aboutsummaryrefslogtreecommitdiffstats
path: root/libFDK/src/FDK_trigFcts.cpp
diff options
context:
space:
mode:
authorXin Li <delphij@google.com>2018-08-07 16:51:25 +0000
committerGerrit Code Review <noreply-gerritcodereview@google.com>2018-08-07 16:51:25 +0000
commit7027cd87488c2a60becbae7a139d18dbc0370459 (patch)
tree41c65cebd836ff3f949f1134512985e4a1288593 /libFDK/src/FDK_trigFcts.cpp
parenta3e0aa5f25908d92535e045bbde73c9a3d19adc7 (diff)
parent0757f38b01d703b355eb5e5acc1f344a949e74e1 (diff)
downloadfdk-aac-7027cd87488c2a60becbae7a139d18dbc0370459.tar.gz
fdk-aac-7027cd87488c2a60becbae7a139d18dbc0370459.tar.bz2
fdk-aac-7027cd87488c2a60becbae7a139d18dbc0370459.zip
Merge "Merge Android Pie into master"
Diffstat (limited to 'libFDK/src/FDK_trigFcts.cpp')
-rw-r--r--libFDK/src/FDK_trigFcts.cpp530
1 files changed, 270 insertions, 260 deletions
diff --git a/libFDK/src/FDK_trigFcts.cpp b/libFDK/src/FDK_trigFcts.cpp
index 1f3a017..4bb6262 100644
--- a/libFDK/src/FDK_trigFcts.cpp
+++ b/libFDK/src/FDK_trigFcts.cpp
@@ -1,74 +1,85 @@
-
-/* -----------------------------------------------------------------------------------------------------------
+/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
-© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- All rights reserved.
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
1. INTRODUCTION
-The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
-the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
-This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
-
-AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
-audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
-independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
-of the MPEG specifications.
-
-Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
-may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
-individually for the purpose of encoding or decoding bit streams in products that are compliant with
-the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
-these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
-software may already be covered under those patent licenses when it is used for those licensed purposes only.
-
-Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
-are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
-applications information and documentation.
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
2. COPYRIGHT LICENSE
-Redistribution and use in source and binary forms, with or without modification, are permitted without
-payment of copyright license fees provided that you satisfy the following conditions:
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
-You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
-your modifications thereto in source code form.
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
-You must retain the complete text of this software license in the documentation and/or other materials
-provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
-You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
-The name of Fraunhofer may not be used to endorse or promote products derived from this library without
-prior written permission.
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
-You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
-software or your modifications thereto.
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
-Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
-and the date of any change. For modified versions of the FDK AAC Codec, the term
-"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
-"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
3. NO PATENT LICENSE
-NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
-ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
-respect to this software.
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
-You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
-by appropriate patent licenses.
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
-This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
-"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
-of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
-CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
-including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
-or business interruption, however caused and on any theory of liability, whether in contract, strict
-liability, or tort (including negligence), arising in any way out of the use of this software, even if
-advised of the possibility of such damage.
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
@@ -79,252 +90,251 @@ Am Wolfsmantel 33
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
------------------------------------------------------------------------------------------------------------ */
+----------------------------------------------------------------------------- */
-/*************************** Fraunhofer IIS FDK Tools **********************
+/******************* Library for basic calculation routines ********************
Author(s): Haricharan Lakshman, Manuel Jander
+
Description: Trigonometric functions fixed point fractional implementation.
-******************************************************************************/
+*******************************************************************************/
#include "FDK_trigFcts.h"
#include "fixpoint_math.h"
-
-
-
-#define IMPROVE_ATAN2_ACCURACY 1 // 0 --> 59 dB SNR 1 --> 65 dB SNR
-#define MINSFTAB 7
+#define IMPROVE_ATAN2_ACCURACY 1 /* 0 --> 59 dB SNR 1 --> 65 dB SNR */
+#define MINSFTAB 7
#define MAXSFTAB 25
#if IMPROVE_ATAN2_ACCURACY
-static const FIXP_DBL f_atan_expand_range[MAXSFTAB-(MINSFTAB-1)] =
-{
- /*****************************************************************************
- *
- * Table holds fixp_atan() output values which are outside of input range
- * of fixp_atan() to improve SNR of fixp_atan2().
- *
- * This Table might also be used in fixp_atan() [todo] so there a wider input
- * range can be covered, too.
- *
- * Matlab (generate table):
- * for scl = 7:25 % MINSFTAB .. MAXSFTAB
- * at=atan(0.5 *(2^scl)); % 0.5 because get in 'middle' area of current scale level 'scl'
- * at/2 % div at by ATO_SCALE
- * end
- *
- * Table divided by 2=ATO_SCALE <-- SF=ATO_SF
- *****************************************************************************/
- FL2FXCONST_DBL(7.775862990872099e-001), FL2FXCONST_DBL(7.814919928673978e-001), FL2FXCONST_DBL(7.834450483314648e-001),
- FL2FXCONST_DBL(7.844216021392089e-001), FL2FXCONST_DBL(7.849098823026687e-001), FL2FXCONST_DBL(7.851540227918509e-001),
- FL2FXCONST_DBL(7.852760930873737e-001), FL2FXCONST_DBL(7.853371282415015e-001), FL2FXCONST_DBL(7.853676458193612e-001),
- FL2FXCONST_DBL(7.853829046083906e-001), FL2FXCONST_DBL(7.853905340029177e-001), FL2FXCONST_DBL(7.853943487001828e-001),
- FL2FXCONST_DBL(7.853962560488155e-001), FL2FXCONST_DBL(7.853972097231319e-001), FL2FXCONST_DBL(7.853976865602901e-001),
- FL2FXCONST_DBL(7.853979249788692e-001), FL2FXCONST_DBL(7.853980441881587e-001), FL2FXCONST_DBL(7.853981037928035e-001),
- FL2FXCONST_DBL(7.853981335951259e-001)
- // pi/4 = 0.785398163397448 = pi/2/ATO_SCALE
+static const FIXP_DBL f_atan_expand_range[MAXSFTAB - (MINSFTAB - 1)] = {
+ /*****************************************************************************
+ *
+ * Table holds fixp_atan() output values which are outside of input range
+ * of fixp_atan() to improve SNR of fixp_atan2().
+ *
+ * This Table might also be used in fixp_atan() so there a wider input
+ * range can be covered, too.
+ *
+ *****************************************************************************/
+ FL2FXCONST_DBL(7.775862990872099e-001),
+ FL2FXCONST_DBL(7.814919928673978e-001),
+ FL2FXCONST_DBL(7.834450483314648e-001),
+ FL2FXCONST_DBL(7.844216021392089e-001),
+ FL2FXCONST_DBL(7.849098823026687e-001),
+ FL2FXCONST_DBL(7.851540227918509e-001),
+ FL2FXCONST_DBL(7.852760930873737e-001),
+ FL2FXCONST_DBL(7.853371282415015e-001),
+ FL2FXCONST_DBL(7.853676458193612e-001),
+ FL2FXCONST_DBL(7.853829046083906e-001),
+ FL2FXCONST_DBL(7.853905340029177e-001),
+ FL2FXCONST_DBL(7.853943487001828e-001),
+ FL2FXCONST_DBL(7.853962560488155e-001),
+ FL2FXCONST_DBL(7.853972097231319e-001),
+ FL2FXCONST_DBL(7.853976865602901e-001),
+ FL2FXCONST_DBL(7.853979249788692e-001),
+ FL2FXCONST_DBL(7.853980441881587e-001),
+ FL2FXCONST_DBL(7.853981037928035e-001),
+ FL2FXCONST_DBL(7.853981335951259e-001)
+ /* pi/4 = 0.785398163397448 = pi/2/ATO_SCALE */
};
#endif
-FIXP_DBL fixp_atan2(FIXP_DBL y, FIXP_DBL x)
-{
- FIXP_DBL q;
- FIXP_DBL at; // atan out
- FIXP_DBL at2; // atan2 out
- FIXP_DBL ret = FL2FXCONST_DBL(-1.0f);
- INT sf,sfo,stf;
-
- // --- division
-
- if (y > FL2FXCONST_DBL(0.0f))
- {
- if (x > FL2FXCONST_DBL(0.0f)) {
- q = fDivNormHighPrec( y, x, &sf); // both pos.
- }
- else if (x < FL2FXCONST_DBL(0.0f)) {
- q = -fDivNormHighPrec( y,-x, &sf); // x neg.
- }
- else {//(x ==FL2FXCONST_DBL(0.0f))
- q = FL2FXCONST_DBL(+1.0f); // y/x = pos/zero = +Inf
- sf = 0;
- }
+FIXP_DBL fixp_atan2(FIXP_DBL y, FIXP_DBL x) {
+ FIXP_DBL q;
+ FIXP_DBL at; /* atan out */
+ FIXP_DBL at2; /* atan2 out */
+ FIXP_DBL ret = FL2FXCONST_DBL(-1.0f);
+ INT sf, sfo, stf;
+
+ /* --- division */
+
+ if (y > FL2FXCONST_DBL(0.0f)) {
+ if (x > FL2FXCONST_DBL(0.0f)) {
+ q = fDivNormHighPrec(y, x, &sf); /* both pos. */
+ } else if (x < FL2FXCONST_DBL(0.0f)) {
+ q = -fDivNormHighPrec(y, -x, &sf); /* x neg. */
+ } else { /* (x == FL2FXCONST_DBL(0.0f)) */
+ q = FL2FXCONST_DBL(+1.0f); /* y/x = pos/zero = +Inf */
+ sf = 0;
}
- else if (y < FL2FXCONST_DBL(0.0f))
- {
- if (x > FL2FXCONST_DBL(0.0f)) {
- q = -fDivNormHighPrec(-y, x, &sf); // y neg.
- }
- else if (x < FL2FXCONST_DBL(0.0f)) {
- q = fDivNormHighPrec(-y,-x, &sf); // both neg.
- }
- else {//(x ==FL2FXCONST_DBL(0.0f))
- q = FL2FXCONST_DBL(-1.0f); // y/x = neg/zero = -Inf
- sf = 0;
- }
- }
- else { // (y ==FL2FXCONST_DBL(0.0f))
- q = FL2FXCONST_DBL(0.0f);
- sf = 0;
- }
- sfo = sf;
-
- // --- atan()
-
- if ( sfo > ATI_SF ) {
- // --- could not calc fixp_atan() here bec of input data out of range
- // ==> therefore give back boundary values
-
- #if IMPROVE_ATAN2_ACCURACY
- if (sfo > MAXSFTAB) sfo = MAXSFTAB;
- #endif
-
- if ( q > FL2FXCONST_DBL(0.0f) ) {
- #if IMPROVE_ATAN2_ACCURACY
- at = +f_atan_expand_range[sfo-ATI_SF-1];
- #else
- at = FL2FXCONST_DBL( +M_PI/2 / ATO_SCALE);
- #endif
- }
- else if ( q < FL2FXCONST_DBL(0.0f) ) {
- #if IMPROVE_ATAN2_ACCURACY
- at = -f_atan_expand_range[sfo-ATI_SF-1];
- #else
- at = FL2FXCONST_DBL( -M_PI/2 / ATO_SCALE);
- #endif
- }
- else { // q== FL2FXCONST_DBL(0.0f)
- at = FL2FXCONST_DBL( 0.0f );
- }
- }else{
- // --- calc of fixp_atan() is possible; input data within range
- // ==> set q on fixed scale level as desired from fixp_atan()
- stf = sfo - ATI_SF;
- if (stf > 0) q = q << (INT)fMin( stf,DFRACT_BITS-1);
- else q = q >> (INT)fMin(-stf,DFRACT_BITS-1);
- at = fixp_atan(q); // ATO_SF
+ } else if (y < FL2FXCONST_DBL(0.0f)) {
+ if (x > FL2FXCONST_DBL(0.0f)) {
+ q = -fDivNormHighPrec(-y, x, &sf); /* y neg. */
+ } else if (x < FL2FXCONST_DBL(0.0f)) {
+ q = fDivNormHighPrec(-y, -x, &sf); /* both neg. */
+ } else { /* (x == FL2FXCONST_DBL(0.0f)) */
+ q = FL2FXCONST_DBL(-1.0f); /* y/x = neg/zero = -Inf */
+ sf = 0;
}
+ } else { /* (y == FL2FXCONST_DBL(0.0f)) */
+ q = FL2FXCONST_DBL(0.0f);
+ sf = 0;
+ }
+ sfo = sf;
- // --- atan2()
+ /* --- atan() */
- at2 = at >> (AT2O_SF - ATO_SF); // now AT2O_SF for atan2
- if ( x > FL2FXCONST_DBL(0.0f) ) {
- ret = at2;
- }
- else if ( x < FL2FXCONST_DBL(0.0f) ) {
- if ( y >= FL2FXCONST_DBL(0.0f) ) {
- ret = at2 + FL2FXCONST_DBL( M_PI / AT2O_SCALE);
- } else {
- ret = at2 - FL2FXCONST_DBL( M_PI / AT2O_SCALE);
- }
- }
- else {
- // x == 0
- if ( y > FL2FXCONST_DBL(0.0f) ) {
- ret = FL2FXCONST_DBL( +M_PI/2 / AT2O_SCALE);
- }
- else if ( y < FL2FXCONST_DBL(0.0f) ) {
- ret = FL2FXCONST_DBL( -M_PI/2 / AT2O_SCALE);
- }
- else if ( y == FL2FXCONST_DBL(0.0f) ) {
- ret = FL2FXCONST_DBL(0.0f);
- }
- }
- return ret;
-}
-
-
-FIXP_DBL fixp_atan(FIXP_DBL x)
-{
- INT sign;
- FIXP_DBL result, temp;
+ if (sfo > ATI_SF) {
+ /* --- could not calc fixp_atan() here bec of input data out of range */
+ /* ==> therefore give back boundary values */
- // SNR of fixp_atan() = 56 dB
- FIXP_DBL ONEBY3P56 = (FIXP_DBL)0x26800000; // 1.0/3.56 in q31
- FIXP_DBL P281 = (FIXP_DBL)0x00013000; // 0.281 in q18
- FIXP_DBL ONEP571 = (FIXP_DBL)0x6487ef00; // 1.571 in q30
-
- if (x < FIXP_DBL(0)) {
- sign = 1;
- x = - x ;
- } else {
- sign = 0;
- }
-
- /* calc of arctan */
- if(x < ( Q(Q_ATANINP)-FL2FXCONST_DBL(0.00395)) )
- {
- INT res_e;
-
- temp = fPow2(x); // q25 * q25 - (DFRACT_BITS-1) = q19
- temp = fMult(temp, ONEBY3P56); // q19 * q31 - (DFRACT_BITS-1) = q19
- temp = temp + Q(19); // q19 + q19 = q19
- result = fDivNorm(x, temp, &res_e);
- result = scaleValue(result, (Q_ATANOUT-Q_ATANINP+19-DFRACT_BITS+1) + res_e );
- }
- else if( x < FL2FXCONST_DBL(1.28/64.0) )
- {
- FIXP_DBL delta_fix;
- FIXP_DBL PI_BY_4 = FL2FXCONST_DBL(3.1415926/4.0) >> 1; /* pi/4 in q30 */
+#if IMPROVE_ATAN2_ACCURACY
+ if (sfo > MAXSFTAB) sfo = MAXSFTAB;
+#endif
- delta_fix = (x - FL2FXCONST_DBL(1.0/64.0)) << 5; /* q30 */
- result = PI_BY_4 + (delta_fix >> 1) - (fPow2Div2(delta_fix));
+ if (q > FL2FXCONST_DBL(0.0f)) {
+#if IMPROVE_ATAN2_ACCURACY
+ at = +f_atan_expand_range[sfo - ATI_SF - 1];
+#else
+ at = FL2FXCONST_DBL(+M_PI / 2 / ATO_SCALE);
+#endif
+ } else if (q < FL2FXCONST_DBL(0.0f)) {
+#if IMPROVE_ATAN2_ACCURACY
+ at = -f_atan_expand_range[sfo - ATI_SF - 1];
+#else
+ at = FL2FXCONST_DBL(-M_PI / 2 / ATO_SCALE);
+#endif
+ } else { /* q == FL2FXCONST_DBL(0.0f) */
+ at = FL2FXCONST_DBL(0.0f);
}
+ } else {
+ /* --- calc of fixp_atan() is possible; input data within range */
+ /* ==> set q on fixed scale level as desired from fixp_atan() */
+ stf = sfo - ATI_SF;
+ if (stf > 0)
+ q = q << (INT)fMin(stf, DFRACT_BITS - 1);
else
- {
- INT res_e;
-
- temp = fPow2Div2(x); // q25 * q25 - (DFRACT_BITS-1) - 1 = q18
- temp = temp + P281; // q18 + q18 = q18
- result = fDivNorm(x, temp, &res_e);
- result = scaleValue(result, (Q_ATANOUT-Q_ATANINP+18-DFRACT_BITS+1) + res_e );
- result = ONEP571 - result; // q30 + q30 = q30
+ q = q >> (INT)fMin(-stf, DFRACT_BITS - 1);
+ at = fixp_atan(q); /* ATO_SF */
+ }
+
+ // --- atan2()
+
+ at2 = at >> (AT2O_SF - ATO_SF); // now AT2O_SF for atan2
+ if (x > FL2FXCONST_DBL(0.0f)) {
+ ret = at2;
+ } else if (x < FL2FXCONST_DBL(0.0f)) {
+ if (y >= FL2FXCONST_DBL(0.0f)) {
+ ret = at2 + FL2FXCONST_DBL(M_PI / AT2O_SCALE);
+ } else {
+ ret = at2 - FL2FXCONST_DBL(M_PI / AT2O_SCALE);
}
- if (sign) {
- result = -result;
+ } else {
+ // x == 0
+ if (y > FL2FXCONST_DBL(0.0f)) {
+ ret = FL2FXCONST_DBL(+M_PI / 2 / AT2O_SCALE);
+ } else if (y < FL2FXCONST_DBL(0.0f)) {
+ ret = FL2FXCONST_DBL(-M_PI / 2 / AT2O_SCALE);
+ } else if (y == FL2FXCONST_DBL(0.0f)) {
+ ret = FL2FXCONST_DBL(0.0f);
}
-
- return(result);
+ }
+ return ret;
}
-
+FIXP_DBL fixp_atan(FIXP_DBL x) {
+ INT sign;
+ FIXP_DBL result, temp;
+
+ /* SNR of fixp_atan() = 56 dB */
+ FIXP_DBL P281 = (FIXP_DBL)0x00013000; // 0.281 in q18
+ FIXP_DBL ONEP571 = (FIXP_DBL)0x6487ef00; // 1.571 in q30
+
+ if (x < FIXP_DBL(0)) {
+ sign = 1;
+ x = -x;
+ } else {
+ sign = 0;
+ }
+ FDK_ASSERT(FL2FXCONST_DBL(1.0 / 64.0) == Q(Q_ATANINP));
+ /* calc of arctan */
+ if (x < FL2FXCONST_DBL(1.0 / 64.0))
+ /*
+ Chebyshev polynomial approximation of atan(x)
+ 5th-order approximation: atan(x) = a1*x + a2*x^3 + a3*x^5 = x(a1 + x^2*(a2 +
+ a3*x^2)); a1 = 0.9949493661166540f, a2 = 0.2870606355326520f, a3 =
+ 0.0780371764464410f; 7th-order approximation: atan(x) = a1*x + a2*x^3 +
+ a3*x^5 + a3*x^7 = x(a1 + x^2*(a2 + x^2*(a3 + a4*x^2))); a1 =
+ 0.9991334482227801, a2 = -0.3205332923816640, a3 = 0.1449824901444650, a4 =
+ -0.0382544649702990; 7th-order approximation in use (the most accurate
+ solution)
+ */
+ {
+ x <<= ATI_SF;
+ FIXP_DBL x2 = fPow2(x);
+ temp = fMultAddDiv2((FL2FXCONST_DBL(0.1449824901444650f) >> 1), x2,
+ FL2FXCONST_DBL(-0.0382544649702990));
+ temp = fMultAddDiv2((FL2FXCONST_DBL(-0.3205332923816640f) >> 2), x2, temp);
+ temp = fMultAddDiv2((FL2FXCONST_DBL(0.9991334482227801f) >> 3), x2, temp);
+ result = fMult(x, (temp << 2));
+ } else if (x < FL2FXCONST_DBL(1.28 / 64.0)) {
+ FIXP_DBL delta_fix;
+ FIXP_DBL PI_BY_4 = FL2FXCONST_DBL(3.1415926 / 4.0) >> 1; /* pi/4 in q30 */
+
+ delta_fix = (x - FL2FXCONST_DBL(1.0 / 64.0)) << 5; /* q30 */
+ result = PI_BY_4 + (delta_fix >> 1) - (fPow2Div2(delta_fix));
+ } else {
+ /* Other approximation for |x| > 1.28 */
+ INT res_e;
+
+ temp = fPow2Div2(x); /* q25 * q25 - (DFRACT_BITS-1) - 1 = q18 */
+ temp = temp + P281; /* q18 + q18 = q18 */
+ result = fDivNorm(x, temp, &res_e);
+ result = scaleValue(result,
+ (Q_ATANOUT - Q_ATANINP + 18 - DFRACT_BITS + 1) + res_e);
+ result = ONEP571 - result; /* q30 + q30 = q30 */
+ }
+ if (sign) {
+ result = -result;
+ }
+
+ return (result);
+}
#include "FDK_tools_rom.h"
-FIXP_DBL fixp_cos(FIXP_DBL x, int scale)
-{
- FIXP_DBL residual, error, sine, cosine;
-
- residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine);
- error = fMult(sine, residual);
-
- return cosine - error;
-}
+FIXP_DBL fixp_cos(FIXP_DBL x, int scale) {
+ FIXP_DBL residual, error, sine, cosine;
-FIXP_DBL fixp_sin(FIXP_DBL x, int scale)
-{
- FIXP_DBL residual, error, sine, cosine;
-
- residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine);
- error = fMult(cosine, residual);
+ residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine);
+ error = fMult(sine, residual);
- return sine + error;
+#ifdef SINETABLE_16BIT
+ return cosine - error;
+#else
+ /* Undo downscaling by 1 which was done at fixp_sin_cos_residual_inline */
+ return SATURATE_LEFT_SHIFT(cosine - error, 1, DFRACT_BITS);
+#endif
}
-void fixp_cos_sin (FIXP_DBL x, int scale, FIXP_DBL *cos, FIXP_DBL *sin)
-{
- FIXP_DBL residual, error0, error1, sine, cosine;
-
- residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine);
- error0 = fMult(sine, residual);
- error1 = fMult(cosine, residual);
- *cos = cosine - error0;
- *sin = sine + error1;
-}
+FIXP_DBL fixp_sin(FIXP_DBL x, int scale) {
+ FIXP_DBL residual, error, sine, cosine;
+ residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine);
+ error = fMult(cosine, residual);
+#ifdef SINETABLE_16BIT
+ return sine + error;
+#else
+ return SATURATE_LEFT_SHIFT(sine + error, 1, DFRACT_BITS);
+#endif
+}
+void fixp_cos_sin(FIXP_DBL x, int scale, FIXP_DBL *cos, FIXP_DBL *sin) {
+ FIXP_DBL residual, error0, error1, sine, cosine;
+ residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine);
+ error0 = fMult(sine, residual);
+ error1 = fMult(cosine, residual);
+#ifdef SINETABLE_16BIT
+ *cos = cosine - error0;
+ *sin = sine + error1;
+#else
+ *cos = SATURATE_LEFT_SHIFT(cosine - error0, 1, DFRACT_BITS);
+ *sin = SATURATE_LEFT_SHIFT(sine + error1, 1, DFRACT_BITS);
+#endif
+}