the result of the operation */
- FIXP_DBL **RESTRICT realValues, /*!< the real part of the QMF subsamples */
- FIXP_DBL **RESTRICT imagValues, /*!< the imaginary part of the QMF subsamples */
- int numberBands, /*!< number of QMF bands */
- int numberCols, /*!< number of QMF subsamples */
- int *qmfScale, /*!< sclefactor of QMF subsamples */
- int *energyScale) /*!< scalefactor of energies */
+static void FDKsbrEnc_getEnergyFromCplxQmfDataFull(
+ FIXP_DBL **RESTRICT energyValues, /*!< the result of the operation */
+ FIXP_DBL **RESTRICT realValues, /*!< the real part of the QMF subsamples */
+ FIXP_DBL **RESTRICT
+ imagValues, /*!< the imaginary part of the QMF subsamples */
+ int numberBands, /*!< number of QMF bands */
+ int numberCols, /*!< number of QMF subsamples */
+ int *qmfScale, /*!< scalefactor of QMF subsamples */
+ int *energyScale) /*!< scalefactor of energies */
{
int j, k;
int scale;
FIXP_DBL max_val = FL2FXCONST_DBL(0.0f);
/* Get Scratch buffer */
- C_ALLOC_SCRATCH_START(tmpNrg, FIXP_DBL, QMF_MAX_TIME_SLOTS*QMF_CHANNELS/2);
+ C_ALLOC_SCRATCH_START(tmpNrg, FIXP_DBL, MAX_NRG_SLOTS_LD * 64)
- FDK_ASSERT(numberBands <= QMF_CHANNELS);
- FDK_ASSERT(numberCols <= QMF_MAX_TIME_SLOTS/2);
+ FDK_ASSERT(numberCols <= MAX_NRG_SLOTS_LD);
+ FDK_ASSERT(numberBands <= 64);
/* Get max possible scaling of QMF data */
scale = DFRACT_BITS;
- for (k=0; k<numberCols; k++) {
- scale = fixMin(scale, fixMin(getScalefactor(realValues[k], numberBands), getScalefactor(imagValues[k], numberBands)));
+ for (k = 0; k < numberCols; k++) {
+ scale = fixMin(scale, fixMin(getScalefactor(realValues[k], numberBands),
+ getScalefactor(imagValues[k], numberBands)));
}
/* Tweak scaling stability for zero signal to non-zero signal transitions */
- if (scale >= DFRACT_BITS-1) {
- scale = (FRACT_BITS-1-*qmfScale);
+ if (scale >= DFRACT_BITS - 1) {
+ scale = (FRACT_BITS - 1 - *qmfScale);
}
/* prevent scaling of QFM values to -1.f */
- scale = fixMax(0,scale-1);
+ scale = fixMax(0, scale - 1);
/* Update QMF scale */
*qmfScale += scale;
@@ -352,20 +380,19 @@ FDKsbrEnc_getEnergyFromCplxQmfDataFull(FIXP_DBL **RESTRICT energyValues,/*!< the
*/
{
FIXP_DBL *nrgValues = tmpNrg;
- for (k=0; k<numberCols; k++)
- {
- /* Load band vector addresses of 2 consecutive timeslots */
+ for (k = 0; k < numberCols; k++) {
+ /* Load band vector addresses of 1 timeslot */
FIXP_DBL *RESTRICT r0 = realValues[k];
FIXP_DBL *RESTRICT i0 = imagValues[k];
- for (j=0; j<numberBands; j++)
- {
- FIXP_DBL energy;
- FIXP_DBL tr0,ti0;
+ for (j = 0; j < numberBands; j++) {
+ FIXP_DBL energy;
+ FIXP_DBL tr0, ti0;
- /* Read QMF values of 2 timeslots */
- tr0 = r0[j]; ti0 = i0[j];
+ /* Read QMF values of 1 timeslot */
+ tr0 = r0[j];
+ ti0 = i0[j];
- /* Scale QMF Values and Calc Energy of both timeslots */
+ /* Scale QMF Values and Calc Energy */
tr0 <<= scale;
ti0 <<= scale;
energy = fPow2AddDiv2(fPow2Div2(tr0), ti0);
@@ -374,18 +401,21 @@ FDKsbrEnc_getEnergyFromCplxQmfDataFull(FIXP_DBL **RESTRICT energyValues,/*!< the
max_val = fixMax(max_val, energy);
/* Write back scaled QMF values */
- r0[j] = tr0; i0[j] = ti0;
+ r0[j] = tr0;
+ i0[j] = ti0;
}
}
}
/* energyScale: scalefactor energies of current frame */
- *energyScale = 2*(*qmfScale)-1; /* if qmfScale > 0: nr of right shifts otherwise nr of left shifts */
+ *energyScale =
+ 2 * (*qmfScale) -
+ 1; /* if qmfScale > 0: nr of right shifts otherwise nr of left shifts */
/* Scale timeslot pair energies and write to output buffer */
scale = CountLeadingBits(max_val);
{
- FIXP_DBL *nrgValues = tmpNrg;
- for (k=0; k<numberCols; k++) {
+ FIXP_DBL *nrgValues = tmpNrg;
+ for (k = 0; k < numberCols; k++) {
scaleValues(energyValues[k], nrgValues, numberBands, scale);
nrgValues += numberBands;
}
@@ -393,7 +423,7 @@ FDKsbrEnc_getEnergyFromCplxQmfDataFull(FIXP_DBL **RESTRICT energyValues,/*!< the
}
/* Free Scratch buffer */
- C_ALLOC_SCRATCH_END(tmpNrg, FIXP_DBL, QMF_MAX_TIME_SLOTS*QMF_CHANNELS/2);
+ C_ALLOC_SCRATCH_END(tmpNrg, FIXP_DBL, MAX_NRG_SLOTS_LD * 64)
}
/***************************************************************************/
@@ -404,12 +434,10 @@ FDKsbrEnc_getEnergyFromCplxQmfDataFull(FIXP_DBL **RESTRICT energyValues,/*!< the
\return the quantized pan value
****************************************************************************/
-static INT
-mapPanorama(INT nrgVal, /*! integer value of the energy */
- INT ampRes, /*! amplitude resolution [1.5/3dB] */
- INT *quantError /*! quantization error of energy val*/
- )
-{
+static INT mapPanorama(INT nrgVal, /*! integer value of the energy */
+ INT ampRes, /*! amplitude resolution [1.5/3dB] */
+ INT *quantError /*! quantization error of energy val*/
+) {
int i;
INT min_val, val;
UCHAR panIndex;
@@ -422,7 +450,7 @@ mapPanorama(INT nrgVal, /*! integer value of the energy */
min_val = FDK_INT_MAX;
panIndex = 0;
for (i = 0; i < maxIndex[ampRes]; i++) {
- val = fixp_abs ((nrgVal - (INT)panTable[ampRes][i]));
+ val = fixp_abs((nrgVal - (INT)panTable[ampRes][i]));
if (val < min_val) {
min_val = val;
@@ -430,12 +458,12 @@ mapPanorama(INT nrgVal, /*! integer value of the energy */
}
}
- *quantError=min_val;
+ *quantError = min_val;
- return panTable[ampRes][maxIndex[ampRes]-1] + sign * panTable[ampRes][panIndex];
+ return panTable[ampRes][maxIndex[ampRes] - 1] +
+ sign * panTable[ampRes][panIndex];
}
-
/***************************************************************************/
/*!
@@ -444,34 +472,37 @@ mapPanorama(INT nrgVal, /*! integer value of the energy */
\return void
****************************************************************************/
-static void
-sbrNoiseFloorLevelsQuantisation(SCHAR *RESTRICT iNoiseLevels, /*! quantized noise levels */
- FIXP_DBL *RESTRICT NoiseLevels, /*! the noise levels */
- INT coupling /*! the coupling flag */
- )
-{
+static void sbrNoiseFloorLevelsQuantisation(
+ SCHAR *RESTRICT iNoiseLevels, /*! quantized noise levels */
+ FIXP_DBL *RESTRICT
+ NoiseLevels, /*! the noise levels. Exponent = LD_DATA_SHIFT */
+ INT coupling /*! the coupling flag */
+) {
INT i;
INT tmp, dummy;
/* Quantisation, similar to sfb quant... */
for (i = 0; i < MAX_NUM_NOISE_VALUES; i++) {
- /* tmp = NoiseLevels[i] > (PFLOAT)30.0f ? 30: (INT) (NoiseLevels[i] + (PFLOAT)0.5); */
- /* 30>>6 = 0.46875 */
+ /* tmp = NoiseLevels[i] > (PFLOAT)30.0f ? 30: (INT) (NoiseLevels[i] +
+ * (PFLOAT)0.5); */
+ /* 30>>LD_DATA_SHIFT = 0.46875 */
if ((FIXP_DBL)NoiseLevels[i] > FL2FXCONST_DBL(0.46875f)) {
tmp = 30;
- }
- else {
- /* tmp = (INT)((FIXP_DBL)NoiseLevels[i] + (FL2FXCONST_DBL(0.5f)>>(*/ /* FRACT_BITS+ */ /* 6-1)));*/
- /* tmp = tmp >> (DFRACT_BITS-1-6); */ /* conversion to integer happens here */
- /* rounding is done by shifting one bit less than necessary to the right, adding '1' and then shifting the final bit */
- tmp = ((((INT)NoiseLevels[i])>>(DFRACT_BITS-1-LD_DATA_SHIFT)) ); /* conversion to integer */
- if (tmp != 0)
- tmp += 1;
+ } else {
+ /* tmp = (INT)((FIXP_DBL)NoiseLevels[i] + (FL2FXCONST_DBL(0.5f)>>(*/
+ /* FRACT_BITS+ */ /* 6-1)));*/
+ /* tmp = tmp >> (DFRACT_BITS-1-LD_DATA_SHIFT); */ /* conversion to integer
+ happens here */
+ /* rounding is done by shifting one bit less than necessary to the right,
+ * adding '1' and then shifting the final bit */
+ tmp = ((((INT)NoiseLevels[i]) >>
+ (DFRACT_BITS - 1 - LD_DATA_SHIFT))); /* conversion to integer */
+ if (tmp != 0) tmp += 1;
}
if (coupling) {
tmp = tmp < -30 ? -30 : tmp;
- tmp = mapPanorama (tmp,1,&dummy);
+ tmp = mapPanorama(tmp, 1, &dummy);
}
iNoiseLevels[i] = tmp;
}
@@ -485,60 +516,76 @@ sbrNoiseFloorLevelsQuantisation(SCHAR *RESTRICT iNoiseLevels, /*! quantized n
\return void
****************************************************************************/
-static void
-coupleNoiseFloor(FIXP_DBL *RESTRICT noise_level_left, /*! noise level left (modified)*/
- FIXP_DBL *RESTRICT noise_level_right /*! noise level right (modified)*/
- )
-{
- FIXP_DBL cmpValLeft,cmpValRight;
+static void coupleNoiseFloor(
+ FIXP_DBL *RESTRICT noise_level_left, /*! noise level left (modified)*/
+ FIXP_DBL *RESTRICT noise_level_right /*! noise level right (modified)*/
+) {
+ FIXP_DBL cmpValLeft, cmpValRight;
INT i;
- FIXP_DBL temp1,temp2;
+ FIXP_DBL temp1, temp2;
for (i = 0; i < MAX_NUM_NOISE_VALUES; i++) {
-
/* Calculation of the power function using ld64:
z = x^y;
z' = CalcLd64(z) = y*CalcLd64(x)/64;
z = CalcInvLd64(z');
*/
- cmpValLeft = NOISE_FLOOR_OFFSET_64 - noise_level_left[i];
+ cmpValLeft = NOISE_FLOOR_OFFSET_64 - noise_level_left[i];
cmpValRight = NOISE_FLOOR_OFFSET_64 - noise_level_right[i];
if (cmpValRight < FL2FXCONST_DBL(0.0f)) {
temp1 = CalcInvLdData(NOISE_FLOOR_OFFSET_64 - noise_level_right[i]);
- }
- else {
+ } else {
temp1 = CalcInvLdData(NOISE_FLOOR_OFFSET_64 - noise_level_right[i]);
- temp1 = temp1 << (DFRACT_BITS-1-LD_DATA_SHIFT-1); /* INT to fract conversion of result, if input of CalcInvLdData is positiv */
+ temp1 = temp1 << (DFRACT_BITS - 1 - LD_DATA_SHIFT -
+ 1); /* INT to fract conversion of result, if input of
+ CalcInvLdData is positiv */
}
if (cmpValLeft < FL2FXCONST_DBL(0.0f)) {
temp2 = CalcInvLdData(NOISE_FLOOR_OFFSET_64 - noise_level_left[i]);
- }
- else {
+ } else {
temp2 = CalcInvLdData(NOISE_FLOOR_OFFSET_64 - noise_level_left[i]);
- temp2 = temp2 << (DFRACT_BITS-1-LD_DATA_SHIFT-1); /* INT to fract conversion of result, if input of CalcInvLdData is positiv */
+ temp2 = temp2 << (DFRACT_BITS - 1 - LD_DATA_SHIFT -
+ 1); /* INT to fract conversion of result, if input of
+ CalcInvLdData is positiv */
}
-
- if ((cmpValLeft < FL2FXCONST_DBL(0.0f)) && (cmpValRight < FL2FXCONST_DBL(0.0f))) {
- noise_level_left[i] = NOISE_FLOOR_OFFSET_64 - (CalcLdData(((temp1>>1) + (temp2>>1)))); /* no scaling needed! both values are dfract */
+ if ((cmpValLeft < FL2FXCONST_DBL(0.0f)) &&
+ (cmpValRight < FL2FXCONST_DBL(0.0f))) {
+ noise_level_left[i] =
+ NOISE_FLOOR_OFFSET_64 -
+ (CalcLdData(
+ ((temp1 >> 1) +
+ (temp2 >> 1)))); /* no scaling needed! both values are dfract */
noise_level_right[i] = CalcLdData(temp2) - CalcLdData(temp1);
}
- if ((cmpValLeft >= FL2FXCONST_DBL(0.0f)) && (cmpValRight >= FL2FXCONST_DBL(0.0f))) {
- noise_level_left[i] = NOISE_FLOOR_OFFSET_64 - (CalcLdData(((temp1>>1) + (temp2>>1))) + FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */
+ if ((cmpValLeft >= FL2FXCONST_DBL(0.0f)) &&
+ (cmpValRight >= FL2FXCONST_DBL(0.0f))) {
+ noise_level_left[i] = NOISE_FLOOR_OFFSET_64 -
+ (CalcLdData(((temp1 >> 1) + (temp2 >> 1))) +
+ FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */
noise_level_right[i] = CalcLdData(temp2) - CalcLdData(temp1);
}
- if ((cmpValLeft >= FL2FXCONST_DBL(0.0f)) && (cmpValRight < FL2FXCONST_DBL(0.0f))) {
- noise_level_left[i] = NOISE_FLOOR_OFFSET_64 - (CalcLdData(((temp1>>(7+1)) + (temp2>>1))) + FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */
- noise_level_right[i] = (CalcLdData(temp2) + FL2FXCONST_DBL(0.109375f)) - CalcLdData(temp1);
+ if ((cmpValLeft >= FL2FXCONST_DBL(0.0f)) &&
+ (cmpValRight < FL2FXCONST_DBL(0.0f))) {
+ noise_level_left[i] = NOISE_FLOOR_OFFSET_64 -
+ (CalcLdData(((temp1 >> (7 + 1)) + (temp2 >> 1))) +
+ FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */
+ noise_level_right[i] =
+ (CalcLdData(temp2) + FL2FXCONST_DBL(0.109375f)) - CalcLdData(temp1);
}
- if ((cmpValLeft < FL2FXCONST_DBL(0.0f)) && (cmpValRight >= FL2FXCONST_DBL(0.0f))) {
- noise_level_left[i] = NOISE_FLOOR_OFFSET_64 - (CalcLdData(((temp1>>1) + (temp2>>(7+1)))) + FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */
- noise_level_right[i] = CalcLdData(temp2) - (CalcLdData(temp1) + FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */
+ if ((cmpValLeft < FL2FXCONST_DBL(0.0f)) &&
+ (cmpValRight >= FL2FXCONST_DBL(0.0f))) {
+ noise_level_left[i] = NOISE_FLOOR_OFFSET_64 -
+ (CalcLdData(((temp1 >> 1) + (temp2 >> (7 + 1)))) +
+ FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */
+ noise_level_right[i] = CalcLdData(temp2) -
+ (CalcLdData(temp1) +
+ FL2FXCONST_DBL(0.109375f)); /* scaled with 7/64 */
}
}
}
@@ -546,22 +593,23 @@ coupleNoiseFloor(FIXP_DBL *RESTRICT noise_level_left, /*! noise level left (mod
/***************************************************************************/
/*!
- \brief Calculation of energy starting in lower band (li) up to upper band (ui)
- over slots (start_pos) to (stop_pos)
+ \brief Calculation of energy starting in lower band (li) up to upper band
+(ui) over slots (start_pos) to (stop_pos)
\return void
****************************************************************************/
-static FIXP_DBL
-getEnvSfbEnergy(INT li, /*! lower band */
- INT ui, /*! upper band */
- INT start_pos, /*! start slot */
- INT stop_pos, /*! stop slot */
- INT border_pos, /*! slots scaling border */
- FIXP_DBL **YBuffer, /*! sfb energy buffer */
- INT YBufferSzShift, /*! Energy buffer index scale */
- INT scaleNrg0, /*! scaling of lower slots */
- INT scaleNrg1) /*! scaling of upper slots */
+
+static FIXP_DBL getEnvSfbEnergy(
+ INT li, /*! lower band */
+ INT ui, /*! upper band */
+ INT start_pos, /*! start slot */
+ INT stop_pos, /*! stop slot */
+ INT border_pos, /*! slots scaling border */
+ FIXP_DBL **YBuffer, /*! sfb energy buffer */
+ INT YBufferSzShift, /*! Energy buffer index scale */
+ INT scaleNrg0, /*! scaling of lower slots */
+ INT scaleNrg1) /*! scaling of upper slots */
{
/* use dynamic scaling for outer energy loop;
energies are critical and every bit is important */
@@ -569,30 +617,33 @@ getEnvSfbEnergy(INT li, /*! lower band */
FIXP_DBL nrgSum, nrg1, nrg2, accu1, accu2;
INT dynScale, dynScale1, dynScale2;
- if(ui-li==0) dynScale = DFRACT_BITS-1;
+ if (ui - li == 0)
+ dynScale = DFRACT_BITS - 1;
else
- dynScale = CalcLdInt(ui-li)>>(DFRACT_BITS-1-LD_DATA_SHIFT);
+ dynScale = CalcLdInt(ui - li) >> (DFRACT_BITS - 1 - LD_DATA_SHIFT);
- sc0 = fixMin(scaleNrg0,Y_NRG_SCALE); sc1 = fixMin(scaleNrg1,Y_NRG_SCALE);
+ sc0 = fixMin(scaleNrg0, Y_NRG_SCALE);
+ sc1 = fixMin(scaleNrg1, Y_NRG_SCALE);
/* dynScale{1,2} is set such that the right shift below is positive */
- dynScale1 = fixMin((scaleNrg0-sc0),dynScale);
- dynScale2 = fixMin((scaleNrg1-sc1),dynScale);
+ dynScale1 = fixMin((scaleNrg0 - sc0), dynScale);
+ dynScale2 = fixMin((scaleNrg1 - sc1), dynScale);
nrgSum = accu1 = accu2 = (FIXP_DBL)0;
for (k = li; k < ui; k++) {
nrg1 = nrg2 = (FIXP_DBL)0;
for (l = start_pos; l < border_pos; l++) {
- nrg1 += YBuffer[l>>YBufferSzShift][k] >> sc0;
+ nrg1 += YBuffer[l >> YBufferSzShift][k] >> sc0;
}
for (; l < stop_pos; l++) {
- nrg2 += YBuffer[l>>YBufferSzShift][k] >> sc1;
+ nrg2 += YBuffer[l >> YBufferSzShift][k] >> sc1;
}
- accu1 += (nrg1>>dynScale1);
- accu2 += (nrg2>>dynScale2);
+ accu1 += (nrg1 >> dynScale1);
+ accu2 += (nrg2 >> dynScale2);
}
/* This shift factor is always positive. See comment above. */
- nrgSum += ( accu1 >> fixMin((scaleNrg0-sc0-dynScale1),(DFRACT_BITS-1)) )
- + ( accu2 >> fixMin((scaleNrg1-sc1-dynScale2),(DFRACT_BITS-1)) );
+ nrgSum +=
+ (accu1 >> fixMin((scaleNrg0 - sc0 - dynScale1), (DFRACT_BITS - 1))) +
+ (accu2 >> fixMin((scaleNrg1 - sc1 - dynScale2), (DFRACT_BITS - 1)));
return nrgSum;
}
@@ -605,27 +656,30 @@ getEnvSfbEnergy(INT li, /*! lower band */
\return void
****************************************************************************/
-static FIXP_DBL
-mhLoweringEnergy(FIXP_DBL nrg, INT M)
-{
+static FIXP_DBL mhLoweringEnergy(FIXP_DBL nrg, INT M) {
/*
- Compensating for the fact that we in the decoder map the "average energy to every QMF
- band, and use this when we calculate the boost-factor. Since the mapped energy isn't
- the average energy but the maximum energy in case of missing harmonic creation, we will
- in the boost function calculate that too much limiting has been applied and hence we will
- boost the signal although it isn't called for. Hence we need to compensate for this by
- lowering the transmitted energy values for the sines so they will get the correct level
+ Compensating for the fact that we in the decoder map the "average energy to
+ every QMF band, and use this when we calculate the boost-factor. Since the
+ mapped energy isn't the average energy but the maximum energy in case of
+ missing harmonic creation, we will in the boost function calculate that too
+ much limiting has been applied and hence we will boost the signal although
+ it isn't called for. Hence we need to compensate for this by lowering the
+ transmitted energy values for the sines so they will get the correct level
after the boost is applied.
*/
- if(M > 2){
+ if (M > 2) {
INT tmpScale;
tmpScale = CountLeadingBits(nrg);
nrg <<= tmpScale;
- nrg = fMult(nrg, FL2FXCONST_DBL(0.398107267f)); /* The maximum boost is 1.584893, so the maximum attenuation should be square(1/1.584893) = 0.398107267 */
+ nrg = fMult(nrg, FL2FXCONST_DBL(0.398107267f)); /* The maximum boost
+ is 1.584893, so the
+ maximum attenuation
+ should be
+ square(1/1.584893) =
+ 0.398107267 */
nrg >>= tmpScale;
- }
- else{
- if(M > 1){
+ } else {
+ if (M > 1) {
nrg >>= 1;
}
}
@@ -641,22 +695,17 @@ mhLoweringEnergy(FIXP_DBL nrg, INT M)
\return void
****************************************************************************/
-static FIXP_DBL nmhLoweringEnergy(
- FIXP_DBL nrg,
- const FIXP_DBL nrgSum,
- const INT nrgSum_scale,
- const INT M
- )
-{
- if (nrg>FL2FXCONST_DBL(0)) {
- int sc=0;
+static FIXP_DBL nmhLoweringEnergy(FIXP_DBL nrg, const FIXP_DBL nrgSum,
+ const INT nrgSum_scale, const INT M) {
+ if (nrg > FL2FXCONST_DBL(0)) {
+ int sc = 0;
/* gain = nrgSum / (nrg*(M+1)) */
- FIXP_DBL gain = fMult(fDivNorm(nrgSum, nrg, &sc), GetInvInt(M+1));
+ FIXP_DBL gain = fMult(fDivNorm(nrgSum, nrg, &sc), GetInvInt(M + 1));
sc += nrgSum_scale;
/* reduce nrg if gain smaller 1.f */
- if ( !((sc>=0) && ( gain > ((FIXP_DBL)MAXVAL_DBL>>sc) )) ) {
- nrg = fMult(scaleValue(gain,sc), nrg);
+ if (!((sc >= 0) && (gain > ((FIXP_DBL)MAXVAL_DBL >> sc)))) {
+ nrg = fMult(scaleValue(gain, sc), nrg);
}
}
return nrg;
@@ -671,91 +720,92 @@ static FIXP_DBL nmhLoweringEnergy(
\return void
****************************************************************************/
-static void
-calculateSbrEnvelope (FIXP_DBL **RESTRICT YBufferLeft, /*! energy buffer left */
- FIXP_DBL **RESTRICT YBufferRight, /*! energy buffer right */
- int *RESTRICT YBufferScaleLeft, /*! scale energy buffer left */
- int *RESTRICT YBufferScaleRight, /*! scale energy buffer right */
- const SBR_FRAME_INFO *frame_info, /*! frame info vector */
- SCHAR *RESTRICT sfb_nrgLeft, /*! sfb energy buffer left */
- SCHAR *RESTRICT sfb_nrgRight, /*! sfb energy buffer right */
- HANDLE_SBR_CONFIG_DATA h_con, /*! handle to config data */
- HANDLE_ENV_CHANNEL h_sbr, /*! envelope channel handle */
- SBR_STEREO_MODE stereoMode, /*! stereo coding mode */
- INT* maxQuantError, /*! maximum quantization error, for panorama. */
- int YBufferSzShift) /*! Energy buffer index scale */
+static void calculateSbrEnvelope(
+ FIXP_DBL **RESTRICT YBufferLeft, /*! energy buffer left */
+ FIXP_DBL **RESTRICT YBufferRight, /*! energy buffer right */
+ int *RESTRICT YBufferScaleLeft, /*! scale energy buffer left */
+ int *RESTRICT YBufferScaleRight, /*! scale energy buffer right */
+ const SBR_FRAME_INFO *frame_info, /*! frame info vector */
+ SCHAR *RESTRICT sfb_nrgLeft, /*! sfb energy buffer left */
+ SCHAR *RESTRICT sfb_nrgRight, /*! sfb energy buffer right */
+ HANDLE_SBR_CONFIG_DATA h_con, /*! handle to config data */
+ HANDLE_ENV_CHANNEL h_sbr, /*! envelope channel handle */
+ SBR_STEREO_MODE stereoMode, /*! stereo coding mode */
+ INT *maxQuantError, /*! maximum quantization error, for panorama. */
+ int YBufferSzShift) /*! Energy buffer index scale */
{
- int i, j, m = 0;
+ int env, j, m = 0;
INT no_of_bands, start_pos, stop_pos, li, ui;
FREQ_RES freq_res;
INT ca = 2 - h_sbr->encEnvData.init_sbr_amp_res;
INT oneBitLess = 0;
if (ca == 2)
- oneBitLess = 1; /* LD_DATA_SHIFT => ld64 scaling; one bit less for rounding */
+ oneBitLess =
+ 1; /* LD_DATA_SHIFT => ld64 scaling; one bit less for rounding */
INT quantError;
INT nEnvelopes = frame_info->nEnvelopes;
INT short_env = frame_info->shortEnv - 1;
INT timeStep = h_sbr->sbrExtractEnvelope.time_step;
- INT commonScale,scaleLeft0,scaleLeft1;
- INT scaleRight0=0,scaleRight1=0;
+ INT commonScale, scaleLeft0, scaleLeft1;
+ INT scaleRight0 = 0, scaleRight1 = 0;
- commonScale = fixMin(YBufferScaleLeft[0],YBufferScaleLeft[1]);
+ commonScale = fixMin(YBufferScaleLeft[0], YBufferScaleLeft[1]);
if (stereoMode == SBR_COUPLING) {
- commonScale = fixMin(commonScale,YBufferScaleRight[0]);
- commonScale = fixMin(commonScale,YBufferScaleRight[1]);
+ commonScale = fixMin(commonScale, YBufferScaleRight[0]);
+ commonScale = fixMin(commonScale, YBufferScaleRight[1]);
}
commonScale = commonScale - 7;
scaleLeft0 = YBufferScaleLeft[0] - commonScale;
- scaleLeft1 = YBufferScaleLeft[1] - commonScale ;
- FDK_ASSERT ((scaleLeft0 >= 0) && (scaleLeft1 >= 0));
+ scaleLeft1 = YBufferScaleLeft[1] - commonScale;
+ FDK_ASSERT((scaleLeft0 >= 0) && (scaleLeft1 >= 0));
if (stereoMode == SBR_COUPLING) {
scaleRight0 = YBufferScaleRight[0] - commonScale;
scaleRight1 = YBufferScaleRight[1] - commonScale;
- FDK_ASSERT ((scaleRight0 >= 0) && (scaleRight1 >= 0));
+ FDK_ASSERT((scaleRight0 >= 0) && (scaleRight1 >= 0));
*maxQuantError = 0;
}
- for (i = 0; i < nEnvelopes; i++) {
-
- FIXP_DBL pNrgLeft[QMF_MAX_TIME_SLOTS];
- FIXP_DBL pNrgRight[QMF_MAX_TIME_SLOTS];
+ for (env = 0; env < nEnvelopes; env++) {
+ FIXP_DBL pNrgLeft[32];
+ FIXP_DBL pNrgRight[32];
int envNrg_scale;
- FIXP_DBL envNrgLeft = FL2FXCONST_DBL(0.0f);
+ FIXP_DBL envNrgLeft = FL2FXCONST_DBL(0.0f);
FIXP_DBL envNrgRight = FL2FXCONST_DBL(0.0f);
- int missingHarmonic[QMF_MAX_TIME_SLOTS];
- int count[QMF_MAX_TIME_SLOTS];
+ int missingHarmonic[32];
+ int count[32];
- start_pos = timeStep * frame_info->borders[i];
- stop_pos = timeStep * frame_info->borders[i + 1];
- freq_res = frame_info->freqRes[i];
+ start_pos = timeStep * frame_info->borders[env];
+ stop_pos = timeStep * frame_info->borders[env + 1];
+ freq_res = frame_info->freqRes[env];
no_of_bands = h_con->nSfb[freq_res];
- envNrg_scale = DFRACT_BITS-fNormz((FIXP_DBL)no_of_bands);
-
- if (i == short_env) {
- stop_pos -= fixMax(2, timeStep); /* consider at least 2 QMF slots less for short envelopes (envelopes just before transients) */
+ envNrg_scale = DFRACT_BITS - fNormz((FIXP_DBL)no_of_bands);
+ if (env == short_env) {
+ j = fMax(2, timeStep); /* consider at least 2 QMF slots less for short
+ envelopes (envelopes just before transients) */
+ if ((stop_pos - start_pos - j) > 0) {
+ stop_pos = stop_pos - j;
+ }
}
-
for (j = 0; j < no_of_bands; j++) {
- FIXP_DBL nrgLeft = FL2FXCONST_DBL(0.0f);
+ FIXP_DBL nrgLeft = FL2FXCONST_DBL(0.0f);
FIXP_DBL nrgRight = FL2FXCONST_DBL(0.0f);
li = h_con->freqBandTable[freq_res][j];
ui = h_con->freqBandTable[freq_res][j + 1];
- if(freq_res == FREQ_RES_HIGH){
- if(j == 0 && ui-li > 1){
+ if (freq_res == FREQ_RES_HIGH) {
+ if (j == 0 && ui - li > 1) {
li++;
}
- }
- else{
- if(j == 0 && ui-li > 2){
+ } else {
+ if (j == 0 && ui - li > 2) {
li++;
}
}
@@ -766,25 +816,26 @@ calculateSbrEnvelope (FIXP_DBL **RESTRICT YBufferLeft, /*! energy buffer left *
*/
missingHarmonic[j] = 0;
- if(h_sbr->encEnvData.addHarmonicFlag){
-
- if(freq_res == FREQ_RES_HIGH){
- if(h_sbr->encEnvData.addHarmonic[j]){ /*A missing sine in the current band*/
+ if (h_sbr->encEnvData.addHarmonicFlag) {
+ if (freq_res == FREQ_RES_HIGH) {
+ if (h_sbr->encEnvData
+ .addHarmonic[j]) { /*A missing sine in the current band*/
missingHarmonic[j] = 1;
}
- }
- else{
+ } else {
INT i;
INT startBandHigh = 0;
INT stopBandHigh = 0;
- while(h_con->freqBandTable[FREQ_RES_HIGH][startBandHigh] < h_con->freqBandTable[FREQ_RES_LOW][j])
+ while (h_con->freqBandTable[FREQ_RES_HIGH][startBandHigh] <
+ h_con->freqBandTable[FREQ_RES_LOW][j])
startBandHigh++;
- while(h_con->freqBandTable[FREQ_RES_HIGH][stopBandHigh] < h_con->freqBandTable[FREQ_RES_LOW][j + 1])
+ while (h_con->freqBandTable[FREQ_RES_HIGH][stopBandHigh] <
+ h_con->freqBandTable[FREQ_RES_LOW][j + 1])
stopBandHigh++;
- for(i = startBandHigh; i<stopBandHigh; i++){
- if(h_sbr->encEnvData.addHarmonic[i]){
+ for (i = startBandHigh; i < stopBandHigh; i++) {
+ if (h_sbr->encEnvData.addHarmonic[i]) {
missingHarmonic[j] = 1;
}
}
@@ -792,105 +843,82 @@ calculateSbrEnvelope (FIXP_DBL **RESTRICT YBufferLeft, /*! energy buffer left *
}
/*
- If a sine is missing in a scalefactorband, with more than one qmf channel
- use the nrg from the channel with the largest nrg rather than the mean.
- Compensate for the boost calculation in the decdoder.
+ If a sine is missing in a scalefactorband, with more than one qmf
+ channel use the nrg from the channel with the largest nrg rather than
+ the mean. Compensate for the boost calculation in the decdoder.
*/
- int border_pos = fixMin(stop_pos, h_sbr->sbrExtractEnvelope.YBufferWriteOffset<<YBufferSzShift);
-
- if(missingHarmonic[j]){
+ int border_pos =
+ fixMin(stop_pos, h_sbr->sbrExtractEnvelope.YBufferWriteOffset
+ << YBufferSzShift);
+ if (missingHarmonic[j]) {
int k;
count[j] = stop_pos - start_pos;
nrgLeft = FL2FXCONST_DBL(0.0f);
for (k = li; k < ui; k++) {
FIXP_DBL tmpNrg;
- tmpNrg = getEnvSfbEnergy(k,
- k+1,
- start_pos,
- stop_pos,
- border_pos,
- YBufferLeft,
- YBufferSzShift,
- scaleLeft0,
+ tmpNrg = getEnvSfbEnergy(k, k + 1, start_pos, stop_pos, border_pos,
+ YBufferLeft, YBufferSzShift, scaleLeft0,
scaleLeft1);
nrgLeft = fixMax(nrgLeft, tmpNrg);
}
/* Energy lowering compensation */
- nrgLeft = mhLoweringEnergy(nrgLeft, ui-li);
+ nrgLeft = mhLoweringEnergy(nrgLeft, ui - li);
if (stereoMode == SBR_COUPLING) {
-
nrgRight = FL2FXCONST_DBL(0.0f);
for (k = li; k < ui; k++) {
FIXP_DBL tmpNrg;
- tmpNrg = getEnvSfbEnergy(k,
- k+1,
- start_pos,
- stop_pos,
- border_pos,
- YBufferRight,
- YBufferSzShift,
- scaleRight0,
+ tmpNrg = getEnvSfbEnergy(k, k + 1, start_pos, stop_pos, border_pos,
+ YBufferRight, YBufferSzShift, scaleRight0,
scaleRight1);
nrgRight = fixMax(nrgRight, tmpNrg);
}
/* Energy lowering compensation */
- nrgRight = mhLoweringEnergy(nrgRight, ui-li);
+ nrgRight = mhLoweringEnergy(nrgRight, ui - li);
}
} /* end missingHarmonic */
- else{
+ else {
count[j] = (stop_pos - start_pos) * (ui - li);
- nrgLeft = getEnvSfbEnergy(li,
- ui,
- start_pos,
- stop_pos,
- border_pos,
- YBufferLeft,
- YBufferSzShift,
- scaleLeft0,
+ nrgLeft = getEnvSfbEnergy(li, ui, start_pos, stop_pos, border_pos,
+ YBufferLeft, YBufferSzShift, scaleLeft0,
scaleLeft1);
if (stereoMode == SBR_COUPLING) {
- nrgRight = getEnvSfbEnergy(li,
- ui,
- start_pos,
- stop_pos,
- border_pos,
- YBufferRight,
- YBufferSzShift,
- scaleRight0,
+ nrgRight = getEnvSfbEnergy(li, ui, start_pos, stop_pos, border_pos,
+ YBufferRight, YBufferSzShift, scaleRight0,
scaleRight1);
}
} /* !missingHarmonic */
/* save energies */
- pNrgLeft[j] = nrgLeft;
+ pNrgLeft[j] = nrgLeft;
pNrgRight[j] = nrgRight;
- envNrgLeft += (nrgLeft>>envNrg_scale);
- envNrgRight += (nrgRight>>envNrg_scale);
+ envNrgLeft += (nrgLeft >> envNrg_scale);
+ envNrgRight += (nrgRight >> envNrg_scale);
} /* j */
for (j = 0; j < no_of_bands; j++) {
-
FIXP_DBL nrgLeft2 = FL2FXCONST_DBL(0.0f);
- FIXP_DBL nrgLeft = pNrgLeft[j];
+ FIXP_DBL nrgLeft = pNrgLeft[j];
FIXP_DBL nrgRight = pNrgRight[j];
/* None missing harmonic Energy lowering compensation */
- if(!missingHarmonic[j] && h_sbr->fLevelProtect) {
+ if (!missingHarmonic[j] && h_sbr->fLevelProtect) {
/* in case of missing energy in base band,
reduce reference energy to prevent overflows in decoder output */
- nrgLeft = nmhLoweringEnergy(nrgLeft, envNrgLeft, envNrg_scale, no_of_bands);
+ nrgLeft =
+ nmhLoweringEnergy(nrgLeft, envNrgLeft, envNrg_scale, no_of_bands);
if (stereoMode == SBR_COUPLING) {
- nrgRight = nmhLoweringEnergy(nrgRight, envNrgRight, envNrg_scale, no_of_bands);
+ nrgRight = nmhLoweringEnergy(nrgRight, envNrgRight, envNrg_scale,
+ no_of_bands);
}
}
@@ -900,31 +928,34 @@ calculateSbrEnvelope (FIXP_DBL **RESTRICT YBufferLeft, /*! energy buffer left *
nrgLeft = (nrgRight + nrgLeft) >> 1;
}
- /* nrgLeft = f20_log2(nrgLeft / (PFLOAT)(count * h_sbr->sbrQmf.no_channels))+(PFLOAT)44; */
+ /* nrgLeft = f20_log2(nrgLeft / (PFLOAT)(count * 64))+(PFLOAT)44; */
/* If nrgLeft == 0 then the Log calculations below do fail. */
- if (nrgLeft > FL2FXCONST_DBL(0.0f))
- {
- FIXP_DBL tmp0,tmp1,tmp2,tmp3;
+ if (nrgLeft > FL2FXCONST_DBL(0.0f)) {
+ FIXP_DBL tmp0, tmp1, tmp2, tmp3;
INT tmpScale;
tmpScale = CountLeadingBits(nrgLeft);
nrgLeft = nrgLeft << tmpScale;
- tmp0 = CalcLdData(nrgLeft); /* scaled by 1/64 */
- tmp1 = ((FIXP_DBL) (commonScale+tmpScale)) << (DFRACT_BITS-1-LD_DATA_SHIFT-1); /* scaled by 1/64 */
- tmp2 = ((FIXP_DBL)(count[j]*h_con->noQmfBands)) << (DFRACT_BITS-1-14-1);
- tmp2 = CalcLdData(tmp2); /* scaled by 1/64 */
- tmp3 = FL2FXCONST_DBL(0.6875f-0.21875f-0.015625f)>>1; /* scaled by 1/64 */
+ tmp0 = CalcLdData(nrgLeft); /* scaled by 1/64 */
+ tmp1 = ((FIXP_DBL)(commonScale + tmpScale))
+ << (DFRACT_BITS - 1 - LD_DATA_SHIFT - 1); /* scaled by 1/64 */
+ tmp2 = ((FIXP_DBL)(count[j] * 64)) << (DFRACT_BITS - 1 - 14 - 1);
+ tmp2 = CalcLdData(tmp2); /* scaled by 1/64 */
+ tmp3 = FL2FXCONST_DBL(0.6875f - 0.21875f - 0.015625f) >>
+ 1; /* scaled by 1/64 */
- nrgLeft = ((tmp0-tmp2)>>1) + (tmp3 - tmp1);
+ nrgLeft = ((tmp0 - tmp2) >> 1) + (tmp3 - tmp1);
} else {
nrgLeft = FL2FXCONST_DBL(-1.0f);
}
/* ld64 to integer conversion */
- nrgLeft = fixMin(fixMax(nrgLeft,FL2FXCONST_DBL(0.0f)),(FL2FXCONST_DBL(0.5f)>>oneBitLess));
- nrgLeft = (FIXP_DBL)(LONG)nrgLeft >> (DFRACT_BITS-1-LD_DATA_SHIFT-1-oneBitLess-1);
- sfb_nrgLeft[m] = ((INT)nrgLeft+1)>>1; /* rounding */
+ nrgLeft = fixMin(fixMax(nrgLeft, FL2FXCONST_DBL(0.0f)),
+ (FL2FXCONST_DBL(0.5f) >> oneBitLess));
+ nrgLeft = (FIXP_DBL)(LONG)nrgLeft >>
+ (DFRACT_BITS - 1 - LD_DATA_SHIFT - 1 - oneBitLess - 1);
+ sfb_nrgLeft[m] = ((INT)nrgLeft + 1) >> 1; /* rounding */
if (stereoMode == SBR_COUPLING) {
FIXP_DBL scaleFract;
@@ -936,14 +967,20 @@ calculateSbrEnvelope (FIXP_DBL **RESTRICT YBufferLeft, /*! energy buffer left *
sc0 = CountLeadingBits(nrgLeft2);
sc1 = CountLeadingBits(nrgRight);
- scaleFract = ((FIXP_DBL)(sc0-sc1)) << (DFRACT_BITS-1-LD_DATA_SHIFT); /* scale value in ld64 representation */
- nrgRight = CalcLdData(nrgLeft2<<sc0) - CalcLdData(nrgRight<<sc1) - scaleFract;
+ scaleFract =
+ ((FIXP_DBL)(sc0 - sc1))
+ << (DFRACT_BITS - 1 -
+ LD_DATA_SHIFT); /* scale value in ld64 representation */
+ nrgRight = CalcLdData(nrgLeft2 << sc0) - CalcLdData(nrgRight << sc1) -
+ scaleFract;
/* ld64 to integer conversion */
- nrgRight = (FIXP_DBL)(LONG)(nrgRight) >> (DFRACT_BITS-1-LD_DATA_SHIFT-1-oneBitLess);
- nrgRight = (nrgRight+(FIXP_DBL)1)>>1; /* rounding */
+ nrgRight = (FIXP_DBL)(LONG)(nrgRight) >>
+ (DFRACT_BITS - 1 - LD_DATA_SHIFT - 1 - oneBitLess);
+ nrgRight = (nrgRight + (FIXP_DBL)1) >> 1; /* rounding */
- sfb_nrgRight[m] = mapPanorama (nrgRight,h_sbr->encEnvData.init_sbr_amp_res,&quantError);
+ sfb_nrgRight[m] = mapPanorama(
+ nrgRight, h_sbr->encEnvData.init_sbr_amp_res, &quantError);
*maxQuantError = fixMax(quantError, *maxQuantError);
}
@@ -951,21 +988,25 @@ calculateSbrEnvelope (FIXP_DBL **RESTRICT YBufferLeft, /*! energy buffer left *
m++;
} /* j */
- /* Do energy compensation for sines that are present in two
- QMF-bands in the original, but will only occur in one band in
- the decoder due to the synthetic sine coding.*/
+ /* Do energy compensation for sines that are present in two
+ QMF-bands in the original, but will only occur in one band in
+ the decoder due to the synthetic sine coding.*/
if (h_con->useParametricCoding) {
- m-=no_of_bands;
+ m -= no_of_bands;
for (j = 0; j < no_of_bands; j++) {
- if (freq_res==FREQ_RES_HIGH && h_sbr->sbrExtractEnvelope.envelopeCompensation[j]){
- sfb_nrgLeft[m] -= (ca * fixp_abs((INT)h_sbr->sbrExtractEnvelope.envelopeCompensation[j]));
+ if (freq_res == FREQ_RES_HIGH &&
+ h_sbr->sbrExtractEnvelope.envelopeCompensation[j]) {
+ sfb_nrgLeft[m] -=
+ (ca *
+ fixp_abs(
+ (INT)h_sbr->sbrExtractEnvelope.envelopeCompensation[j]));
}
sfb_nrgLeft[m] = fixMax(0, sfb_nrgLeft[m]);
m++;
}
} /* useParametricCoding */
- } /* i*/
+ } /* env loop */
}
/***************************************************************************/
@@ -984,96 +1025,73 @@ calculateSbrEnvelope (FIXP_DBL **RESTRICT YBufferLeft, /*! energy buffer left *
****************************************************************************/
LNK_SECTION_CODE_L1
-void
-FDKsbrEnc_extractSbrEnvelope1 (
- HANDLE_SBR_CONFIG_DATA h_con, /*! handle to config data */
- HANDLE_SBR_HEADER_DATA sbrHeaderData,
- HANDLE_SBR_BITSTREAM_DATA sbrBitstreamData,
- HANDLE_ENV_CHANNEL hEnvChan,
- HANDLE_COMMON_DATA hCmonData,
- SBR_ENV_TEMP_DATA *eData,
- SBR_FRAME_TEMP_DATA *fData
- )
-{
-
+void FDKsbrEnc_extractSbrEnvelope1(
+ HANDLE_SBR_CONFIG_DATA h_con, /*! handle to config data */
+ HANDLE_SBR_HEADER_DATA sbrHeaderData,
+ HANDLE_SBR_BITSTREAM_DATA sbrBitstreamData, HANDLE_ENV_CHANNEL hEnvChan,
+ HANDLE_COMMON_DATA hCmonData, SBR_ENV_TEMP_DATA *eData,
+ SBR_FRAME_TEMP_DATA *fData) {
HANDLE_SBR_EXTRACT_ENVELOPE sbrExtrEnv = &hEnvChan->sbrExtractEnvelope;
if (sbrExtrEnv->YBufferSzShift == 0)
- FDKsbrEnc_getEnergyFromCplxQmfDataFull(&sbrExtrEnv->YBuffer[sbrExtrEnv->YBufferWriteOffset],
- sbrExtrEnv->rBuffer + sbrExtrEnv->rBufferReadOffset,
- sbrExtrEnv->iBuffer + sbrExtrEnv->rBufferReadOffset,
- h_con->noQmfBands,
- sbrExtrEnv->no_cols,
- &hEnvChan->qmfScale,
- &sbrExtrEnv->YBufferScale[1]);
+ FDKsbrEnc_getEnergyFromCplxQmfDataFull(
+ &sbrExtrEnv->YBuffer[sbrExtrEnv->YBufferWriteOffset],
+ sbrExtrEnv->rBuffer + sbrExtrEnv->rBufferReadOffset,
+ sbrExtrEnv->iBuffer + sbrExtrEnv->rBufferReadOffset, h_con->noQmfBands,
+ sbrExtrEnv->no_cols, &hEnvChan->qmfScale, &sbrExtrEnv->YBufferScale[1]);
else
- FDKsbrEnc_getEnergyFromCplxQmfData(&sbrExtrEnv->YBuffer[sbrExtrEnv->YBufferWriteOffset],
- sbrExtrEnv->rBuffer + sbrExtrEnv->rBufferReadOffset,
- sbrExtrEnv->iBuffer + sbrExtrEnv->rBufferReadOffset,
- h_con->noQmfBands,
- sbrExtrEnv->no_cols,
- &hEnvChan->qmfScale,
- &sbrExtrEnv->YBufferScale[1]);
-
+ FDKsbrEnc_getEnergyFromCplxQmfData(
+ &sbrExtrEnv->YBuffer[sbrExtrEnv->YBufferWriteOffset],
+ sbrExtrEnv->rBuffer + sbrExtrEnv->rBufferReadOffset,
+ sbrExtrEnv->iBuffer + sbrExtrEnv->rBufferReadOffset, h_con->noQmfBands,
+ sbrExtrEnv->no_cols, &hEnvChan->qmfScale, &sbrExtrEnv->YBufferScale[1]);
+ /* Energie values =
+ * sbrExtrEnv->YBuffer[sbrExtrEnv->YBufferWriteOffset][x].floatVal *
+ * (1<<2*7-sbrExtrEnv->YBufferScale[1]) */
/*
Precalculation of Tonality Quotas COEFF Transform OK
*/
- FDKsbrEnc_CalculateTonalityQuotas(&hEnvChan->TonCorr,
- sbrExtrEnv->rBuffer,
- sbrExtrEnv->iBuffer,
- h_con->freqBandTable[HI][h_con->nSfb[HI]],
- hEnvChan->qmfScale);
-
-
- if(h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) {
- FIXP_DBL tonality = FDKsbrEnc_GetTonality (
- hEnvChan->TonCorr.quotaMatrix,
- hEnvChan->TonCorr.numberOfEstimatesPerFrame,
- hEnvChan->TonCorr.startIndexMatrix,
- sbrExtrEnv->YBuffer + sbrExtrEnv->YBufferWriteOffset,
- h_con->freqBandTable[HI][0]+1,
- h_con->noQmfBands,
- sbrExtrEnv->no_cols
- );
+ FDKsbrEnc_CalculateTonalityQuotas(
+ &hEnvChan->TonCorr, sbrExtrEnv->rBuffer, sbrExtrEnv->iBuffer,
+ h_con->freqBandTable[HI][h_con->nSfb[HI]], hEnvChan->qmfScale);
+
+ if (h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) {
+ FIXP_DBL tonality = FDKsbrEnc_GetTonality(
+ hEnvChan->TonCorr.quotaMatrix,
+ hEnvChan->TonCorr.numberOfEstimatesPerFrame,
+ hEnvChan->TonCorr.startIndexMatrix,
+ sbrExtrEnv->YBuffer + sbrExtrEnv->YBufferWriteOffset,
+ h_con->freqBandTable[HI][0] + 1, h_con->noQmfBands,
+ sbrExtrEnv->no_cols);
hEnvChan->encEnvData.ton_HF[1] = hEnvChan->encEnvData.ton_HF[0];
hEnvChan->encEnvData.ton_HF[0] = tonality;
/* tonality is scaled by 2^19/0.524288f (fract part of RELAXATION) */
- hEnvChan->encEnvData.global_tonality = (hEnvChan->encEnvData.ton_HF[0]>>1) + (hEnvChan->encEnvData.ton_HF[1]>>1);
+ hEnvChan->encEnvData.global_tonality =
+ (hEnvChan->encEnvData.ton_HF[0] >> 1) +
+ (hEnvChan->encEnvData.ton_HF[1] >> 1);
}
-
-
/*
Transient detection COEFF Transform OK
*/
- if(h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY)
- {
- FDKsbrEnc_fastTransientDetect(
- &hEnvChan->sbrFastTransientDetector,
- sbrExtrEnv->YBuffer,
- sbrExtrEnv->YBufferScale,
- sbrExtrEnv->YBufferWriteOffset,
- eData->transient_info
- );
-
- }
- else
- {
- FDKsbrEnc_transientDetect(&hEnvChan->sbrTransientDetector,
- sbrExtrEnv->YBuffer,
- sbrExtrEnv->YBufferScale,
- eData->transient_info,
- sbrExtrEnv->YBufferWriteOffset,
- sbrExtrEnv->YBufferSzShift,
- sbrExtrEnv->time_step,
- hEnvChan->SbrEnvFrame.frameMiddleSlot);
- }
+ if (h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) {
+ FDKsbrEnc_fastTransientDetect(&hEnvChan->sbrFastTransientDetector,
+ sbrExtrEnv->YBuffer, sbrExtrEnv->YBufferScale,
+ sbrExtrEnv->YBufferWriteOffset,
+ eData->transient_info);
+ } else {
+ FDKsbrEnc_transientDetect(
+ &hEnvChan->sbrTransientDetector, sbrExtrEnv->YBuffer,
+ sbrExtrEnv->YBufferScale, eData->transient_info,
+ sbrExtrEnv->YBufferWriteOffset, sbrExtrEnv->YBufferSzShift,
+ sbrExtrEnv->time_step, hEnvChan->SbrEnvFrame.frameMiddleSlot);
+ }
/*
Generate flags for 2 env in a FIXFIX-frame.
@@ -1083,19 +1101,12 @@ FDKsbrEnc_extractSbrEnvelope1 (
/*
frame Splitter COEFF Transform OK
*/
- FDKsbrEnc_frameSplitter(sbrExtrEnv->YBuffer,
- sbrExtrEnv->YBufferScale,
- &hEnvChan->sbrTransientDetector,
- h_con->freqBandTable[1],
- eData->transient_info,
- sbrExtrEnv->YBufferWriteOffset,
- sbrExtrEnv->YBufferSzShift,
- h_con->nSfb[1],
- sbrExtrEnv->time_step,
- sbrExtrEnv->no_cols,
- &hEnvChan->encEnvData.global_tonality);
-
-
+ FDKsbrEnc_frameSplitter(
+ sbrExtrEnv->YBuffer, sbrExtrEnv->YBufferScale,
+ &hEnvChan->sbrTransientDetector, h_con->freqBandTable[1],
+ eData->transient_info, sbrExtrEnv->YBufferWriteOffset,
+ sbrExtrEnv->YBufferSzShift, h_con->nSfb[1], sbrExtrEnv->time_step,
+ sbrExtrEnv->no_cols, &hEnvChan->encEnvData.global_tonality);
}
/***************************************************************************/
@@ -1128,53 +1139,45 @@ FDKsbrEnc_extractSbrEnvelope1 (
****************************************************************************/
LNK_SECTION_CODE_L1
-void
-FDKsbrEnc_extractSbrEnvelope2 (
- HANDLE_SBR_CONFIG_DATA h_con, /*! handle to config data */
- HANDLE_SBR_HEADER_DATA sbrHeaderData,
- HANDLE_PARAMETRIC_STEREO hParametricStereo,
- HANDLE_SBR_BITSTREAM_DATA sbrBitstreamData,
- HANDLE_ENV_CHANNEL h_envChan0,
- HANDLE_ENV_CHANNEL h_envChan1,
- HANDLE_COMMON_DATA hCmonData,
- SBR_ENV_TEMP_DATA *eData,
- SBR_FRAME_TEMP_DATA *fData,
- int clearOutput
- )
-{
+void FDKsbrEnc_extractSbrEnvelope2(
+ HANDLE_SBR_CONFIG_DATA h_con, /*! handle to config data */
+ HANDLE_SBR_HEADER_DATA sbrHeaderData,
+ HANDLE_PARAMETRIC_STEREO hParametricStereo,
+ HANDLE_SBR_BITSTREAM_DATA sbrBitstreamData, HANDLE_ENV_CHANNEL h_envChan0,
+ HANDLE_ENV_CHANNEL h_envChan1, HANDLE_COMMON_DATA hCmonData,
+ SBR_ENV_TEMP_DATA *eData, SBR_FRAME_TEMP_DATA *fData, int clearOutput) {
HANDLE_ENV_CHANNEL h_envChan[MAX_NUM_CHANNELS] = {h_envChan0, h_envChan1};
int ch, i, j, c, YSzShift = h_envChan[0]->sbrExtractEnvelope.YBufferSzShift;
SBR_STEREO_MODE stereoMode = h_con->stereoMode;
int nChannels = h_con->nChannels;
const int *v_tuning;
- static const int v_tuningHEAAC[6] = { 0, 2, 4, 0, 0, 0 };
+ static const int v_tuningHEAAC[6] = {0, 2, 4, 0, 0, 0};
- static const int v_tuningELD[6] = { 0, 2, 3, 0, 0, 0 };
+ static const int v_tuningELD[6] = {0, 2, 3, 0, 0, 0};
if (h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY)
v_tuning = v_tuningELD;
else
v_tuning = v_tuningHEAAC;
-
/*
Select stereo mode.
*/
if (stereoMode == SBR_COUPLING) {
if (eData[0].transient_info[1] && eData[1].transient_info[1]) {
- eData[0].transient_info[0] = fixMin(eData[1].transient_info[0], eData[0].transient_info[0]);
+ eData[0].transient_info[0] =
+ fixMin(eData[1].transient_info[0], eData[0].transient_info[0]);
eData[1].transient_info[0] = eData[0].transient_info[0];
- }
- else {
+ } else {
if (eData[0].transient_info[1] && !eData[1].transient_info[1]) {
eData[1].transient_info[0] = eData[0].transient_info[0];
- }
- else {
+ } else {
if (!eData[0].transient_info[1] && eData[1].transient_info[1])
eData[0].transient_info[0] = eData[1].transient_info[0];
else {
- eData[0].transient_info[0] = fixMax(eData[1].transient_info[0], eData[0].transient_info[0]);
+ eData[0].transient_info[0] =
+ fixMax(eData[1].transient_info[0], eData[0].transient_info[0]);
eData[1].transient_info[0] = eData[0].transient_info[0];
}
}
@@ -1184,183 +1187,171 @@ FDKsbrEnc_extractSbrEnvelope2 (
/*
Determine time/frequency division of current granule
*/
- eData[0].frame_info = FDKsbrEnc_frameInfoGenerator(&h_envChan[0]->SbrEnvFrame,
- eData[0].transient_info,
- h_envChan[0]->sbrExtractEnvelope.pre_transient_info,
- h_envChan[0]->encEnvData.ldGrid,
- v_tuning);
+ eData[0].frame_info = FDKsbrEnc_frameInfoGenerator(
+ &h_envChan[0]->SbrEnvFrame, eData[0].transient_info,
+ sbrBitstreamData->rightBorderFIX,
+ h_envChan[0]->sbrExtractEnvelope.pre_transient_info,
+ h_envChan[0]->encEnvData.ldGrid, v_tuning);
h_envChan[0]->encEnvData.hSbrBSGrid = &h_envChan[0]->SbrEnvFrame.SbrGrid;
/* AAC LD patch for transient prediction */
if (h_envChan[0]->encEnvData.ldGrid && eData[0].transient_info[2]) {
- /* if next frame will start with transient, set shortEnv to numEnvelopes(shortend Envelope = shortEnv-1)*/
- h_envChan[0]->SbrEnvFrame.SbrFrameInfo.shortEnv = h_envChan[0]->SbrEnvFrame.SbrFrameInfo.nEnvelopes;
+ /* if next frame will start with transient, set shortEnv to
+ * numEnvelopes(shortend Envelope = shortEnv-1)*/
+ h_envChan[0]->SbrEnvFrame.SbrFrameInfo.shortEnv =
+ h_envChan[0]->SbrEnvFrame.SbrFrameInfo.nEnvelopes;
}
-
switch (stereoMode) {
- case SBR_LEFT_RIGHT:
- case SBR_SWITCH_LRC:
- eData[1].frame_info = FDKsbrEnc_frameInfoGenerator(&h_envChan[1]->SbrEnvFrame,
- eData[1].transient_info,
- h_envChan[1]->sbrExtractEnvelope.pre_transient_info,
- h_envChan[1]->encEnvData.ldGrid,
- v_tuning);
-
- h_envChan[1]->encEnvData.hSbrBSGrid = &h_envChan[1]->SbrEnvFrame.SbrGrid;
-
- if (h_envChan[1]->encEnvData.ldGrid && eData[1].transient_info[2]) {
- /* if next frame will start with transient, set shortEnv to numEnvelopes(shortend Envelope = shortEnv-1)*/
- h_envChan[1]->SbrEnvFrame.SbrFrameInfo.shortEnv = h_envChan[1]->SbrEnvFrame.SbrFrameInfo.nEnvelopes;
- }
+ case SBR_LEFT_RIGHT:
+ case SBR_SWITCH_LRC:
+ eData[1].frame_info = FDKsbrEnc_frameInfoGenerator(
+ &h_envChan[1]->SbrEnvFrame, eData[1].transient_info,
+ sbrBitstreamData->rightBorderFIX,
+ h_envChan[1]->sbrExtractEnvelope.pre_transient_info,
+ h_envChan[1]->encEnvData.ldGrid, v_tuning);
+
+ h_envChan[1]->encEnvData.hSbrBSGrid = &h_envChan[1]->SbrEnvFrame.SbrGrid;
+
+ if (h_envChan[1]->encEnvData.ldGrid && eData[1].transient_info[2]) {
+ /* if next frame will start with transient, set shortEnv to
+ * numEnvelopes(shortend Envelope = shortEnv-1)*/
+ h_envChan[1]->SbrEnvFrame.SbrFrameInfo.shortEnv =
+ h_envChan[1]->SbrEnvFrame.SbrFrameInfo.nEnvelopes;
+ }
- /* compare left and right frame_infos */
- if (eData[0].frame_info->nEnvelopes != eData[1].frame_info->nEnvelopes) {
- stereoMode = SBR_LEFT_RIGHT;
- } else {
- for (i = 0; i < eData[0].frame_info->nEnvelopes + 1; i++) {
- if (eData[0].frame_info->borders[i] != eData[1].frame_info->borders[i]) {
- stereoMode = SBR_LEFT_RIGHT;
- break;
+ /* compare left and right frame_infos */
+ if (eData[0].frame_info->nEnvelopes != eData[1].frame_info->nEnvelopes) {
+ stereoMode = SBR_LEFT_RIGHT;
+ } else {
+ for (i = 0; i < eData[0].frame_info->nEnvelopes + 1; i++) {
+ if (eData[0].frame_info->borders[i] !=
+ eData[1].frame_info->borders[i]) {
+ stereoMode = SBR_LEFT_RIGHT;
+ break;
+ }
}
- }
- for (i = 0; i < eData[0].frame_info->nEnvelopes; i++) {
- if (eData[0].frame_info->freqRes[i] != eData[1].frame_info->freqRes[i]) {
+ for (i = 0; i < eData[0].frame_info->nEnvelopes; i++) {
+ if (eData[0].frame_info->freqRes[i] !=
+ eData[1].frame_info->freqRes[i]) {
+ stereoMode = SBR_LEFT_RIGHT;
+ break;
+ }
+ }
+ if (eData[0].frame_info->shortEnv != eData[1].frame_info->shortEnv) {
stereoMode = SBR_LEFT_RIGHT;
- break;
}
}
- if (eData[0].frame_info->shortEnv != eData[1].frame_info->shortEnv) {
- stereoMode = SBR_LEFT_RIGHT;
- }
- }
- break;
- case SBR_COUPLING:
- eData[1].frame_info = eData[0].frame_info;
- h_envChan[1]->encEnvData.hSbrBSGrid = &h_envChan[0]->SbrEnvFrame.SbrGrid;
- break;
- case SBR_MONO:
- /* nothing to do */
- break;
- default:
- FDK_ASSERT (0);
+ break;
+ case SBR_COUPLING:
+ eData[1].frame_info = eData[0].frame_info;
+ h_envChan[1]->encEnvData.hSbrBSGrid = &h_envChan[0]->SbrEnvFrame.SbrGrid;
+ break;
+ case SBR_MONO:
+ /* nothing to do */
+ break;
+ default:
+ FDK_ASSERT(0);
}
-
- for (ch = 0; ch < nChannels;ch++)
- {
+ for (ch = 0; ch < nChannels; ch++) {
HANDLE_ENV_CHANNEL hEnvChan = h_envChan[ch];
HANDLE_SBR_EXTRACT_ENVELOPE sbrExtrEnv = &hEnvChan->sbrExtractEnvelope;
SBR_ENV_TEMP_DATA *ed = &eData[ch];
-
/*
Send transient info to bitstream and store for next call
*/
- sbrExtrEnv->pre_transient_info[0] = ed->transient_info[0];/* tran_pos */
- sbrExtrEnv->pre_transient_info[1] = ed->transient_info[1];/* tran_flag */
- hEnvChan->encEnvData.noOfEnvelopes = ed->nEnvelopes = ed->frame_info->nEnvelopes; /* number of envelopes of current frame */
+ sbrExtrEnv->pre_transient_info[0] = ed->transient_info[0]; /* tran_pos */
+ sbrExtrEnv->pre_transient_info[1] = ed->transient_info[1]; /* tran_flag */
+ hEnvChan->encEnvData.noOfEnvelopes = ed->nEnvelopes =
+ ed->frame_info->nEnvelopes; /* number of envelopes of current frame */
/*
- Check if the current frame is divided into one envelope only. If so, set the amplitude
- resolution to 1.5 dB, otherwise may set back to chosen value
+ Check if the current frame is divided into one envelope only. If so, set
+ the amplitude resolution to 1.5 dB, otherwise may set back to chosen value
*/
- if( ( hEnvChan->encEnvData.hSbrBSGrid->frameClass == FIXFIX )
- && ( ed->nEnvelopes == 1 ) )
- {
-
- if (h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY)
- {
- /* Note: global_tonaliy_float_value == ((float)hEnvChan->encEnvData.global_tonality/((INT64)(1)<<(31-(19+2)))/0.524288*(2.0/3.0)));
- threshold_float_value == ((float)h_con->thresholdAmpResFF_m/((INT64)(1)<<(31-(h_con->thresholdAmpResFF_e)))/0.524288*(2.0/3.0))); */
- /* decision of SBR_AMP_RES */
- if (fIsLessThan( /* global_tonality > threshold ? */
- h_con->thresholdAmpResFF_m, h_con->thresholdAmpResFF_e,
- hEnvChan->encEnvData.global_tonality, RELAXATION_SHIFT+2 )
- )
- {
- hEnvChan->encEnvData.currentAmpResFF = SBR_AMP_RES_1_5;
- }
- else {
- hEnvChan->encEnvData.currentAmpResFF = SBR_AMP_RES_3_0;
- }
- } else {
- hEnvChan->encEnvData.currentAmpResFF = SBR_AMP_RES_1_5;
- }
-
- if ( hEnvChan->encEnvData.currentAmpResFF != hEnvChan->encEnvData.init_sbr_amp_res) {
-
- FDKsbrEnc_InitSbrHuffmanTables(&hEnvChan->encEnvData,
- &hEnvChan->sbrCodeEnvelope,
- &hEnvChan->sbrCodeNoiseFloor,
- hEnvChan->encEnvData.currentAmpResFF);
+ if ((hEnvChan->encEnvData.hSbrBSGrid->frameClass == FIXFIX) &&
+ (ed->nEnvelopes == 1)) {
+ if (h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) {
+ /* Note: global_tonaliy_float_value ==
+ ((float)hEnvChan->encEnvData.global_tonality/((INT64)(1)<<(31-(19+2)))/0.524288*(2.0/3.0)));
+ threshold_float_value ==
+ ((float)h_con->thresholdAmpResFF_m/((INT64)(1)<<(31-(h_con->thresholdAmpResFF_e)))/0.524288*(2.0/3.0)));
+ */
+ /* decision of SBR_AMP_RES */
+ if (fIsLessThan(/* global_tonality > threshold ? */
+ h_con->thresholdAmpResFF_m, h_con->thresholdAmpResFF_e,
+ hEnvChan->encEnvData.global_tonality,
+ RELAXATION_SHIFT + 2)) {
+ hEnvChan->encEnvData.currentAmpResFF = SBR_AMP_RES_1_5;
+ } else {
+ hEnvChan->encEnvData.currentAmpResFF = SBR_AMP_RES_3_0;
+ }
+ } else
+ hEnvChan->encEnvData.currentAmpResFF = SBR_AMP_RES_1_5;
+
+ if (hEnvChan->encEnvData.currentAmpResFF !=
+ hEnvChan->encEnvData.init_sbr_amp_res) {
+ FDKsbrEnc_InitSbrHuffmanTables(
+ &hEnvChan->encEnvData, &hEnvChan->sbrCodeEnvelope,
+ &hEnvChan->sbrCodeNoiseFloor, hEnvChan->encEnvData.currentAmpResFF);
}
- }
- else {
- if(sbrHeaderData->sbr_amp_res != hEnvChan->encEnvData.init_sbr_amp_res ) {
-
- FDKsbrEnc_InitSbrHuffmanTables(&hEnvChan->encEnvData,
- &hEnvChan->sbrCodeEnvelope,
- &hEnvChan->sbrCodeNoiseFloor,
- sbrHeaderData->sbr_amp_res);
+ } else {
+ if (sbrHeaderData->sbr_amp_res != hEnvChan->encEnvData.init_sbr_amp_res) {
+ FDKsbrEnc_InitSbrHuffmanTables(
+ &hEnvChan->encEnvData, &hEnvChan->sbrCodeEnvelope,
+ &hEnvChan->sbrCodeNoiseFloor, sbrHeaderData->sbr_amp_res);
}
}
if (!clearOutput) {
-
/*
- Tonality correction parameter extraction (inverse filtering level, noise floor additional sines).
+ Tonality correction parameter extraction (inverse filtering level, noise
+ floor additional sines).
*/
- FDKsbrEnc_TonCorrParamExtr(&hEnvChan->TonCorr,
- hEnvChan->encEnvData.sbr_invf_mode_vec,
- ed->noiseFloor,
- &hEnvChan->encEnvData.addHarmonicFlag,
- hEnvChan->encEnvData.addHarmonic,
- sbrExtrEnv->envelopeCompensation,
- ed->frame_info,
- ed->transient_info,
- h_con->freqBandTable[HI],
- h_con->nSfb[HI],
- hEnvChan->encEnvData.sbr_xpos_mode,
- h_con->sbrSyntaxFlags);
-
+ FDKsbrEnc_TonCorrParamExtr(
+ &hEnvChan->TonCorr, hEnvChan->encEnvData.sbr_invf_mode_vec,
+ ed->noiseFloor, &hEnvChan->encEnvData.addHarmonicFlag,
+ hEnvChan->encEnvData.addHarmonic, sbrExtrEnv->envelopeCompensation,
+ ed->frame_info, ed->transient_info, h_con->freqBandTable[HI],
+ h_con->nSfb[HI], hEnvChan->encEnvData.sbr_xpos_mode,
+ h_con->sbrSyntaxFlags);
}
/* Low energy in low band fix */
- if ( hEnvChan->sbrTransientDetector.prevLowBandEnergy < hEnvChan->sbrTransientDetector.prevHighBandEnergy
- && hEnvChan->sbrTransientDetector.prevHighBandEnergy > FL2FX_DBL(0.03)
- /* The fix needs the non-fast transient detector running.
- It sets prevLowBandEnergy and prevHighBandEnergy. */
- && !(h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY)
- )
- {
- int i;
-
+ if (hEnvChan->sbrTransientDetector.prevLowBandEnergy <
+ hEnvChan->sbrTransientDetector.prevHighBandEnergy &&
+ hEnvChan->sbrTransientDetector.prevHighBandEnergy > FL2FX_DBL(0.03)
+ /* The fix needs the non-fast transient detector running.
+ It sets prevLowBandEnergy and prevHighBandEnergy. */
+ && !(h_con->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY)) {
hEnvChan->fLevelProtect = 1;
- for (i=0; i<MAX_NUM_NOISE_VALUES; i++)
+ for (i = 0; i < MAX_NUM_NOISE_VALUES; i++)
hEnvChan->encEnvData.sbr_invf_mode_vec[i] = INVF_HIGH_LEVEL;
} else {
hEnvChan->fLevelProtect = 0;
}
- hEnvChan->encEnvData.sbr_invf_mode = hEnvChan->encEnvData.sbr_invf_mode_vec[0];
-
- hEnvChan->encEnvData.noOfnoisebands = hEnvChan->TonCorr.sbrNoiseFloorEstimate.noNoiseBands;
+ hEnvChan->encEnvData.sbr_invf_mode =
+ hEnvChan->encEnvData.sbr_invf_mode_vec[0];
+ hEnvChan->encEnvData.noOfnoisebands =
+ hEnvChan->TonCorr.sbrNoiseFloorEstimate.noNoiseBands;
} /* ch */
-
-
- /*
- Save number of scf bands per envelope
- */
- for (ch = 0; ch < nChannels;ch++) {
- for (i = 0; i < eData[ch].nEnvelopes; i++){
+ /*
+ Save number of scf bands per envelope
+ */
+ for (ch = 0; ch < nChannels; ch++) {
+ for (i = 0; i < eData[ch].nEnvelopes; i++) {
h_envChan[ch]->encEnvData.noScfBands[i] =
- (eData[ch].frame_info->freqRes[i] == FREQ_RES_HIGH ? h_con->nSfb[FREQ_RES_HIGH] : h_con->nSfb[FREQ_RES_LOW]);
+ (eData[ch].frame_info->freqRes[i] == FREQ_RES_HIGH
+ ? h_con->nSfb[FREQ_RES_HIGH]
+ : h_con->nSfb[FREQ_RES_LOW]);
}
}
@@ -1368,165 +1359,169 @@ FDKsbrEnc_extractSbrEnvelope2 (
Extract envelope of current frame.
*/
switch (stereoMode) {
- case SBR_MONO:
- calculateSbrEnvelope (h_envChan[0]->sbrExtractEnvelope.YBuffer, NULL,
- h_envChan[0]->sbrExtractEnvelope.YBufferScale, NULL,
- eData[0].frame_info, eData[0].sfb_nrg, NULL,
- h_con, h_envChan[0], SBR_MONO, NULL, YSzShift);
- break;
- case SBR_LEFT_RIGHT:
- calculateSbrEnvelope (h_envChan[0]->sbrExtractEnvelope.YBuffer, NULL,
- h_envChan[0]->sbrExtractEnvelope.YBufferScale, NULL,
- eData[0].frame_info, eData[0].sfb_nrg, NULL,
- h_con, h_envChan[0], SBR_MONO, NULL, YSzShift);
- calculateSbrEnvelope (h_envChan[1]->sbrExtractEnvelope.YBuffer, NULL,
- h_envChan[1]->sbrExtractEnvelope.YBufferScale, NULL,
- eData[1].frame_info,eData[1].sfb_nrg, NULL,
- h_con, h_envChan[1], SBR_MONO, NULL, YSzShift);
- break;
- case SBR_COUPLING:
- calculateSbrEnvelope (h_envChan[0]->sbrExtractEnvelope.YBuffer, h_envChan[1]->sbrExtractEnvelope.YBuffer,
- h_envChan[0]->sbrExtractEnvelope.YBufferScale, h_envChan[1]->sbrExtractEnvelope.YBufferScale,
- eData[0].frame_info, eData[0].sfb_nrg, eData[1].sfb_nrg,
- h_con, h_envChan[0], SBR_COUPLING, &fData->maxQuantError, YSzShift);
- break;
- case SBR_SWITCH_LRC:
- calculateSbrEnvelope (h_envChan[0]->sbrExtractEnvelope.YBuffer, NULL,
- h_envChan[0]->sbrExtractEnvelope.YBufferScale, NULL,
- eData[0].frame_info, eData[0].sfb_nrg, NULL,
- h_con, h_envChan[0], SBR_MONO, NULL, YSzShift);
- calculateSbrEnvelope (h_envChan[1]->sbrExtractEnvelope.YBuffer, NULL,
- h_envChan[1]->sbrExtractEnvelope.YBufferScale, NULL,
- eData[1].frame_info, eData[1].sfb_nrg, NULL,
- h_con, h_envChan[1], SBR_MONO,NULL, YSzShift);
- calculateSbrEnvelope (h_envChan[0]->sbrExtractEnvelope.YBuffer, h_envChan[1]->sbrExtractEnvelope.YBuffer,
- h_envChan[0]->sbrExtractEnvelope.YBufferScale, h_envChan[1]->sbrExtractEnvelope.YBufferScale,
- eData[0].frame_info, eData[0].sfb_nrg_coupling, eData[1].sfb_nrg_coupling,
- h_con, h_envChan[0], SBR_COUPLING, &fData->maxQuantError, YSzShift);
- break;
+ case SBR_MONO:
+ calculateSbrEnvelope(h_envChan[0]->sbrExtractEnvelope.YBuffer, NULL,
+ h_envChan[0]->sbrExtractEnvelope.YBufferScale, NULL,
+ eData[0].frame_info, eData[0].sfb_nrg, NULL, h_con,
+ h_envChan[0], SBR_MONO, NULL, YSzShift);
+ break;
+ case SBR_LEFT_RIGHT:
+ calculateSbrEnvelope(h_envChan[0]->sbrExtractEnvelope.YBuffer, NULL,
+ h_envChan[0]->sbrExtractEnvelope.YBufferScale, NULL,
+ eData[0].frame_info, eData[0].sfb_nrg, NULL, h_con,
+ h_envChan[0], SBR_MONO, NULL, YSzShift);
+ calculateSbrEnvelope(h_envChan[1]->sbrExtractEnvelope.YBuffer, NULL,
+ h_envChan[1]->sbrExtractEnvelope.YBufferScale, NULL,
+ eData[1].frame_info, eData[1].sfb_nrg, NULL, h_con,
+ h_envChan[1], SBR_MONO, NULL, YSzShift);
+ break;
+ case SBR_COUPLING:
+ calculateSbrEnvelope(h_envChan[0]->sbrExtractEnvelope.YBuffer,
+ h_envChan[1]->sbrExtractEnvelope.YBuffer,
+ h_envChan[0]->sbrExtractEnvelope.YBufferScale,
+ h_envChan[1]->sbrExtractEnvelope.YBufferScale,
+ eData[0].frame_info, eData[0].sfb_nrg,
+ eData[1].sfb_nrg, h_con, h_envChan[0], SBR_COUPLING,
+ &fData->maxQuantError, YSzShift);
+ break;
+ case SBR_SWITCH_LRC:
+ calculateSbrEnvelope(h_envChan[0]->sbrExtractEnvelope.YBuffer, NULL,
+ h_envChan[0]->sbrExtractEnvelope.YBufferScale, NULL,
+ eData[0].frame_info, eData[0].sfb_nrg, NULL, h_con,
+ h_envChan[0], SBR_MONO, NULL, YSzShift);
+ calculateSbrEnvelope(h_envChan[1]->sbrExtractEnvelope.YBuffer, NULL,
+ h_envChan[1]->sbrExtractEnvelope.YBufferScale, NULL,
+ eData[1].frame_info, eData[1].sfb_nrg, NULL, h_con,
+ h_envChan[1], SBR_MONO, NULL, YSzShift);
+ calculateSbrEnvelope(h_envChan[0]->sbrExtractEnvelope.YBuffer,
+ h_envChan[1]->sbrExtractEnvelope.YBuffer,
+ h_envChan[0]->sbrExtractEnvelope.YBufferScale,
+ h_envChan[1]->sbrExtractEnvelope.YBufferScale,
+ eData[0].frame_info, eData[0].sfb_nrg_coupling,
+ eData[1].sfb_nrg_coupling, h_con, h_envChan[0],
+ SBR_COUPLING, &fData->maxQuantError, YSzShift);
+ break;
}
-
-
/*
Noise floor quantisation and coding.
*/
switch (stereoMode) {
- case SBR_MONO:
- sbrNoiseFloorLevelsQuantisation(eData[0].noise_level, eData[0].noiseFloor, 0);
-
- FDKsbrEnc_codeEnvelope(eData[0].noise_level, fData->res,
- &h_envChan[0]->sbrCodeNoiseFloor,
- h_envChan[0]->encEnvData.domain_vec_noise, 0,
- (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
- sbrBitstreamData->HeaderActive);
-
- break;
- case SBR_LEFT_RIGHT:
- sbrNoiseFloorLevelsQuantisation(eData[0].noise_level,eData[0].noiseFloor, 0);
-
- FDKsbrEnc_codeEnvelope (eData[0].noise_level, fData->res,
- &h_envChan[0]->sbrCodeNoiseFloor,
- h_envChan[0]->encEnvData.domain_vec_noise, 0,
- (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
- sbrBitstreamData->HeaderActive);
-
- sbrNoiseFloorLevelsQuantisation(eData[1].noise_level,eData[1].noiseFloor, 0);
-
- FDKsbrEnc_codeEnvelope (eData[1].noise_level, fData->res,
- &h_envChan[1]->sbrCodeNoiseFloor,
- h_envChan[1]->encEnvData.domain_vec_noise, 0,
- (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
- sbrBitstreamData->HeaderActive);
-
- break;
-
- case SBR_COUPLING:
- coupleNoiseFloor(eData[0].noiseFloor,eData[1].noiseFloor);
-
- sbrNoiseFloorLevelsQuantisation(eData[0].noise_level,eData[0].noiseFloor, 0);
-
- FDKsbrEnc_codeEnvelope (eData[0].noise_level, fData->res,
- &h_envChan[0]->sbrCodeNoiseFloor,
- h_envChan[0]->encEnvData.domain_vec_noise, 1,
- (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
- sbrBitstreamData->HeaderActive);
-
- sbrNoiseFloorLevelsQuantisation(eData[1].noise_level,eData[1].noiseFloor, 1);
-
- FDKsbrEnc_codeEnvelope (eData[1].noise_level, fData->res,
- &h_envChan[1]->sbrCodeNoiseFloor,
- h_envChan[1]->encEnvData.domain_vec_noise, 1,
- (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 1,
- sbrBitstreamData->HeaderActive);
-
- break;
- case SBR_SWITCH_LRC:
- sbrNoiseFloorLevelsQuantisation(eData[0].noise_level,eData[0].noiseFloor, 0);
- sbrNoiseFloorLevelsQuantisation(eData[1].noise_level,eData[1].noiseFloor, 0);
- coupleNoiseFloor(eData[0].noiseFloor,eData[1].noiseFloor);
- sbrNoiseFloorLevelsQuantisation(eData[0].noise_level_coupling,eData[0].noiseFloor, 0);
- sbrNoiseFloorLevelsQuantisation(eData[1].noise_level_coupling,eData[1].noiseFloor, 1);
- break;
+ case SBR_MONO:
+ sbrNoiseFloorLevelsQuantisation(eData[0].noise_level, eData[0].noiseFloor,
+ 0);
+
+ FDKsbrEnc_codeEnvelope(eData[0].noise_level, fData->res,
+ &h_envChan[0]->sbrCodeNoiseFloor,
+ h_envChan[0]->encEnvData.domain_vec_noise, 0,
+ (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
+ sbrBitstreamData->HeaderActive);
+
+ break;
+ case SBR_LEFT_RIGHT:
+ sbrNoiseFloorLevelsQuantisation(eData[0].noise_level, eData[0].noiseFloor,
+ 0);
+
+ FDKsbrEnc_codeEnvelope(eData[0].noise_level, fData->res,
+ &h_envChan[0]->sbrCodeNoiseFloor,
+ h_envChan[0]->encEnvData.domain_vec_noise, 0,
+ (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
+ sbrBitstreamData->HeaderActive);
+
+ sbrNoiseFloorLevelsQuantisation(eData[1].noise_level, eData[1].noiseFloor,
+ 0);
+
+ FDKsbrEnc_codeEnvelope(eData[1].noise_level, fData->res,
+ &h_envChan[1]->sbrCodeNoiseFloor,
+ h_envChan[1]->encEnvData.domain_vec_noise, 0,
+ (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
+ sbrBitstreamData->HeaderActive);
+
+ break;
+
+ case SBR_COUPLING:
+ coupleNoiseFloor(eData[0].noiseFloor, eData[1].noiseFloor);
+
+ sbrNoiseFloorLevelsQuantisation(eData[0].noise_level, eData[0].noiseFloor,
+ 0);
+
+ FDKsbrEnc_codeEnvelope(eData[0].noise_level, fData->res,
+ &h_envChan[0]->sbrCodeNoiseFloor,
+ h_envChan[0]->encEnvData.domain_vec_noise, 1,
+ (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
+ sbrBitstreamData->HeaderActive);
+
+ sbrNoiseFloorLevelsQuantisation(eData[1].noise_level, eData[1].noiseFloor,
+ 1);
+
+ FDKsbrEnc_codeEnvelope(eData[1].noise_level, fData->res,
+ &h_envChan[1]->sbrCodeNoiseFloor,
+ h_envChan[1]->encEnvData.domain_vec_noise, 1,
+ (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 1,
+ sbrBitstreamData->HeaderActive);
+
+ break;
+ case SBR_SWITCH_LRC:
+ sbrNoiseFloorLevelsQuantisation(eData[0].noise_level, eData[0].noiseFloor,
+ 0);
+ sbrNoiseFloorLevelsQuantisation(eData[1].noise_level, eData[1].noiseFloor,
+ 0);
+ coupleNoiseFloor(eData[0].noiseFloor, eData[1].noiseFloor);
+ sbrNoiseFloorLevelsQuantisation(eData[0].noise_level_coupling,
+ eData[0].noiseFloor, 0);
+ sbrNoiseFloorLevelsQuantisation(eData[1].noise_level_coupling,
+ eData[1].noiseFloor, 1);
+ break;
}
-
-
/*
Encode envelope of current frame.
*/
switch (stereoMode) {
- case SBR_MONO:
- sbrHeaderData->coupling = 0;
- h_envChan[0]->encEnvData.balance = 0;
- FDKsbrEnc_codeEnvelope (eData[0].sfb_nrg, eData[0].frame_info->freqRes,
- &h_envChan[0]->sbrCodeEnvelope,
- h_envChan[0]->encEnvData.domain_vec,
- sbrHeaderData->coupling,
- eData[0].frame_info->nEnvelopes, 0,
- sbrBitstreamData->HeaderActive);
- break;
- case SBR_LEFT_RIGHT:
- sbrHeaderData->coupling = 0;
-
- h_envChan[0]->encEnvData.balance = 0;
- h_envChan[1]->encEnvData.balance = 0;
-
-
- FDKsbrEnc_codeEnvelope (eData[0].sfb_nrg, eData[0].frame_info->freqRes,
- &h_envChan[0]->sbrCodeEnvelope,
- h_envChan[0]->encEnvData.domain_vec,
- sbrHeaderData->coupling,
- eData[0].frame_info->nEnvelopes, 0,
- sbrBitstreamData->HeaderActive);
- FDKsbrEnc_codeEnvelope (eData[1].sfb_nrg, eData[1].frame_info->freqRes,
- &h_envChan[1]->sbrCodeEnvelope,
- h_envChan[1]->encEnvData.domain_vec,
- sbrHeaderData->coupling,
- eData[1].frame_info->nEnvelopes, 0,
- sbrBitstreamData->HeaderActive);
- break;
- case SBR_COUPLING:
- sbrHeaderData->coupling = 1;
- h_envChan[0]->encEnvData.balance = 0;
- h_envChan[1]->encEnvData.balance = 1;
-
- FDKsbrEnc_codeEnvelope (eData[0].sfb_nrg, eData[0].frame_info->freqRes,
- &h_envChan[0]->sbrCodeEnvelope,
- h_envChan[0]->encEnvData.domain_vec,
- sbrHeaderData->coupling,
- eData[0].frame_info->nEnvelopes, 0,
- sbrBitstreamData->HeaderActive);
- FDKsbrEnc_codeEnvelope (eData[1].sfb_nrg, eData[1].frame_info->freqRes,
- &h_envChan[1]->sbrCodeEnvelope,
- h_envChan[1]->encEnvData.domain_vec,
- sbrHeaderData->coupling,
- eData[1].frame_info->nEnvelopes, 1,
- sbrBitstreamData->HeaderActive);
- break;
- case SBR_SWITCH_LRC:
- {
+ case SBR_MONO:
+ sbrHeaderData->coupling = 0;
+ h_envChan[0]->encEnvData.balance = 0;
+ FDKsbrEnc_codeEnvelope(
+ eData[0].sfb_nrg, eData[0].frame_info->freqRes,
+ &h_envChan[0]->sbrCodeEnvelope, h_envChan[0]->encEnvData.domain_vec,
+ sbrHeaderData->coupling, eData[0].frame_info->nEnvelopes, 0,
+ sbrBitstreamData->HeaderActive);
+ break;
+ case SBR_LEFT_RIGHT:
+ sbrHeaderData->coupling = 0;
+
+ h_envChan[0]->encEnvData.balance = 0;
+ h_envChan[1]->encEnvData.balance = 0;
+
+ FDKsbrEnc_codeEnvelope(
+ eData[0].sfb_nrg, eData[0].frame_info->freqRes,
+ &h_envChan[0]->sbrCodeEnvelope, h_envChan[0]->encEnvData.domain_vec,
+ sbrHeaderData->coupling, eData[0].frame_info->nEnvelopes, 0,
+ sbrBitstreamData->HeaderActive);
+ FDKsbrEnc_codeEnvelope(
+ eData[1].sfb_nrg, eData[1].frame_info->freqRes,
+ &h_envChan[1]->sbrCodeEnvelope, h_envChan[1]->encEnvData.domain_vec,
+ sbrHeaderData->coupling, eData[1].frame_info->nEnvelopes, 0,
+ sbrBitstreamData->HeaderActive);
+ break;
+ case SBR_COUPLING:
+ sbrHeaderData->coupling = 1;
+ h_envChan[0]->encEnvData.balance = 0;
+ h_envChan[1]->encEnvData.balance = 1;
+
+ FDKsbrEnc_codeEnvelope(
+ eData[0].sfb_nrg, eData[0].frame_info->freqRes,
+ &h_envChan[0]->sbrCodeEnvelope, h_envChan[0]->encEnvData.domain_vec,
+ sbrHeaderData->coupling, eData[0].frame_info->nEnvelopes, 0,
+ sbrBitstreamData->HeaderActive);
+ FDKsbrEnc_codeEnvelope(
+ eData[1].sfb_nrg, eData[1].frame_info->freqRes,
+ &h_envChan[1]->sbrCodeEnvelope, h_envChan[1]->encEnvData.domain_vec,
+ sbrHeaderData->coupling, eData[1].frame_info->nEnvelopes, 1,
+ sbrBitstreamData->HeaderActive);
+ break;
+ case SBR_SWITCH_LRC: {
INT payloadbitsLR;
INT payloadbitsCOUPLING;
@@ -1541,15 +1536,18 @@ FDKsbrEnc_extractSbrEnvelope2 (
INT tempFlagLeft = 0;
/*
- Store previous values, in order to be able to "undo" what is being done.
+ Store previous values, in order to be able to "undo" what is being
+ done.
*/
- for(ch = 0; ch < nChannels;ch++){
- FDKmemcpy (sfbNrgPrevTemp[ch], h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev,
- MAX_FREQ_COEFFS * sizeof (SCHAR));
+ for (ch = 0; ch < nChannels; ch++) {
+ FDKmemcpy(sfbNrgPrevTemp[ch],
+ h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev,
+ MAX_FREQ_COEFFS * sizeof(SCHAR));
- FDKmemcpy (noisePrevTemp[ch], h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev,
- MAX_NUM_NOISE_COEFFS * sizeof (SCHAR));
+ FDKmemcpy(noisePrevTemp[ch],
+ h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev,
+ MAX_NUM_NOISE_COEFFS * sizeof(SCHAR));
upDateNrgTemp[ch] = h_envChan[ch]->sbrCodeEnvelope.upDate;
upDateNoiseTemp[ch] = h_envChan[ch]->sbrCodeNoiseFloor.upDate;
@@ -1558,247 +1556,233 @@ FDKsbrEnc_extractSbrEnvelope2 (
forbid time coding in the first envelope in case of a different
previous stereomode
*/
- if(sbrHeaderData->prev_coupling){
+ if (sbrHeaderData->prev_coupling) {
h_envChan[ch]->sbrCodeEnvelope.upDate = 0;
h_envChan[ch]->sbrCodeNoiseFloor.upDate = 0;
}
} /* ch */
-
/*
Code ordinary Left/Right stereo
*/
- FDKsbrEnc_codeEnvelope (eData[0].sfb_nrg, eData[0].frame_info->freqRes,
- &h_envChan[0]->sbrCodeEnvelope,
- h_envChan[0]->encEnvData.domain_vec, 0,
- eData[0].frame_info->nEnvelopes, 0,
- sbrBitstreamData->HeaderActive);
- FDKsbrEnc_codeEnvelope (eData[1].sfb_nrg, eData[1].frame_info->freqRes,
- &h_envChan[1]->sbrCodeEnvelope,
- h_envChan[1]->encEnvData.domain_vec, 0,
- eData[1].frame_info->nEnvelopes, 0,
- sbrBitstreamData->HeaderActive);
+ FDKsbrEnc_codeEnvelope(eData[0].sfb_nrg, eData[0].frame_info->freqRes,
+ &h_envChan[0]->sbrCodeEnvelope,
+ h_envChan[0]->encEnvData.domain_vec, 0,
+ eData[0].frame_info->nEnvelopes, 0,
+ sbrBitstreamData->HeaderActive);
+ FDKsbrEnc_codeEnvelope(eData[1].sfb_nrg, eData[1].frame_info->freqRes,
+ &h_envChan[1]->sbrCodeEnvelope,
+ h_envChan[1]->encEnvData.domain_vec, 0,
+ eData[1].frame_info->nEnvelopes, 0,
+ sbrBitstreamData->HeaderActive);
c = 0;
for (i = 0; i < eData[0].nEnvelopes; i++) {
- for (j = 0; j < h_envChan[0]->encEnvData.noScfBands[i]; j++)
- {
- h_envChan[0]->encEnvData.ienvelope[i][j] = eData[0].sfb_nrg[c];
- h_envChan[1]->encEnvData.ienvelope[i][j] = eData[1].sfb_nrg[c];
- c++;
- }
+ for (j = 0; j < h_envChan[0]->encEnvData.noScfBands[i]; j++) {
+ h_envChan[0]->encEnvData.ienvelope[i][j] = eData[0].sfb_nrg[c];
+ h_envChan[1]->encEnvData.ienvelope[i][j] = eData[1].sfb_nrg[c];
+ c++;
+ }
}
-
-
- FDKsbrEnc_codeEnvelope (eData[0].noise_level, fData->res,
- &h_envChan[0]->sbrCodeNoiseFloor,
- h_envChan[0]->encEnvData.domain_vec_noise, 0,
- (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
- sbrBitstreamData->HeaderActive);
-
+ FDKsbrEnc_codeEnvelope(eData[0].noise_level, fData->res,
+ &h_envChan[0]->sbrCodeNoiseFloor,
+ h_envChan[0]->encEnvData.domain_vec_noise, 0,
+ (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
+ sbrBitstreamData->HeaderActive);
for (i = 0; i < MAX_NUM_NOISE_VALUES; i++)
h_envChan[0]->encEnvData.sbr_noise_levels[i] = eData[0].noise_level[i];
-
- FDKsbrEnc_codeEnvelope (eData[1].noise_level, fData->res,
- &h_envChan[1]->sbrCodeNoiseFloor,
- h_envChan[1]->encEnvData.domain_vec_noise, 0,
- (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
- sbrBitstreamData->HeaderActive);
+ FDKsbrEnc_codeEnvelope(eData[1].noise_level, fData->res,
+ &h_envChan[1]->sbrCodeNoiseFloor,
+ h_envChan[1]->encEnvData.domain_vec_noise, 0,
+ (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
+ sbrBitstreamData->HeaderActive);
for (i = 0; i < MAX_NUM_NOISE_VALUES; i++)
h_envChan[1]->encEnvData.sbr_noise_levels[i] = eData[1].noise_level[i];
-
sbrHeaderData->coupling = 0;
h_envChan[0]->encEnvData.balance = 0;
h_envChan[1]->encEnvData.balance = 0;
- payloadbitsLR = FDKsbrEnc_CountSbrChannelPairElement (sbrHeaderData,
- hParametricStereo,
- sbrBitstreamData,
- &h_envChan[0]->encEnvData,
- &h_envChan[1]->encEnvData,
- hCmonData,
- h_con->sbrSyntaxFlags);
+ payloadbitsLR = FDKsbrEnc_CountSbrChannelPairElement(
+ sbrHeaderData, hParametricStereo, sbrBitstreamData,
+ &h_envChan[0]->encEnvData, &h_envChan[1]->encEnvData, hCmonData,
+ h_con->sbrSyntaxFlags);
/*
swap saved stored with current values
*/
- for(ch = 0; ch < nChannels;ch++){
- INT itmp;
- for(i=0;i<MAX_FREQ_COEFFS;i++){
+ for (ch = 0; ch < nChannels; ch++) {
+ INT itmp;
+ for (i = 0; i < MAX_FREQ_COEFFS; i++) {
/*
swap sfb energies
*/
- itmp = h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev[i];
- h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev[i]=sfbNrgPrevTemp[ch][i];
- sfbNrgPrevTemp[ch][i]=itmp;
+ itmp = h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev[i];
+ h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev[i] =
+ sfbNrgPrevTemp[ch][i];
+ sfbNrgPrevTemp[ch][i] = itmp;
}
- for(i=0;i<MAX_NUM_NOISE_COEFFS;i++){
+ for (i = 0; i < MAX_NUM_NOISE_COEFFS; i++) {
/*
swap noise energies
*/
- itmp = h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev[i];
- h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev[i]=noisePrevTemp[ch][i];
- noisePrevTemp[ch][i]=itmp;
- }
+ itmp = h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev[i];
+ h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev[i] =
+ noisePrevTemp[ch][i];
+ noisePrevTemp[ch][i] = itmp;
+ }
/* swap update flags */
- itmp = h_envChan[ch]->sbrCodeEnvelope.upDate;
- h_envChan[ch]->sbrCodeEnvelope.upDate=upDateNrgTemp[ch];
+ itmp = h_envChan[ch]->sbrCodeEnvelope.upDate;
+ h_envChan[ch]->sbrCodeEnvelope.upDate = upDateNrgTemp[ch];
upDateNrgTemp[ch] = itmp;
- itmp = h_envChan[ch]->sbrCodeNoiseFloor.upDate;
- h_envChan[ch]->sbrCodeNoiseFloor.upDate=upDateNoiseTemp[ch];
- upDateNoiseTemp[ch]=itmp;
+ itmp = h_envChan[ch]->sbrCodeNoiseFloor.upDate;
+ h_envChan[ch]->sbrCodeNoiseFloor.upDate = upDateNoiseTemp[ch];
+ upDateNoiseTemp[ch] = itmp;
/*
save domain vecs
*/
- FDKmemcpy(domainVecTemp[ch],h_envChan[ch]->encEnvData.domain_vec,sizeof(INT)*MAX_ENVELOPES);
- FDKmemcpy(domainVecNoiseTemp[ch],h_envChan[ch]->encEnvData.domain_vec_noise,sizeof(INT)*MAX_ENVELOPES);
+ FDKmemcpy(domainVecTemp[ch], h_envChan[ch]->encEnvData.domain_vec,
+ sizeof(INT) * MAX_ENVELOPES);
+ FDKmemcpy(domainVecNoiseTemp[ch],
+ h_envChan[ch]->encEnvData.domain_vec_noise,
+ sizeof(INT) * MAX_ENVELOPES);
/*
forbid time coding in the first envelope in case of a different
previous stereomode
*/
- if(!sbrHeaderData->prev_coupling){
+ if (!sbrHeaderData->prev_coupling) {
h_envChan[ch]->sbrCodeEnvelope.upDate = 0;
h_envChan[ch]->sbrCodeNoiseFloor.upDate = 0;
}
} /* ch */
-
/*
Coupling
*/
- FDKsbrEnc_codeEnvelope (eData[0].sfb_nrg_coupling, eData[0].frame_info->freqRes,
- &h_envChan[0]->sbrCodeEnvelope,
- h_envChan[0]->encEnvData.domain_vec, 1,
- eData[0].frame_info->nEnvelopes, 0,
- sbrBitstreamData->HeaderActive);
-
- FDKsbrEnc_codeEnvelope (eData[1].sfb_nrg_coupling, eData[1].frame_info->freqRes,
- &h_envChan[1]->sbrCodeEnvelope,
- h_envChan[1]->encEnvData.domain_vec, 1,
- eData[1].frame_info->nEnvelopes, 1,
- sbrBitstreamData->HeaderActive);
+ FDKsbrEnc_codeEnvelope(
+ eData[0].sfb_nrg_coupling, eData[0].frame_info->freqRes,
+ &h_envChan[0]->sbrCodeEnvelope, h_envChan[0]->encEnvData.domain_vec,
+ 1, eData[0].frame_info->nEnvelopes, 0,
+ sbrBitstreamData->HeaderActive);
+ FDKsbrEnc_codeEnvelope(
+ eData[1].sfb_nrg_coupling, eData[1].frame_info->freqRes,
+ &h_envChan[1]->sbrCodeEnvelope, h_envChan[1]->encEnvData.domain_vec,
+ 1, eData[1].frame_info->nEnvelopes, 1,
+ sbrBitstreamData->HeaderActive);
c = 0;
for (i = 0; i < eData[0].nEnvelopes; i++) {
for (j = 0; j < h_envChan[0]->encEnvData.noScfBands[i]; j++) {
- h_envChan[0]->encEnvData.ienvelope[i][j] = eData[0].sfb_nrg_coupling[c];
- h_envChan[1]->encEnvData.ienvelope[i][j] = eData[1].sfb_nrg_coupling[c];
+ h_envChan[0]->encEnvData.ienvelope[i][j] =
+ eData[0].sfb_nrg_coupling[c];
+ h_envChan[1]->encEnvData.ienvelope[i][j] =
+ eData[1].sfb_nrg_coupling[c];
c++;
}
}
- FDKsbrEnc_codeEnvelope (eData[0].noise_level_coupling, fData->res,
- &h_envChan[0]->sbrCodeNoiseFloor,
- h_envChan[0]->encEnvData.domain_vec_noise, 1,
- (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
- sbrBitstreamData->HeaderActive);
+ FDKsbrEnc_codeEnvelope(eData[0].noise_level_coupling, fData->res,
+ &h_envChan[0]->sbrCodeNoiseFloor,
+ h_envChan[0]->encEnvData.domain_vec_noise, 1,
+ (eData[0].frame_info->nEnvelopes > 1 ? 2 : 1), 0,
+ sbrBitstreamData->HeaderActive);
for (i = 0; i < MAX_NUM_NOISE_VALUES; i++)
- h_envChan[0]->encEnvData.sbr_noise_levels[i] = eData[0].noise_level_coupling[i];
-
+ h_envChan[0]->encEnvData.sbr_noise_levels[i] =
+ eData[0].noise_level_coupling[i];
- FDKsbrEnc_codeEnvelope (eData[1].noise_level_coupling, fData->res,
- &h_envChan[1]->sbrCodeNoiseFloor,
- h_envChan[1]->encEnvData.domain_vec_noise, 1,
- (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 1,
- sbrBitstreamData->HeaderActive);
+ FDKsbrEnc_codeEnvelope(eData[1].noise_level_coupling, fData->res,
+ &h_envChan[1]->sbrCodeNoiseFloor,
+ h_envChan[1]->encEnvData.domain_vec_noise, 1,
+ (eData[1].frame_info->nEnvelopes > 1 ? 2 : 1), 1,
+ sbrBitstreamData->HeaderActive);
for (i = 0; i < MAX_NUM_NOISE_VALUES; i++)
- h_envChan[1]->encEnvData.sbr_noise_levels[i] = eData[1].noise_level_coupling[i];
+ h_envChan[1]->encEnvData.sbr_noise_levels[i] =
+ eData[1].noise_level_coupling[i];
sbrHeaderData->coupling = 1;
- h_envChan[0]->encEnvData.balance = 0;
- h_envChan[1]->encEnvData.balance = 1;
+ h_envChan[0]->encEnvData.balance = 0;
+ h_envChan[1]->encEnvData.balance = 1;
- tempFlagLeft = h_envChan[0]->encEnvData.addHarmonicFlag;
+ tempFlagLeft = h_envChan[0]->encEnvData.addHarmonicFlag;
tempFlagRight = h_envChan[1]->encEnvData.addHarmonicFlag;
- payloadbitsCOUPLING =
- FDKsbrEnc_CountSbrChannelPairElement (sbrHeaderData,
- hParametricStereo,
- sbrBitstreamData,
- &h_envChan[0]->encEnvData,
- &h_envChan[1]->encEnvData,
- hCmonData,
- h_con->sbrSyntaxFlags);
-
+ payloadbitsCOUPLING = FDKsbrEnc_CountSbrChannelPairElement(
+ sbrHeaderData, hParametricStereo, sbrBitstreamData,
+ &h_envChan[0]->encEnvData, &h_envChan[1]->encEnvData, hCmonData,
+ h_con->sbrSyntaxFlags);
h_envChan[0]->encEnvData.addHarmonicFlag = tempFlagLeft;
h_envChan[1]->encEnvData.addHarmonicFlag = tempFlagRight;
if (payloadbitsCOUPLING < payloadbitsLR) {
+ /*
+ copy coded coupling envelope and noise data to l/r
+ */
+ for (ch = 0; ch < nChannels; ch++) {
+ SBR_ENV_TEMP_DATA *ed = &eData[ch];
+ FDKmemcpy(ed->sfb_nrg, ed->sfb_nrg_coupling,
+ MAX_NUM_ENVELOPE_VALUES * sizeof(SCHAR));
+ FDKmemcpy(ed->noise_level, ed->noise_level_coupling,
+ MAX_NUM_NOISE_VALUES * sizeof(SCHAR));
+ }
- /*
- copy coded coupling envelope and noise data to l/r
- */
- for(ch = 0; ch < nChannels;ch++){
- SBR_ENV_TEMP_DATA *ed = &eData[ch];
- FDKmemcpy (ed->sfb_nrg, ed->sfb_nrg_coupling,
- MAX_NUM_ENVELOPE_VALUES * sizeof (SCHAR));
- FDKmemcpy (ed->noise_level, ed->noise_level_coupling,
- MAX_NUM_NOISE_VALUES * sizeof (SCHAR));
- }
-
- sbrHeaderData->coupling = 1;
- h_envChan[0]->encEnvData.balance = 0;
- h_envChan[1]->encEnvData.balance = 1;
- }
- else{
- /*
- restore saved l/r items
- */
- for(ch = 0; ch < nChannels;ch++){
-
- FDKmemcpy (h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev,
- sfbNrgPrevTemp[ch], MAX_FREQ_COEFFS * sizeof (SCHAR));
-
- h_envChan[ch]->sbrCodeEnvelope.upDate = upDateNrgTemp[ch];
+ sbrHeaderData->coupling = 1;
+ h_envChan[0]->encEnvData.balance = 0;
+ h_envChan[1]->encEnvData.balance = 1;
+ } else {
+ /*
+ restore saved l/r items
+ */
+ for (ch = 0; ch < nChannels; ch++) {
+ FDKmemcpy(h_envChan[ch]->sbrCodeEnvelope.sfb_nrg_prev,
+ sfbNrgPrevTemp[ch], MAX_FREQ_COEFFS * sizeof(SCHAR));
- FDKmemcpy (h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev,
- noisePrevTemp[ch], MAX_NUM_NOISE_COEFFS * sizeof (SCHAR));
+ h_envChan[ch]->sbrCodeEnvelope.upDate = upDateNrgTemp[ch];
- FDKmemcpy (h_envChan[ch]->encEnvData.domain_vec,domainVecTemp[ch],sizeof(INT)*MAX_ENVELOPES);
- FDKmemcpy (h_envChan[ch]->encEnvData.domain_vec_noise,domainVecNoiseTemp[ch],sizeof(INT)*MAX_ENVELOPES);
+ FDKmemcpy(h_envChan[ch]->sbrCodeNoiseFloor.sfb_nrg_prev,
+ noisePrevTemp[ch], MAX_NUM_NOISE_COEFFS * sizeof(SCHAR));
- h_envChan[ch]->sbrCodeNoiseFloor.upDate = upDateNoiseTemp[ch];
- }
+ FDKmemcpy(h_envChan[ch]->encEnvData.domain_vec, domainVecTemp[ch],
+ sizeof(INT) * MAX_ENVELOPES);
+ FDKmemcpy(h_envChan[ch]->encEnvData.domain_vec_noise,
+ domainVecNoiseTemp[ch], sizeof(INT) * MAX_ENVELOPES);
- sbrHeaderData->coupling = 0;
- h_envChan[0]->encEnvData.balance = 0;
- h_envChan[1]->encEnvData.balance = 0;
+ h_envChan[ch]->sbrCodeNoiseFloor.upDate = upDateNoiseTemp[ch];
}
- }
- break;
- } /* switch */
+ sbrHeaderData->coupling = 0;
+ h_envChan[0]->encEnvData.balance = 0;
+ h_envChan[1]->encEnvData.balance = 0;
+ }
+ } break;
+ } /* switch */
/* tell the envelope encoders how long it has been, since we last sent
a frame starting with a dF-coded envelope */
- if (stereoMode == SBR_MONO ) {
+ if (stereoMode == SBR_MONO) {
if (h_envChan[0]->encEnvData.domain_vec[0] == TIME)
h_envChan[0]->sbrCodeEnvelope.dF_edge_incr_fac++;
else
h_envChan[0]->sbrCodeEnvelope.dF_edge_incr_fac = 0;
- }
- else {
+ } else {
if (h_envChan[0]->encEnvData.domain_vec[0] == TIME ||
h_envChan[1]->encEnvData.domain_vec[0] == TIME) {
h_envChan[0]->sbrCodeEnvelope.dF_edge_incr_fac++;
h_envChan[1]->sbrCodeEnvelope.dF_edge_incr_fac++;
- }
- else {
+ } else {
h_envChan[0]->sbrCodeEnvelope.dF_edge_incr_fac = 0;
h_envChan[1]->sbrCodeEnvelope.dF_edge_incr_fac = 0;
}
@@ -1807,7 +1791,7 @@ FDKsbrEnc_extractSbrEnvelope2 (
/*
Send the encoded data to the bitstream
*/
- for(ch = 0; ch < nChannels;ch++){
+ for (ch = 0; ch < nChannels; ch++) {
SBR_ENV_TEMP_DATA *ed = &eData[ch];
c = 0;
for (i = 0; i < ed->nEnvelopes; i++) {
@@ -1817,45 +1801,38 @@ FDKsbrEnc_extractSbrEnvelope2 (
c++;
}
}
- for (i = 0; i < MAX_NUM_NOISE_VALUES; i++){
+ for (i = 0; i < MAX_NUM_NOISE_VALUES; i++) {
h_envChan[ch]->encEnvData.sbr_noise_levels[i] = ed->noise_level[i];
}
- }/* ch */
-
+ } /* ch */
/*
Write bitstream
*/
if (nChannels == 2) {
- FDKsbrEnc_WriteEnvChannelPairElement(sbrHeaderData,
- hParametricStereo,
- sbrBitstreamData,
- &h_envChan[0]->encEnvData,
- &h_envChan[1]->encEnvData,
- hCmonData,
- h_con->sbrSyntaxFlags);
- }
- else {
- FDKsbrEnc_WriteEnvSingleChannelElement(sbrHeaderData,
- hParametricStereo,
- sbrBitstreamData,
- &h_envChan[0]->encEnvData,
- hCmonData,
- h_con->sbrSyntaxFlags);
+ FDKsbrEnc_WriteEnvChannelPairElement(
+ sbrHeaderData, hParametricStereo, sbrBitstreamData,
+ &h_envChan[0]->encEnvData, &h_envChan[1]->encEnvData, hCmonData,
+ h_con->sbrSyntaxFlags);
+ } else {
+ FDKsbrEnc_WriteEnvSingleChannelElement(
+ sbrHeaderData, hParametricStereo, sbrBitstreamData,
+ &h_envChan[0]->encEnvData, hCmonData, h_con->sbrSyntaxFlags);
}
/*
* Update buffers.
*/
- for (ch=0; ch<nChannels; ch++)
- {
- int YBufferLength = h_envChan[ch]->sbrExtractEnvelope.no_cols >> h_envChan[ch]->sbrExtractEnvelope.YBufferSzShift;
- for (i = 0; i < h_envChan[ch]->sbrExtractEnvelope.YBufferWriteOffset; i++) {
- FDKmemcpy(h_envChan[ch]->sbrExtractEnvelope.YBuffer[i],
- h_envChan[ch]->sbrExtractEnvelope.YBuffer[i + YBufferLength],
- sizeof(FIXP_DBL)*QMF_CHANNELS);
- }
- h_envChan[ch]->sbrExtractEnvelope.YBufferScale[0] = h_envChan[ch]->sbrExtractEnvelope.YBufferScale[1];
+ for (ch = 0; ch < nChannels; ch++) {
+ int YBufferLength = h_envChan[ch]->sbrExtractEnvelope.no_cols >>
+ h_envChan[ch]->sbrExtractEnvelope.YBufferSzShift;
+ for (i = 0; i < h_envChan[ch]->sbrExtractEnvelope.YBufferWriteOffset; i++) {
+ FDKmemcpy(h_envChan[ch]->sbrExtractEnvelope.YBuffer[i],
+ h_envChan[ch]->sbrExtractEnvelope.YBuffer[i + YBufferLength],
+ sizeof(FIXP_DBL) * 64);
+ }
+ h_envChan[ch]->sbrExtractEnvelope.YBufferScale[0] =
+ h_envChan[ch]->sbrExtractEnvelope.YBufferScale[1];
}
sbrHeaderData->prev_coupling = sbrHeaderData->coupling;
@@ -1869,40 +1846,43 @@ FDKsbrEnc_extractSbrEnvelope2 (
\return error status
****************************************************************************/
-INT
-FDKsbrEnc_CreateExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut,
- INT channel
- ,INT chInEl
- ,UCHAR* dynamic_RAM
- )
-{
+INT FDKsbrEnc_CreateExtractSbrEnvelope(HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut,
+ INT channel, INT chInEl,
+ UCHAR *dynamic_RAM) {
INT i;
- FIXP_DBL* YBuffer = GetRam_Sbr_envYBuffer(channel);
+ FIXP_DBL *rBuffer, *iBuffer;
+ INT n;
+ FIXP_DBL *YBufferDyn;
- FDKmemclear(hSbrCut,sizeof(SBR_EXTRACT_ENVELOPE));
- hSbrCut->p_YBuffer = YBuffer;
+ FDKmemclear(hSbrCut, sizeof(SBR_EXTRACT_ENVELOPE));
+ if (NULL == (hSbrCut->p_YBuffer = GetRam_Sbr_envYBuffer(channel))) {
+ goto bail;
+ }
- for (i = 0; i < (QMF_MAX_TIME_SLOTS>>1); i++) {
- hSbrCut->YBuffer[i] = YBuffer + (i*QMF_CHANNELS);
+ for (i = 0; i < (32 >> 1); i++) {
+ hSbrCut->YBuffer[i] = hSbrCut->p_YBuffer + (i * 64);
}
- FIXP_DBL *YBufferDyn = GetRam_Sbr_envYBuffer(chInEl, dynamic_RAM);
- INT n=0;
- for (; i < QMF_MAX_TIME_SLOTS; i++,n++) {
- hSbrCut->YBuffer[i] = YBufferDyn + (n*QMF_CHANNELS);
+ YBufferDyn = GetRam_Sbr_envYBuffer(chInEl, dynamic_RAM);
+ for (n = 0; i < 32; i++, n++) {
+ hSbrCut->YBuffer[i] = YBufferDyn + (n * 64);
}
- FIXP_DBL* rBuffer = GetRam_Sbr_envRBuffer(0, dynamic_RAM);
- FIXP_DBL* iBuffer = GetRam_Sbr_envIBuffer(0, dynamic_RAM);
+ rBuffer = GetRam_Sbr_envRBuffer(0, dynamic_RAM);
+ iBuffer = GetRam_Sbr_envIBuffer(0, dynamic_RAM);
- for (i = 0; i < QMF_MAX_TIME_SLOTS; i++) {
- hSbrCut->rBuffer[i] = rBuffer + (i*QMF_CHANNELS);
- hSbrCut->iBuffer[i] = iBuffer + (i*QMF_CHANNELS);
+ for (i = 0; i < 32; i++) {
+ hSbrCut->rBuffer[i] = rBuffer + (i * 64);
+ hSbrCut->iBuffer[i] = iBuffer + (i * 64);
}
return 0;
-}
+bail:
+ FDKsbrEnc_deleteExtractSbrEnvelope(hSbrCut);
+
+ return -1;
+}
/***************************************************************************/
/*!
@@ -1912,36 +1892,22 @@ FDKsbrEnc_CreateExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut,
\return error status
****************************************************************************/
-INT
-FDKsbrEnc_InitExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut,
- int no_cols,
- int no_rows,
- int start_index,
- int time_slots,
- int time_step,
- int tran_off,
- ULONG statesInitFlag
- ,int chInEl
- ,UCHAR* dynamic_RAM
- ,UINT sbrSyntaxFlags
- )
-{
+INT FDKsbrEnc_InitExtractSbrEnvelope(HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut,
+ int no_cols, int no_rows, int start_index,
+ int time_slots, int time_step,
+ int tran_off, ULONG statesInitFlag,
+ int chInEl, UCHAR *dynamic_RAM,
+ UINT sbrSyntaxFlags) {
int YBufferLength, rBufferLength;
int i;
if (sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) {
int off = TRANSIENT_OFFSET_LD;
-#ifndef FULL_DELAY
- hSbrCut->YBufferWriteOffset = (no_cols>>1)+off*time_step;
-#else
- hSbrCut->YBufferWriteOffset = no_cols+off*time_step;
-#endif
- } else
- {
- hSbrCut->YBufferWriteOffset = tran_off*time_step;
+ hSbrCut->YBufferWriteOffset = (no_cols >> 1) + off * time_step;
+ } else {
+ hSbrCut->YBufferWriteOffset = tran_off * time_step;
}
- hSbrCut->rBufferReadOffset = 0;
-
+ hSbrCut->rBufferReadOffset = 0;
YBufferLength = hSbrCut->YBufferWriteOffset + no_cols;
rBufferLength = no_cols;
@@ -1949,7 +1915,6 @@ FDKsbrEnc_InitExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut,
hSbrCut->pre_transient_info[0] = 0;
hSbrCut->pre_transient_info[1] = 0;
-
hSbrCut->no_cols = no_cols;
hSbrCut->no_rows = no_rows;
hSbrCut->start_index = start_index;
@@ -1957,7 +1922,7 @@ FDKsbrEnc_InitExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut,
hSbrCut->time_slots = time_slots;
hSbrCut->time_step = time_step;
- FDK_ASSERT(no_rows <= QMF_CHANNELS);
+ FDK_ASSERT(no_rows <= 64);
/* Use half the Energy values if time step is 2 or greater */
if (time_step >= 2)
@@ -1965,40 +1930,37 @@ FDKsbrEnc_InitExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut,
else
hSbrCut->YBufferSzShift = 0;
- YBufferLength >>= hSbrCut->YBufferSzShift;
+ YBufferLength >>= hSbrCut->YBufferSzShift;
hSbrCut->YBufferWriteOffset >>= hSbrCut->YBufferSzShift;
- FDK_ASSERT(YBufferLength<=QMF_MAX_TIME_SLOTS);
+ FDK_ASSERT(YBufferLength <= 32);
FIXP_DBL *YBufferDyn = GetRam_Sbr_envYBuffer(chInEl, dynamic_RAM);
- INT n=0;
- for (i=(QMF_MAX_TIME_SLOTS>>1); i < QMF_MAX_TIME_SLOTS; i++,n++) {
- hSbrCut->YBuffer[i] = YBufferDyn + (n*QMF_CHANNELS);
+ INT n = 0;
+ for (i = (32 >> 1); i < 32; i++, n++) {
+ hSbrCut->YBuffer[i] = YBufferDyn + (n * 64);
}
- if(statesInitFlag) {
- for (i=0; i<YBufferLength; i++) {
- FDKmemclear( hSbrCut->YBuffer[i],QMF_CHANNELS*sizeof(FIXP_DBL));
+ if (statesInitFlag) {
+ for (i = 0; i < YBufferLength; i++) {
+ FDKmemclear(hSbrCut->YBuffer[i], 64 * sizeof(FIXP_DBL));
}
}
for (i = 0; i < rBufferLength; i++) {
- FDKmemclear( hSbrCut->rBuffer[i],QMF_CHANNELS*sizeof(FIXP_DBL));
- FDKmemclear( hSbrCut->iBuffer[i],QMF_CHANNELS*sizeof(FIXP_DBL));
+ FDKmemclear(hSbrCut->rBuffer[i], 64 * sizeof(FIXP_DBL));
+ FDKmemclear(hSbrCut->iBuffer[i], 64 * sizeof(FIXP_DBL));
}
- FDKmemclear (hSbrCut->envelopeCompensation,sizeof(UCHAR)*MAX_FREQ_COEFFS);
+ FDKmemclear(hSbrCut->envelopeCompensation, sizeof(UCHAR) * MAX_FREQ_COEFFS);
- if(statesInitFlag) {
- hSbrCut->YBufferScale[0] = hSbrCut->YBufferScale[1] = FRACT_BITS-1;
+ if (statesInitFlag) {
+ hSbrCut->YBufferScale[0] = hSbrCut->YBufferScale[1] = FRACT_BITS - 1;
}
return (0);
}
-
-
-
/***************************************************************************/
/*!
@@ -2008,23 +1970,16 @@ FDKsbrEnc_InitExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut,
****************************************************************************/
-void
-FDKsbrEnc_deleteExtractSbrEnvelope (HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut)
-{
-
+void FDKsbrEnc_deleteExtractSbrEnvelope(HANDLE_SBR_EXTRACT_ENVELOPE hSbrCut) {
if (hSbrCut) {
FreeRam_Sbr_envYBuffer(&hSbrCut->p_YBuffer);
}
}
-INT
-FDKsbrEnc_GetEnvEstDelay(HANDLE_SBR_EXTRACT_ENVELOPE hSbr)
-{
- return hSbr->no_rows*((hSbr->YBufferWriteOffset)*2 /* mult 2 because nrg's are grouped half */
- - hSbr->rBufferReadOffset ); /* in reference hold half spec and calc nrg's on overlapped spec */
-
+INT FDKsbrEnc_GetEnvEstDelay(HANDLE_SBR_EXTRACT_ENVELOPE hSbr) {
+ return hSbr->no_rows *
+ ((hSbr->YBufferWriteOffset) *
+ 2 /* mult 2 because nrg's are grouped half */
+ - hSbr->rBufferReadOffset); /* in reference hold half spec and calc
+ nrg's on overlapped spec */
}
-
-
-
-