diff options
author | Fraunhofer IIS FDK <audio-fdk@iis.fraunhofer.de> | 2018-02-26 20:17:00 +0100 |
---|---|---|
committer | Jean-Michel Trivi <jmtrivi@google.com> | 2018-04-19 11:21:15 -0700 |
commit | 6cfabd35363c3ef5e3b209b867169a500b3ccc3c (patch) | |
tree | 01c0a19f2735e8b5d2407555fe992d4230d089eb /libFDK/src/mdct.cpp | |
parent | 6288a1e34c4dede4c2806beb1736ece6580558c7 (diff) | |
download | fdk-aac-6cfabd35363c3ef5e3b209b867169a500b3ccc3c.tar.gz fdk-aac-6cfabd35363c3ef5e3b209b867169a500b3ccc3c.tar.bz2 fdk-aac-6cfabd35363c3ef5e3b209b867169a500b3ccc3c.zip |
Upgrade to FDKv2
Bug: 71430241
Test: CTS DecoderTest and DecoderTestAacDrc
original-Change-Id: Iaa20f749b8a04d553b20247cfe1a8930ebbabe30
Apply clang-format also on header files.
original-Change-Id: I14de1ef16bbc79ec0283e745f98356a10efeb2e4
Fixes for MPEG-D DRC
original-Change-Id: If1de2d74bbbac84b3f67de3b88b83f6a23b8a15c
Catch unsupported tw_mdct at an early stage
original-Change-Id: Ied9dd00d754162a0e3ca1ae3e6b854315d818afe
Fixing PVC transition frames
original-Change-Id: Ib75725abe39252806c32d71176308f2c03547a4e
Move qmf bands sanity check
original-Change-Id: Iab540c3013c174d9490d2ae100a4576f51d8dbc4
Initialize scaling variable
original-Change-Id: I3c4087101b70e998c71c1689b122b0d7762e0f9e
Add 16 qmf band configuration to getSlotNrgHQ()
original-Change-Id: I49a5d30f703a1b126ff163df9656db2540df21f1
Always apply byte alignment at the end of the AudioMuxElement
original-Change-Id: I42d560287506d65d4c3de8bfe3eb9a4ebeb4efc7
Setup SBR element only if no parse error exists
original-Change-Id: I1915b73704bc80ab882b9173d6bec59cbd073676
Additional array index check in HCR
original-Change-Id: I18cc6e501ea683b5009f1bbee26de8ddd04d8267
Fix fade-in index selection in concealment module
original-Change-Id: Ibf802ed6ed8c05e9257e1f3b6d0ac1162e9b81c1
Enable explicit backward compatible parser for AAC_LD
original-Change-Id: I27e9c678dcb5d40ed760a6d1e06609563d02482d
Skip spatial specific config in explicit backward compatible ASC
original-Change-Id: Iff7cc365561319e886090cedf30533f562ea4d6e
Update flags description in decoder API
original-Change-Id: I9a5b4f8da76bb652f5580cbd3ba9760425c43830
Add QMF domain reset function
original-Change-Id: I4f89a8a2c0277d18103380134e4ed86996e9d8d6
DRC upgrade v2.1.0
original-Change-Id: I5731c0540139dab220094cd978ef42099fc45b74
Fix integer overflow in sqrtFixp_lookup()
original-Change-Id: I429a6f0d19aa2cc957e0f181066f0ca73968c914
Fix integer overflow in invSqrtNorm2()
original-Change-Id: I84de5cbf9fb3adeb611db203fe492fabf4eb6155
Fix integer overflow in GenerateRandomVector()
original-Change-Id: I3118a641008bd9484d479e5b0b1ee2b5d7d44d74
Fix integer overflow in adjustTimeSlot_EldGrid()
original-Change-Id: I29d503c247c5c8282349b79df940416a512fb9d5
Fix integer overflow in FDKsbrEnc_codeEnvelope()
original-Change-Id: I6b34b61ebb9d525b0c651ed08de2befc1f801449
Follow-up on: Fix integer overflow in adjustTimeSlot_EldGrid()
original-Change-Id: I6f8f578cc7089e5eb7c7b93e580b72ca35ad689a
Fix integer overflow in get_pk_v2()
original-Change-Id: I63375bed40d45867f6eeaa72b20b1f33e815938c
Fix integer overflow in Syn_filt_zero()
original-Change-Id: Ie0c02fdfbe03988f9d3b20d10cd9fe4c002d1279
Fix integer overflow in CFac_CalcFacSignal()
original-Change-Id: Id2d767c40066c591b51768e978eb8af3b803f0c5
Fix integer overflow in FDKaacEnc_FDKaacEnc_calcPeNoAH()
original-Change-Id: Idcbd0f4a51ae2550ed106aa6f3d678d1f9724841
Fix integer overflow in sbrDecoder_calculateGainVec()
original-Change-Id: I7081bcbe29c5cede9821b38d93de07c7add2d507
Fix integer overflow in CLpc_SynthesisLattice()
original-Change-Id: I4a95ddc18de150102352d4a1845f06094764c881
Fix integer overflow in Pred_Lt4()
original-Change-Id: I4dbd012b2de7d07c3e70a47b92e3bfae8dbc750a
Fix integer overflow in FDKsbrEnc_InitSbrFastTransientDetector()
original-Change-Id: I788cbec1a4a00f44c2f3a72ad7a4afa219807d04
Fix unsigned integer overflow in FDKaacEnc_WriteBitstream()
original-Change-Id: I68fc75166e7d2cd5cd45b18dbe3d8c2a92f1822a
Fix unsigned integer overflow in FDK_MetadataEnc_Init()
original-Change-Id: Ie8d025f9bcdb2442c704bd196e61065c03c10af4
Fix overflow in pseudo random number generators
original-Change-Id: I3e2551ee01356297ca14e3788436ede80bd5513c
Fix unsigned integer overflow in sbrDecoder_Parse()
original-Change-Id: I3f231b2f437e9c37db4d5b964164686710eee971
Fix unsigned integer overflow in longsub()
original-Change-Id: I73c2bc50415cac26f1f5a29e125bbe75f9180a6e
Fix unsigned integer overflow in CAacDecoder_DecodeFrame()
original-Change-Id: Ifce2db4b1454b46fa5f887e9d383f1cc43b291e4
Fix overflow at CLpdChannelStream_Read()
original-Change-Id: Idb9d822ce3a4272e4794b643644f5434e2d4bf3f
Fix unsigned integer overflow in Hcr_State_BODY_SIGN_ESC__ESC_WORD()
original-Change-Id: I1ccf77c0015684b85534c5eb97162740a870b71c
Fix unsigned integer overflow in UsacConfig_Parse()
original-Change-Id: Ie6d27f84b6ae7eef092ecbff4447941c77864d9f
Fix unsigned integer overflow in aacDecoder_drcParse()
original-Change-Id: I713f28e883eea3d70b6fa56a7b8f8c22bcf66ca0
Fix unsigned integer overflow in aacDecoder_drcReadCompression()
original-Change-Id: Ia34dfeb88c4705c558bce34314f584965cafcf7a
Fix unsigned integer overflow in CDataStreamElement_Read()
original-Change-Id: Iae896cc1d11f0a893d21be6aa90bd3e60a2c25f0
Fix unsigned integer overflow in transportDec_AdjustEndOfAccessUnit()
original-Change-Id: I64cf29a153ee784bb4a16fdc088baabebc0007dc
Fix unsigned integer overflow in transportDec_GetAuBitsRemaining()
original-Change-Id: I975b3420faa9c16a041874ba0db82e92035962e4
Fix unsigned integer overflow in extractExtendedData()
original-Change-Id: I2a59eb09e2053cfb58dfb75fcecfad6b85a80a8f
Fix signed integer overflow in CAacDecoder_ExtPayloadParse()
original-Change-Id: I4ad5ca4e3b83b5d964f1c2f8c5e7b17c477c7929
Fix unsigned integer overflow in CAacDecoder_DecodeFrame()
original-Change-Id: I29a39df77d45c52a0c9c5c83c1ba81f8d0f25090
Follow-up on: Fix integer overflow in CLpc_SynthesisLattice()
original-Change-Id: I8fb194ffc073a3432a380845be71036a272d388f
Fix signed integer overflow in _interpolateDrcGain()
original-Change-Id: I879ec9ab14005069a7c47faf80e8bc6e03d22e60
Fix unsigned integer overflow in FDKreadBits()
original-Change-Id: I1f47a6a8037ff70375aa8844947d5681bb4287ad
Fix unsigned integer overflow in FDKbyteAlign()
original-Change-Id: Id5f3a11a0c9e50fc6f76ed6c572dbd4e9f2af766
Fix unsigned integer overflow in FDK_get32()
original-Change-Id: I9d33b8e97e3d38cbb80629cb859266ca0acdce96
Fix unsigned integer overflow in FDK_pushBack()
original-Change-Id: Ic87f899bc8c6acf7a377a8ca7f3ba74c3a1e1c19
Fix unsigned integer overflow in FDK_pushForward()
original-Change-Id: I3b754382f6776a34be1602e66694ede8e0b8effc
Fix unsigned integer overflow in ReadPsData()
original-Change-Id: I25361664ba8139e32bbbef2ca8c106a606ce9c37
Fix signed integer overflow in E_UTIL_residu()
original-Change-Id: I8c3abd1f437ee869caa8fb5903ce7d3d641b6aad
REVERT: Follow-up on: Integer overflow in CLpc_SynthesisLattice().
original-Change-Id: I3d340099acb0414795c8dfbe6362bc0a8f045f9b
Follow-up on: Fix integer overflow in CLpc_SynthesisLattice()
original-Change-Id: I4aedb8b3a187064e9f4d985175aa55bb99cc7590
Follow-up on: Fix unsigned integer overflow in aacDecoder_drcParse()
original-Change-Id: I2aa2e13916213bf52a67e8b0518e7bf7e57fb37d
Fix integer overflow in acelp
original-Change-Id: Ie6390c136d84055f8b728aefbe4ebef6e029dc77
Fix unsigned integer overflow in aacDecoder_UpdateBitStreamCounters()
original-Change-Id: I391ffd97ddb0b2c184cba76139bfb356a3b4d2e2
Adjust concealment default settings
original-Change-Id: I6a95db935a327c47df348030bcceafcb29f54b21
Saturate estimatedStartPos
original-Change-Id: I27be2085e0ae83ec9501409f65e003f6bcba1ab6
Negative shift exponent in _interpolateDrcGain()
original-Change-Id: I18edb26b26d002aafd5e633d4914960f7a359c29
Negative shift exponent in calculateICC()
original-Change-Id: I3dcd2ae98d2eb70ee0d59750863cbb2a6f4f8aba
Too large shift exponent in FDK_put()
original-Change-Id: Ib7d9aaa434d2d8de4a13b720ca0464b31ca9b671
Too large shift exponent in CalcInvLdData()
original-Change-Id: I43e6e78d4cd12daeb1dcd5d82d1798bdc2550262
Member access within null pointer of type SBR_CHANNEL
original-Change-Id: Idc5e4ea8997810376d2f36bbdf628923b135b097
Member access within null pointer of type CpePersistentData
original-Change-Id: Ib6c91cb0d37882768e5baf63324e429589de0d9d
Member access within null pointer FDKaacEnc_psyMain()
original-Change-Id: I7729b7f4479970531d9dc823abff63ca52e01997
Member access within null pointer FDKaacEnc_GetPnsParam()
original-Change-Id: I9aa3b9f3456ae2e0f7483dbd5b3dde95fc62da39
Member access within null pointer FDKsbrEnc_EnvEncodeFrame()
original-Change-Id: I67936f90ea714e90b3e81bc0dd1472cc713eb23a
Add HCR sanity check
original-Change-Id: I6c1d9732ebcf6af12f50b7641400752f74be39f7
Fix memory issue for HBE edge case with 8:3 SBR
original-Change-Id: I11ea58a61e69fbe8bf75034b640baee3011e63e9
Additional SBR parametrization sanity check for ELD
original-Change-Id: Ie26026fbfe174c2c7b3691f6218b5ce63e322140
Add MPEG-D DRC channel layout check
original-Change-Id: Iea70a74f171b227cce636a9eac4ba662777a2f72
Additional out-of-bounds checks in MPEG-D DRC
original-Change-Id: Ife4a8c3452c6fde8a0a09e941154a39a769777d4
Change-Id: Ic63cb2f628720f54fe9b572b0cb528e2599c624e
Diffstat (limited to 'libFDK/src/mdct.cpp')
-rw-r--r-- | libFDK/src/mdct.cpp | 710 |
1 files changed, 536 insertions, 174 deletions
diff --git a/libFDK/src/mdct.cpp b/libFDK/src/mdct.cpp index 9a29aa1..6a6604c 100644 --- a/libFDK/src/mdct.cpp +++ b/libFDK/src/mdct.cpp @@ -1,74 +1,85 @@ - -/* ----------------------------------------------------------------------------------------------------------- +/* ----------------------------------------------------------------------------- Software License for The Fraunhofer FDK AAC Codec Library for Android -© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. - All rights reserved. +© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten +Forschung e.V. All rights reserved. 1. INTRODUCTION -The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements -the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. -This FDK AAC Codec software is intended to be used on a wide variety of Android devices. - -AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual -audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by -independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part -of the MPEG specifications. - -Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) -may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners -individually for the purpose of encoding or decoding bit streams in products that are compliant with -the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license -these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec -software may already be covered under those patent licenses when it is used for those licensed purposes only. - -Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, -are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional -applications information and documentation. +The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software +that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding +scheme for digital audio. This FDK AAC Codec software is intended to be used on +a wide variety of Android devices. + +AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient +general perceptual audio codecs. AAC-ELD is considered the best-performing +full-bandwidth communications codec by independent studies and is widely +deployed. AAC has been standardized by ISO and IEC as part of the MPEG +specifications. + +Patent licenses for necessary patent claims for the FDK AAC Codec (including +those of Fraunhofer) may be obtained through Via Licensing +(www.vialicensing.com) or through the respective patent owners individually for +the purpose of encoding or decoding bit streams in products that are compliant +with the ISO/IEC MPEG audio standards. Please note that most manufacturers of +Android devices already license these patent claims through Via Licensing or +directly from the patent owners, and therefore FDK AAC Codec software may +already be covered under those patent licenses when it is used for those +licensed purposes only. + +Commercially-licensed AAC software libraries, including floating-point versions +with enhanced sound quality, are also available from Fraunhofer. Users are +encouraged to check the Fraunhofer website for additional applications +information and documentation. 2. COPYRIGHT LICENSE -Redistribution and use in source and binary forms, with or without modification, are permitted without -payment of copyright license fees provided that you satisfy the following conditions: +Redistribution and use in source and binary forms, with or without modification, +are permitted without payment of copyright license fees provided that you +satisfy the following conditions: -You must retain the complete text of this software license in redistributions of the FDK AAC Codec or -your modifications thereto in source code form. +You must retain the complete text of this software license in redistributions of +the FDK AAC Codec or your modifications thereto in source code form. -You must retain the complete text of this software license in the documentation and/or other materials -provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. -You must make available free of charge copies of the complete source code of the FDK AAC Codec and your +You must retain the complete text of this software license in the documentation +and/or other materials provided with redistributions of the FDK AAC Codec or +your modifications thereto in binary form. You must make available free of +charge copies of the complete source code of the FDK AAC Codec and your modifications thereto to recipients of copies in binary form. -The name of Fraunhofer may not be used to endorse or promote products derived from this library without -prior written permission. +The name of Fraunhofer may not be used to endorse or promote products derived +from this library without prior written permission. -You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec -software or your modifications thereto. +You may not charge copyright license fees for anyone to use, copy or distribute +the FDK AAC Codec software or your modifications thereto. -Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software -and the date of any change. For modified versions of the FDK AAC Codec, the term -"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term -"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." +Your modified versions of the FDK AAC Codec must carry prominent notices stating +that you changed the software and the date of any change. For modified versions +of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" +must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK +AAC Codec Library for Android." 3. NO PATENT LICENSE -NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, -ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with -respect to this software. +NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without +limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. +Fraunhofer provides no warranty of patent non-infringement with respect to this +software. -You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized -by appropriate patent licenses. +You may use this FDK AAC Codec software or modifications thereto only for +purposes that are authorized by appropriate patent licenses. 4. DISCLAIMER -This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors -"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties -of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR -CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, -including but not limited to procurement of substitute goods or services; loss of use, data, or profits, -or business interruption, however caused and on any theory of liability, whether in contract, strict -liability, or tort (including negligence), arising in any way out of the use of this software, even if -advised of the possibility of such damage. +This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright +holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, +including but not limited to the implied warranties of merchantability and +fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR +CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, +or consequential damages, including but not limited to procurement of substitute +goods or services; loss of use, data, or profits, or business interruption, +however caused and on any theory of liability, whether in contract, strict +liability, or tort (including negligence), arising in any way out of the use of +this software, even if advised of the possibility of such damage. 5. CONTACT INFORMATION @@ -79,50 +90,206 @@ Am Wolfsmantel 33 www.iis.fraunhofer.de/amm amm-info@iis.fraunhofer.de ------------------------------------------------------------------------------------------------------------ */ +----------------------------------------------------------------------------- */ -/*************************** Fraunhofer IIS FDK Tools ********************** +/******************* Library for basic calculation routines ******************** - Author(s): Josef Hoepfl, Manuel Jander - Description: MDCT routines + Author(s): Josef Hoepfl, Manuel Jander, Youliy Ninov, Daniel Hagel -******************************************************************************/ + Description: MDCT/MDST routines -#include "mdct.h" +*******************************************************************************/ +#include "mdct.h" #include "FDK_tools_rom.h" #include "dct.h" #include "fixpoint_math.h" - -void mdct_init( H_MDCT hMdct, - FIXP_DBL *overlap, - INT overlapBufferSize ) -{ +void mdct_init(H_MDCT hMdct, FIXP_DBL *overlap, INT overlapBufferSize) { hMdct->overlap.freq = overlap; - //FDKmemclear(overlap, overlapBufferSize*sizeof(FIXP_DBL)); + // FDKmemclear(overlap, overlapBufferSize*sizeof(FIXP_DBL)); hMdct->prev_fr = 0; hMdct->prev_nr = 0; hMdct->prev_tl = 0; hMdct->ov_size = overlapBufferSize; + hMdct->prevAliasSymmetry = 0; + hMdct->prevPrevAliasSymmetry = 0; + hMdct->pFacZir = NULL; + hMdct->pAsymOvlp = NULL; } +/* +This program implements the forward MDCT transform on an input block of data. +The input block is in a form (A,B,C,D) where A,B,C and D are the respective +1/4th segments of the block. The program takes the input block and folds it in +the form: +(-D-Cr,A-Br). This block is twice shorter and here the 'r' suffix denotes +flipping of the sequence (reversing the order of the samples). While folding the +input block in the above mentioned shorter block the program windows the data. +Because the two operations (windowing and folding) are not implemented +sequentially, but together the program's structure is not easy to understand. +Once the output (already windowed) block (-D-Cr,A-Br) is ready it is passed to +the DCT IV for processing. +*/ +INT mdct_block(H_MDCT hMdct, const INT_PCM *RESTRICT timeData, + const INT noInSamples, FIXP_DBL *RESTRICT mdctData, + const INT nSpec, const INT tl, const FIXP_WTP *pRightWindowPart, + const INT fr, SHORT *pMdctData_e) { + int i, n; + /* tl: transform length + fl: left window slope length + nl: left window slope offset + fr: right window slope length + nr: right window slope offset + See FDK_tools/doc/intern/mdct.tex for more detail. */ + int fl, nl, nr; + const FIXP_WTP *wls, *wrs; + + wrs = pRightWindowPart; + + /* Detect FRprevious / FL mismatches and override parameters accordingly */ + if (hMdct->prev_fr == + 0) { /* At start just initialize and pass parameters as they are */ + hMdct->prev_fr = fr; + hMdct->prev_wrs = wrs; + hMdct->prev_tl = tl; + } + + /* Derive NR */ + nr = (tl - fr) >> 1; + + /* Skip input samples if tl is smaller than block size */ + timeData += (noInSamples - tl) >> 1; + + /* windowing */ + for (n = 0; n < nSpec; n++) { + /* + * MDCT scale: + * + 1: fMultDiv2() in windowing. + * + 1: Because of factor 1/2 in Princen-Bradley compliant windowed TDAC. + */ + INT mdctData_e = 1 + 1; + + /* Derive left parameters */ + wls = hMdct->prev_wrs; + fl = hMdct->prev_fr; + nl = (tl - fl) >> 1; + + /* Here we implement a simplified version of what happens after the this + piece of code (see the comments below). We implement the folding of A and B + segments to (A-Br) but A is zero, because in this part of the MDCT sequence + the window coefficients with which A must be multiplied are zero. */ + for (i = 0; i < nl; i++) { +#if SAMPLE_BITS == DFRACT_BITS /* SPC_BITS and DFRACT_BITS should be equal. */ + mdctData[(tl / 2) + i] = -((FIXP_DBL)timeData[tl - i - 1] >> (1)); +#else + mdctData[(tl / 2) + i] = -(FIXP_DBL)timeData[tl - i - 1] + << (DFRACT_BITS - SAMPLE_BITS - 1); /* 0(A)-Br */ +#endif + } + + /* Implements the folding and windowing of the left part of the sequence, + that is segments A and B. The A segment is multiplied by the respective left + window coefficient and placed in a temporary variable. + + tmp0 = fMultDiv2((FIXP_PCM)timeData[i+nl], pLeftWindowPart[i].v.im); + + After this the B segment taken in reverse order is multiplied by the left + window and subtracted from the previously derived temporary variable, so + that finally we implement the A-Br operation. This output is written to the + right part of the MDCT output : (-D-Cr,A-Br). -void imdct_gain(FIXP_DBL *pGain_m, int *pGain_e, int tl) -{ + mdctData[(tl/2)+i+nl] = fMultSubDiv2(tmp0, (FIXP_PCM)timeData[tl-nl-i-1], + pLeftWindowPart[i].v.re);//A*window-Br*window + + The (A-Br) data is written to the output buffer (mdctData) without being + flipped. */ + for (i = 0; i < fl / 2; i++) { + FIXP_DBL tmp0; + tmp0 = fMultDiv2((FIXP_PCM)timeData[i + nl], wls[i].v.im); /* a*window */ + mdctData[(tl / 2) + i + nl] = + fMultSubDiv2(tmp0, (FIXP_PCM)timeData[tl - nl - i - 1], + wls[i].v.re); /* A*window-Br*window */ + } + + /* Right window slope offset */ + /* Here we implement a simplified version of what happens after the this + piece of code (see the comments below). We implement the folding of C and D + segments to (-D-Cr) but D is zero, because in this part of the MDCT sequence + the window coefficients with which D must be multiplied are zero. */ + for (i = 0; i < nr; i++) { +#if SAMPLE_BITS == \ + DFRACT_BITS /* This should be SPC_BITS instead of DFRACT_BITS. */ + mdctData[(tl / 2) - 1 - i] = -((FIXP_DBL)timeData[tl + i] >> (1)); +#else + mdctData[(tl / 2) - 1 - i] = + -(FIXP_DBL)timeData[tl + i] + << (DFRACT_BITS - SAMPLE_BITS - 1); /* -C flipped at placing */ +#endif + } + + /* Implements the folding and windowing of the right part of the sequence, + that is, segments C and D. The C segment is multiplied by the respective + right window coefficient and placed in a temporary variable. + + tmp1 = fMultDiv2((FIXP_PCM)timeData[tl+nr+i], pRightWindowPart[i].v.re); + + After this the D segment taken in reverse order is multiplied by the right + window and added from the previously derived temporary variable, so that we + get (C+Dr) operation. This output is negated to get (-C-Dr) and written to + the left part of the MDCT output while being reversed (flipped) at the same + time, so that from (-C-Dr) we get (-D-Cr)=> (-D-Cr,A-Br). + + mdctData[(tl/2)-nr-i-1] = -fMultAddDiv2(tmp1, + (FIXP_PCM)timeData[(tl*2)-nr-i-1], pRightWindowPart[i].v.im);*/ + for (i = 0; i < fr / 2; i++) { + FIXP_DBL tmp1; + tmp1 = fMultDiv2((FIXP_PCM)timeData[tl + nr + i], + wrs[i].v.re); /* C*window */ + mdctData[(tl / 2) - nr - i - 1] = + -fMultAddDiv2(tmp1, (FIXP_PCM)timeData[(tl * 2) - nr - i - 1], + wrs[i].v.im); /* -(C*window+Dr*window) and flip before + placing -> -Cr - D */ + } + + /* We pass the shortened folded data (-D-Cr,A-Br) to the MDCT function */ + dct_IV(mdctData, tl, &mdctData_e); + + pMdctData_e[n] = (SHORT)mdctData_e; + + timeData += tl; + mdctData += tl; + + hMdct->prev_wrs = wrs; + hMdct->prev_fr = fr; + hMdct->prev_tl = tl; + } + + return nSpec * tl; +} + +void imdct_gain(FIXP_DBL *pGain_m, int *pGain_e, int tl) { FIXP_DBL gain_m = *pGain_m; int gain_e = *pGain_e; int log2_tl; - log2_tl = DFRACT_BITS-1-fNormz((FIXP_DBL)tl); + gain_e += -MDCT_OUTPUT_GAIN - MDCT_OUT_HEADROOM + 1; + if (tl == 0) { + /* Dont regard the 2/N factor from the IDCT. It is compensated for somewhere + * else. */ + *pGain_e = gain_e; + return; + } - gain_e += -MDCT_OUTPUT_GAIN - log2_tl - MDCT_OUT_HEADROOM + 1; + log2_tl = DFRACT_BITS - 1 - fNormz((FIXP_DBL)tl); + gain_e += -log2_tl; /* Detect non-radix 2 transform length and add amplitude compensation factor which cannot be included into the exponent above */ - switch ( (tl) >> (log2_tl - 2) ) { - case 0x7: /* 10 ms, 1/tl = 1.0/(FDKpow(2.0, -log2_tl) * 0.53333333333333333333) */ + switch ((tl) >> (log2_tl - 2)) { + case 0x7: /* 10 ms, 1/tl = 1.0/(FDKpow(2.0, -log2_tl) * + 0.53333333333333333333) */ if (gain_m == (FIXP_DBL)0) { gain_m = FL2FXCONST_DBL(0.53333333333333333333f); } else { @@ -131,9 +298,17 @@ void imdct_gain(FIXP_DBL *pGain_m, int *pGain_e, int tl) break; case 0x6: /* 3/4 of radix 2, 1/tl = 1.0/(FDKpow(2.0, -log2_tl) * 2.0/3.0) */ if (gain_m == (FIXP_DBL)0) { - gain_m = FL2FXCONST_DBL(2.0/3.0f); + gain_m = FL2FXCONST_DBL(2.0 / 3.0f); } else { - gain_m = fMult(gain_m, FL2FXCONST_DBL(2.0/3.0f)); + gain_m = fMult(gain_m, FL2FXCONST_DBL(2.0 / 3.0f)); + } + break; + case 0x5: /* 0.8 of radix 2 (e.g. tl 160), 1/tl = 1.0/(FDKpow(2.0, -log2_tl) + * 0.8/1.5) */ + if (gain_m == (FIXP_DBL)0) { + gain_m = FL2FXCONST_DBL(0.53333333333333333333f); + } else { + gain_m = fMult(gain_m, FL2FXCONST_DBL(0.53333333333333333333f)); } break; case 0x4: @@ -149,12 +324,7 @@ void imdct_gain(FIXP_DBL *pGain_m, int *pGain_e, int tl) *pGain_e = gain_e; } -INT imdct_drain( - H_MDCT hMdct, - FIXP_DBL *output, - INT nrSamplesRoom - ) -{ +INT imdct_drain(H_MDCT hMdct, FIXP_DBL *output, INT nrSamplesRoom) { int buffered_samples = 0; if (nrSamplesRoom > 0) { @@ -162,61 +332,66 @@ INT imdct_drain( FDK_ASSERT(buffered_samples <= nrSamplesRoom); - if (buffered_samples > 0) { - FDKmemcpy(output, hMdct->overlap.time, buffered_samples*sizeof(FIXP_DBL)); + if (buffered_samples > 0) { + FDKmemcpy(output, hMdct->overlap.time, + buffered_samples * sizeof(FIXP_DBL)); hMdct->ov_offset = 0; } } return buffered_samples; } -INT imdct_copy_ov_and_nr( - H_MDCT hMdct, - FIXP_DBL * pTimeData, - INT nrSamples - ) -{ +INT imdct_copy_ov_and_nr(H_MDCT hMdct, FIXP_DBL *pTimeData, INT nrSamples) { FIXP_DBL *pOvl; int nt, nf, i; nt = fMin(hMdct->ov_offset, nrSamples); nrSamples -= nt; nf = fMin(hMdct->prev_nr, nrSamples); - nrSamples -= nf; - FDKmemcpy(pTimeData, hMdct->overlap.time, nt*sizeof(FIXP_DBL)); + FDKmemcpy(pTimeData, hMdct->overlap.time, nt * sizeof(FIXP_DBL)); pTimeData += nt; pOvl = hMdct->overlap.freq + hMdct->ov_size - 1; - for (i=0; i<nf; i++) { - FIXP_DBL x = - (*pOvl--); - *pTimeData = IMDCT_SCALE_DBL(x); - pTimeData ++; + if (hMdct->prevPrevAliasSymmetry == 0) { + for (i = 0; i < nf; i++) { + FIXP_DBL x = -(*pOvl--); + *pTimeData = IMDCT_SCALE_DBL(x); + pTimeData++; + } + } else { + for (i = 0; i < nf; i++) { + FIXP_DBL x = (*pOvl--); + *pTimeData = IMDCT_SCALE_DBL(x); + pTimeData++; + } } - return (nt+nf); + return (nt + nf); } -void imdct_adapt_parameters(H_MDCT hMdct, int *pfl, int *pnl, int tl, const FIXP_WTP *wls, int noOutSamples) -{ +void imdct_adapt_parameters(H_MDCT hMdct, int *pfl, int *pnl, int tl, + const FIXP_WTP *wls, int noOutSamples) { int fl = *pfl, nl = *pnl; int window_diff, use_current = 0, use_previous = 0; if (hMdct->prev_tl == 0) { - hMdct->prev_wrs = wls; - hMdct->prev_fr = fl; - hMdct->prev_nr = (noOutSamples-fl)>>1; - hMdct->prev_tl = noOutSamples; - hMdct->ov_offset = 0; + hMdct->prev_wrs = wls; + hMdct->prev_fr = fl; + hMdct->prev_nr = (noOutSamples - fl) >> 1; + hMdct->prev_tl = noOutSamples; + hMdct->ov_offset = 0; use_current = 1; } - window_diff = (hMdct->prev_fr - fl)>>1; + window_diff = (hMdct->prev_fr - fl) >> 1; - /* check if the previous window slope can be adjusted to match the current window slope */ + /* check if the previous window slope can be adjusted to match the current + * window slope */ if (hMdct->prev_nr + window_diff > 0) { use_current = 1; } - /* check if the current window slope can be adjusted to match the previous window slope */ - if (nl - window_diff > 0 ) { + /* check if the current window slope can be adjusted to match the previous + * window slope */ + if (nl - window_diff > 0) { use_previous = 1; } @@ -224,13 +399,11 @@ void imdct_adapt_parameters(H_MDCT hMdct, int *pfl, int *pnl, int tl, const FIXP if (use_current && use_previous) { if (fl < hMdct->prev_fr) { use_current = 0; - } else { - use_previous = 0; } } /* - * If the previous transform block is big enough, enlarge previous window overlap, - * if not, then shrink current window overlap. + * If the previous transform block is big enough, enlarge previous window + * overlap, if not, then shrink current window overlap. */ if (use_current) { hMdct->prev_nr += window_diff; @@ -245,29 +418,64 @@ void imdct_adapt_parameters(H_MDCT hMdct, int *pfl, int *pnl, int tl, const FIXP *pnl = nl; } -INT imdct_block( - H_MDCT hMdct, - FIXP_DBL *output, - FIXP_DBL *spectrum, - const SHORT scalefactor[], - const INT nSpec, - const INT noOutSamples, - const INT tl, - const FIXP_WTP *wls, - INT fl, - const FIXP_WTP *wrs, - const INT fr, - FIXP_DBL gain - ) -{ +/* +This program implements the inverse modulated lapped transform, a generalized +version of the inverse MDCT transform. Setting none of the MLT_*_ALIAS_FLAG +flags computes the IMDCT, setting all of them computes the IMDST. Other +combinations of these flags compute type III transforms used by the RSVD60 +multichannel tool for transitions between MDCT/MDST. The following description +relates to the IMDCT only. + +If we pass the data block (A,B,C,D,E,F) to the FORWARD MDCT it will produce two +outputs. The first one will be over the (A,B,C,D) part =>(-D-Cr,A-Br) and the +second one will be over the (C,D,E,F) part => (-F-Er,C-Dr), since there is a +overlap between consequtive passes of the algorithm. This overlap is over the +(C,D) segments. The two outputs will be given sequentially to the DCT IV +algorithm. At the INVERSE MDCT side we get two consecutive outputs from the IDCT +IV algorithm, namely the same blocks: (-D-Cr,A-Br) and (-F-Er,C-Dr). The first +of them lands in the Overlap buffer and the second is in the working one, which, +one algorithm pass later will substitute the one residing in the overlap +register. The IMDCT algorithm has to produce the C and D segments from the two +buffers. In order to do this we take the left part of the overlap +buffer(-D-Cr,A-Br), namely (-D-Cr) and add it appropriately to the right part of +the working buffer (-F-Er,C-Dr), namely (C-Dr), so that we get first the C +segment and later the D segment. We do this in the following way: From the right +part of the working buffer(C-Dr) we subtract the flipped left part of the +overlap buffer(-D-Cr): + +Result = (C-Dr) - flipped(-D-Cr) = C -Dr + Dr + C = 2C +We divide by two and get the C segment. What we did is adding the right part of +the first frame to the left part of the second one. While applying these +operation we multiply the respective segments with the appropriate window +functions. + +In order to get the D segment we do the following: +From the negated second part of the working buffer(C-Dr) we subtract the flipped +first part of the overlap buffer (-D-Cr): + +Result= - (C -Dr) - flipped(-D-Cr)= -C +Dr +Dr +C = 2Dr. +After dividing by two and flipping we get the D segment.What we did is adding +the right part of the first frame to the left part of the second one. While +applying these operation we multiply the respective segments with the +appropriate window functions. + +Once we have obtained the C and D segments the overlap buffer is emptied and the +current buffer is sent in it, so that the E and F segments are available for +decoding in the next algorithm pass.*/ +INT imlt_block(H_MDCT hMdct, FIXP_DBL *output, FIXP_DBL *spectrum, + const SHORT scalefactor[], const INT nSpec, + const INT noOutSamples, const INT tl, const FIXP_WTP *wls, + INT fl, const FIXP_WTP *wrs, const INT fr, FIXP_DBL gain, + int flags) { FIXP_DBL *pOvl; FIXP_DBL *pOut0 = output, *pOut1; INT nl, nr; int w, i, nrSamples = 0, specShiftScale, transform_gain_e = 0; + int currAliasSymmetry = (flags & MLT_FLAG_CURR_ALIAS_SYMMETRY); /* Derive NR and NL */ - nr = (tl - fr)>>1; - nl = (tl - fl)>>1; + nr = (tl - fr) >> 1; + nl = (tl - fl) >> 1; /* Include 2/N IMDCT gain into gain factor and exponent. */ imdct_gain(&gain, &transform_gain_e, tl); @@ -279,107 +487,261 @@ INT imdct_block( pOvl = hMdct->overlap.freq + hMdct->ov_size - 1; - if ( noOutSamples > nrSamples ) { + if (noOutSamples > nrSamples) { /* Purge buffered output. */ - for (i=0; i<hMdct->ov_offset; i++) { + for (i = 0; i < hMdct->ov_offset; i++) { *pOut0 = hMdct->overlap.time[i]; - pOut0 ++; + pOut0++; } nrSamples = hMdct->ov_offset; hMdct->ov_offset = 0; } - for (w=0; w<nSpec; w++) - { + for (w = 0; w < nSpec; w++) { FIXP_DBL *pSpec, *pCurr; const FIXP_WTP *pWindow; + /* Detect FRprevious / FL mismatches and override parameters accordingly */ + if (hMdct->prev_fr != fl) { + imdct_adapt_parameters(hMdct, &fl, &nl, tl, wls, noOutSamples); + } + specShiftScale = transform_gain_e; /* Setup window pointers */ pWindow = hMdct->prev_wrs; /* Current spectrum */ - pSpec = spectrum+w*tl; + pSpec = spectrum + w * tl; /* DCT IV of current spectrum. */ - dct_IV(pSpec, tl, &specShiftScale); + if (currAliasSymmetry == 0) { + if (hMdct->prevAliasSymmetry == 0) { + dct_IV(pSpec, tl, &specShiftScale); + } else { + FIXP_DBL _tmp[1024 + ALIGNMENT_DEFAULT / sizeof(FIXP_DBL)]; + FIXP_DBL *tmp = (FIXP_DBL *)ALIGN_PTR(_tmp); + C_ALLOC_ALIGNED_REGISTER(tmp, sizeof(_tmp)); + dct_III(pSpec, tmp, tl, &specShiftScale); + C_ALLOC_ALIGNED_UNREGISTER(tmp); + } + } else { + if (hMdct->prevAliasSymmetry == 0) { + FIXP_DBL _tmp[1024 + ALIGNMENT_DEFAULT / sizeof(FIXP_DBL)]; + FIXP_DBL *tmp = (FIXP_DBL *)ALIGN_PTR(_tmp); + C_ALLOC_ALIGNED_REGISTER(tmp, sizeof(_tmp)); + dst_III(pSpec, tmp, tl, &specShiftScale); + C_ALLOC_ALIGNED_UNREGISTER(tmp); + } else { + dst_IV(pSpec, tl, &specShiftScale); + } + } - /* Optional scaling of time domain - no yet windowed - of current spectrum */ - /* and de-scale current spectrum signal (time domain, no yet windowed) */ + /* Optional scaling of time domain - no yet windowed - of current spectrum + */ + /* and de-scale current spectrum signal (time domain, no yet windowed) */ if (gain != (FIXP_DBL)0) { scaleValuesWithFactor(pSpec, gain, tl, scalefactor[w] + specShiftScale); } else { - scaleValues(pSpec, tl, scalefactor[w] + specShiftScale); + int loc_scale = scalefactor[w] + specShiftScale; + DWORD_ALIGNED(pSpec); + scaleValues(pSpec, tl, loc_scale); } - if ( noOutSamples <= nrSamples ) { - /* Divert output first half to overlap buffer if we already got enough output samples. */ + if (noOutSamples <= nrSamples) { + /* Divert output first half to overlap buffer if we already got enough + * output samples. */ pOut0 = hMdct->overlap.time + hMdct->ov_offset; - hMdct->ov_offset += hMdct->prev_nr + fl/2; + hMdct->ov_offset += hMdct->prev_nr + fl / 2; } else { /* Account output samples */ - nrSamples += hMdct->prev_nr + fl/2; + nrSamples += hMdct->prev_nr + fl / 2; } /* NR output samples 0 .. NR. -overlap[TL/2..TL/2-NR] */ - for (i=0; i<hMdct->prev_nr; i++) { - FIXP_DBL x = - (*pOvl--); - *pOut0 = IMDCT_SCALE_DBL(x); - pOut0 ++; + if ((hMdct->pFacZir != 0) && (hMdct->prev_nr == fl / 2)) { + /* In the case of ACELP -> TCX20 -> FD short add FAC ZIR on nr signal part + */ + for (i = 0; i < hMdct->prev_nr; i++) { + FIXP_DBL x = -(*pOvl--); + *pOut0 = IMDCT_SCALE_DBL(x + hMdct->pFacZir[i]); + pOut0++; + } + hMdct->pFacZir = NULL; + } else { + /* Here we implement a simplified version of what happens after the this + piece of code (see the comments below). We implement the folding of C and + D segments from (-D-Cr) but D is zero, because in this part of the MDCT + sequence the window coefficients with which D must be multiplied are zero. + "pOut0" writes sequentially the C block from left to right. */ + if (hMdct->prevPrevAliasSymmetry == 0) { + for (i = 0; i < hMdct->prev_nr; i++) { + FIXP_DBL x = -(*pOvl--); + *pOut0 = IMDCT_SCALE_DBL(x); + pOut0++; + } + } else { + for (i = 0; i < hMdct->prev_nr; i++) { + FIXP_DBL x = *pOvl--; + *pOut0 = IMDCT_SCALE_DBL(x); + pOut0++; + } + } } - if ( noOutSamples <= nrSamples ) { - /* Divert output second half to overlap buffer if we already got enough output samples. */ - pOut1 = hMdct->overlap.time + hMdct->ov_offset + fl/2 - 1; - hMdct->ov_offset += fl/2 + nl; + if (noOutSamples <= nrSamples) { + /* Divert output second half to overlap buffer if we already got enough + * output samples. */ + pOut1 = hMdct->overlap.time + hMdct->ov_offset + fl / 2 - 1; + hMdct->ov_offset += fl / 2 + nl; } else { pOut1 = pOut0 + (fl - 1); - nrSamples += fl/2 + nl; + nrSamples += fl / 2 + nl; + } + + /* output samples before window crossing point NR .. TL/2. + * -overlap[TL/2-NR..TL/2-NR-FL/2] + current[NR..TL/2] */ + /* output samples after window crossing point TL/2 .. TL/2+FL/2. + * -overlap[0..FL/2] - current[TL/2..FL/2] */ + pCurr = pSpec + tl - fl / 2; + DWORD_ALIGNED(pCurr); + C_ALLOC_ALIGNED_REGISTER(pWindow, fl); + DWORD_ALIGNED(pWindow); + C_ALLOC_ALIGNED_UNREGISTER(pWindow); + + if (hMdct->prevPrevAliasSymmetry == 0) { + if (hMdct->prevAliasSymmetry == 0) { + if (!hMdct->pAsymOvlp) { + for (i = 0; i < fl / 2; i++) { + FIXP_DBL x0, x1; +#ifdef FUNCTION_cplxMult_nIm + /* This macro negates 4th parameter (*pOvl--) */ + /* and inverts the sign of result x1 */ + + /* This subroutine calculates the two output segments (C,D) from the + two availabe DCT IV data blocks, namely, (-D-Cr,A-Br) and + (-F-Er,C-Dr). "pOvl" is the pointer to the overlap block and points + to the end of the (-D-Cr) part of the overlap buffer (-D-Cr,A-Br). + It points to the end of the (-D-Cr) because it will read this part + in a flipped order. "pCurr" is the pointer to the current block + (-F-Er,C-Dr) and points to the beginning of the (C-Dr) block, + because this block will be read consequitively. "pWindow" is a + pointer to the used window coefficients. In pointer "x1" we get the + already computed from the function "Dr" segment. In pointer "x0" we + get the "C" segment. Since we have to output them sequentially the + "x0" pointer points to the beginnig of the output buffer (X,X), and + pointer "x1" points to the end of the output buffer (X,X). When we + get the output of the cplxMult_nIm function we write it sequentially + in the output buffer from the left to right ("x0"=>C) and right to + left ("x1"=>Dr) implementing flipping. At the end we get an output + in the form (C,D). */ + cplxMult_nIm(&x1, &x0, *pCurr++, *pOvl--, pWindow[i]); + *pOut0++ = IMDCT_SCALE_DBL(x0); + *pOut1-- = IMDCT_SCALE_DBL(x1); +#else + cplxMult(&x1, &x0, *pCurr++, -*pOvl--, pWindow[i]); + *pOut0 = IMDCT_SCALE_DBL(x0); + *pOut1 = IMDCT_SCALE_DBL(-x1); + pOut0++; + pOut1--; +#endif /* #ifdef FUNCTION_cplxMult_nIm */ + } + } else { + FIXP_DBL *pAsymOvl = hMdct->pAsymOvlp + fl / 2 - 1; + for (i = 0; i < fl / 2; i++) { + FIXP_DBL x0, x1; + x1 = -fMult(*pCurr, pWindow[i].v.re) + + fMult(*pAsymOvl, pWindow[i].v.im); + x0 = fMult(*pCurr, pWindow[i].v.im) - fMult(*pOvl, pWindow[i].v.re); + pCurr++; + pOvl--; + pAsymOvl--; + *pOut0++ = IMDCT_SCALE_DBL(x0); + *pOut1-- = IMDCT_SCALE_DBL(x1); + } + hMdct->pAsymOvlp = NULL; + } + } else { /* prevAliasingSymmetry == 1 */ + for (i = 0; i < fl / 2; i++) { + FIXP_DBL x0, x1; + cplxMult(&x1, &x0, *pCurr++, -*pOvl--, pWindow[i]); + *pOut0 = IMDCT_SCALE_DBL(x0); + *pOut1 = IMDCT_SCALE_DBL(x1); + pOut0++; + pOut1--; + } + } + } else { /* prevPrevAliasingSymmetry == 1 */ + if (hMdct->prevAliasSymmetry == 0) { + for (i = 0; i < fl / 2; i++) { + FIXP_DBL x0, x1; + cplxMult(&x1, &x0, *pCurr++, *pOvl--, pWindow[i]); + *pOut0 = IMDCT_SCALE_DBL(x0); + *pOut1 = IMDCT_SCALE_DBL(-x1); + pOut0++; + pOut1--; + } + } else { /* prevAliasingSymmetry == 1 */ + for (i = 0; i < fl / 2; i++) { + FIXP_DBL x0, x1; + cplxMult(&x1, &x0, *pCurr++, *pOvl--, pWindow[i]); + *pOut0 = IMDCT_SCALE_DBL(x0); + *pOut1 = IMDCT_SCALE_DBL(x1); + pOut0++; + pOut1--; + } + } } - /* output samples before window crossing point NR .. TL/2. -overlap[TL/2-NR..TL/2-NR-FL/2] + current[NR..TL/2] */ - /* output samples after window crossing point TL/2 .. TL/2+FL/2. -overlap[0..FL/2] - current[TL/2..FL/2] */ - pCurr = pSpec + tl - fl/2; - for (i=0; i<fl/2; i++) { - FIXP_DBL x0, x1; - - cplxMult(&x1, &x0, *pCurr++, - *pOvl--, pWindow[i]); - *pOut0 = IMDCT_SCALE_DBL(x0); - *pOut1 = IMDCT_SCALE_DBL(-x1); - pOut0 ++; - pOut1 --; + if (hMdct->pFacZir != 0) { + /* add FAC ZIR of previous ACELP -> mdct transition */ + FIXP_DBL *pOut = pOut0 - fl / 2; + FDK_ASSERT(fl / 2 <= 128); + for (i = 0; i < fl / 2; i++) { + pOut[i] += IMDCT_SCALE_DBL(hMdct->pFacZir[i]); + } + hMdct->pFacZir = NULL; } - pOut0 += (fl/2); + pOut0 += (fl / 2) + nl; /* NL output samples TL/2+FL/2..TL. - current[FL/2..0] */ - pOut1 += (fl/2) + 1; - pCurr = pSpec + tl - fl/2 - 1; - for (i=0; i<nl; i++) { - FIXP_DBL x = - (*pCurr--); - *pOut1 = IMDCT_SCALE_DBL(x); - pOut1 ++; + pOut1 += (fl / 2) + 1; + pCurr = pSpec + tl - fl / 2 - 1; + /* Here we implement a simplified version of what happens above the this + piece of code (see the comments above). We implement the folding of C and D + segments from (C-Dr) but C is zero, because in this part of the MDCT + sequence the window coefficients with which C must be multiplied are zero. + "pOut1" writes sequentially the D block from left to right. */ + if (hMdct->prevAliasSymmetry == 0) { + for (i = 0; i < nl; i++) { + FIXP_DBL x = -(*pCurr--); + *pOut1++ = IMDCT_SCALE_DBL(x); + } + } else { + for (i = 0; i < nl; i++) { + FIXP_DBL x = *pCurr--; + *pOut1++ = IMDCT_SCALE_DBL(x); + } } /* Set overlap source pointer for next window pOvl = pSpec + tl/2 - 1; */ - pOvl = pSpec + tl/2 - 1; + pOvl = pSpec + tl / 2 - 1; /* Previous window values. */ hMdct->prev_nr = nr; hMdct->prev_fr = fr; hMdct->prev_tl = tl; hMdct->prev_wrs = wrs; + + /* Previous aliasing symmetry */ + hMdct->prevPrevAliasSymmetry = hMdct->prevAliasSymmetry; + hMdct->prevAliasSymmetry = currAliasSymmetry; } /* Save overlap */ - - pOvl = hMdct->overlap.freq + hMdct->ov_size - tl/2; - FDK_ASSERT(pOvl >= hMdct->overlap.time + hMdct->ov_offset); - FDK_ASSERT(tl/2 <= hMdct->ov_size); - for (i=0; i<tl/2; i++) { - pOvl[i] = spectrum[i+(nSpec-1)*tl]; - } + + pOvl = hMdct->overlap.freq + hMdct->ov_size - tl / 2; + FDKmemcpy(pOvl, &spectrum[(nSpec - 1) * tl], (tl / 2) * sizeof(FIXP_DBL)); return nrSamples; } - |