aboutsummaryrefslogtreecommitdiffstats
path: root/libAACenc/src/sf_estim.cpp
diff options
context:
space:
mode:
authorXin Li <delphij@google.com>2018-06-08 11:06:57 -0700
committerXin Li <delphij@google.com>2018-06-08 11:06:57 -0700
commit6a79fb47e4fe92cc4fd0c63f68db8a4d19b9c835 (patch)
tree41c65cebd836ff3f949f1134512985e4a1288593 /libAACenc/src/sf_estim.cpp
parentb9fc83e0e9412548830f07e60c53d8072adb60de (diff)
parent1f93990cfc1bb76aa538634512938e39565f471a (diff)
downloadfdk-aac-6a79fb47e4fe92cc4fd0c63f68db8a4d19b9c835.tar.gz
fdk-aac-6a79fb47e4fe92cc4fd0c63f68db8a4d19b9c835.tar.bz2
fdk-aac-6a79fb47e4fe92cc4fd0c63f68db8a4d19b9c835.zip
Merge pi-dev-plus-aosp-without-vendor into stage-aosp-master
Bug: 79597307 Change-Id: Ia98e005208999b395595ef647902768a1199eaa4
Diffstat (limited to 'libAACenc/src/sf_estim.cpp')
-rw-r--r--libAACenc/src/sf_estim.cpp1170
1 files changed, 566 insertions, 604 deletions
diff --git a/libAACenc/src/sf_estim.cpp b/libAACenc/src/sf_estim.cpp
index 1cb243b..17a8ae2 100644
--- a/libAACenc/src/sf_estim.cpp
+++ b/libAACenc/src/sf_estim.cpp
@@ -1,74 +1,85 @@
-
-/* -----------------------------------------------------------------------------------------------------------
+/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
-© Copyright 1995 - 2015 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- All rights reserved.
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
1. INTRODUCTION
-The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
-the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
-This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
-
-AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
-audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
-independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
-of the MPEG specifications.
-
-Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
-may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
-individually for the purpose of encoding or decoding bit streams in products that are compliant with
-the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
-these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
-software may already be covered under those patent licenses when it is used for those licensed purposes only.
-
-Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
-are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
-applications information and documentation.
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
2. COPYRIGHT LICENSE
-Redistribution and use in source and binary forms, with or without modification, are permitted without
-payment of copyright license fees provided that you satisfy the following conditions:
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
-You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
-your modifications thereto in source code form.
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
-You must retain the complete text of this software license in the documentation and/or other materials
-provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
-You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
-The name of Fraunhofer may not be used to endorse or promote products derived from this library without
-prior written permission.
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
-You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
-software or your modifications thereto.
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
-Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
-and the date of any change. For modified versions of the FDK AAC Codec, the term
-"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
-"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
3. NO PATENT LICENSE
-NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
-ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
-respect to this software.
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
-You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
-by appropriate patent licenses.
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
-This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
-"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
-of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
-CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
-including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
-or business interruption, however caused and on any theory of liability, whether in contract, strict
-liability, or tort (including negligence), arising in any way out of the use of this software, even if
-advised of the possibility of such damage.
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
@@ -79,33 +90,35 @@ Am Wolfsmantel 33
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
------------------------------------------------------------------------------------------------------------ */
+----------------------------------------------------------------------------- */
+
+/**************************** AAC encoder library ******************************
-/******************************** MPEG Audio Encoder **************************
+ Author(s): M. Werner
- Initial author: M. Werner
- contents/description: Scale factor estimation
+ Description: Scale factor estimation
-******************************************************************************/
+*******************************************************************************/
#include "sf_estim.h"
#include "aacEnc_rom.h"
#include "quantize.h"
#include "bit_cnt.h"
+#ifdef __arm__
+#endif
-
-
+#define UPCOUNT_LIMIT 1
#define AS_PE_FAC_SHIFT 7
-#define DIST_FAC_SHIFT 3
+#define DIST_FAC_SHIFT 3
#define AS_PE_FAC_FLOAT (float)(1 << AS_PE_FAC_SHIFT)
static const INT MAX_SCF_DELTA = 60;
-
-static const FIXP_DBL PE_C1 = FL2FXCONST_DBL(3.0f/AS_PE_FAC_FLOAT); /* (log(8.0)/log(2)) >> AS_PE_FAC_SHIFT */
-static const FIXP_DBL PE_C2 = FL2FXCONST_DBL(1.3219281f/AS_PE_FAC_FLOAT); /* (log(2.5)/log(2)) >> AS_PE_FAC_SHIFT */
-static const FIXP_DBL PE_C3 = FL2FXCONST_DBL(0.5593573f); /* 1-C2/C1 */
-
+static const FIXP_DBL PE_C1 = FL2FXCONST_DBL(
+ 3.0f / AS_PE_FAC_FLOAT); /* (log(8.0)/log(2)) >> AS_PE_FAC_SHIFT */
+static const FIXP_DBL PE_C2 = FL2FXCONST_DBL(
+ 1.3219281f / AS_PE_FAC_FLOAT); /* (log(2.5)/log(2)) >> AS_PE_FAC_SHIFT */
+static const FIXP_DBL PE_C3 = FL2FXCONST_DBL(0.5593573f); /* 1-C2/C1 */
/*
Function; FDKaacEnc_FDKaacEnc_CalcFormFactorChannel
@@ -113,30 +126,32 @@ static const FIXP_DBL PE_C3 = FL2FXCONST_DBL(0.5593573f); /*
Description: Calculates the formfactor
sf: scale factor of the mdct spectrum
- sfbFormFactorLdData is scaled with the factor 1/(((2^sf)^0.5) * (2^FORM_FAC_SHIFT))
+ sfbFormFactorLdData is scaled with the factor 1/(((2^sf)^0.5) *
+ (2^FORM_FAC_SHIFT))
*/
-static void
-FDKaacEnc_FDKaacEnc_CalcFormFactorChannel(FIXP_DBL *RESTRICT sfbFormFactorLdData,
- PSY_OUT_CHANNEL *RESTRICT psyOutChan)
-{
+static void FDKaacEnc_FDKaacEnc_CalcFormFactorChannel(
+ FIXP_DBL *RESTRICT sfbFormFactorLdData,
+ PSY_OUT_CHANNEL *RESTRICT psyOutChan) {
INT j, sfb, sfbGrp;
FIXP_DBL formFactor;
int tmp0 = psyOutChan->sfbCnt;
int tmp1 = psyOutChan->maxSfbPerGroup;
int step = psyOutChan->sfbPerGroup;
- for(sfbGrp = 0; sfbGrp < tmp0; sfbGrp += step) {
+ for (sfbGrp = 0; sfbGrp < tmp0; sfbGrp += step) {
for (sfb = 0; sfb < tmp1; sfb++) {
formFactor = FL2FXCONST_DBL(0.0f);
/* calc sum of sqrt(spec) */
- for(j=psyOutChan->sfbOffsets[sfbGrp+sfb]; j<psyOutChan->sfbOffsets[sfbGrp+sfb+1]; j++ ) {
- formFactor += sqrtFixp(fixp_abs(psyOutChan->mdctSpectrum[j]))>>FORM_FAC_SHIFT;
+ for (j = psyOutChan->sfbOffsets[sfbGrp + sfb];
+ j < psyOutChan->sfbOffsets[sfbGrp + sfb + 1]; j++) {
+ formFactor +=
+ sqrtFixp(fixp_abs(psyOutChan->mdctSpectrum[j])) >> FORM_FAC_SHIFT;
}
- sfbFormFactorLdData[sfbGrp+sfb] = CalcLdData(formFactor);
+ sfbFormFactorLdData[sfbGrp + sfb] = CalcLdData(formFactor);
}
/* set sfbFormFactor for sfbs with zero spec to zero. Just for debugging. */
- for ( ; sfb < psyOutChan->sfbPerGroup; sfb++) {
- sfbFormFactorLdData[sfbGrp+sfb] = FL2FXCONST_DBL(-1.0f);
+ for (; sfb < psyOutChan->sfbPerGroup; sfb++) {
+ sfbFormFactorLdData[sfbGrp + sfb] = FL2FXCONST_DBL(-1.0f);
}
}
}
@@ -144,17 +159,17 @@ FDKaacEnc_FDKaacEnc_CalcFormFactorChannel(FIXP_DBL *RESTRICT sfbFormFactorLdData
/*
Function: FDKaacEnc_CalcFormFactor
- Description: Calls FDKaacEnc_FDKaacEnc_CalcFormFactorChannel() for each channel
+ Description: Calls FDKaacEnc_FDKaacEnc_CalcFormFactorChannel() for each
+ channel
*/
-void
-FDKaacEnc_CalcFormFactor(QC_OUT_CHANNEL *qcOutChannel[(2)],
- PSY_OUT_CHANNEL *psyOutChannel[(2)],
- const INT nChannels)
-{
+void FDKaacEnc_CalcFormFactor(QC_OUT_CHANNEL *qcOutChannel[(2)],
+ PSY_OUT_CHANNEL *psyOutChannel[(2)],
+ const INT nChannels) {
INT j;
- for (j=0; j<nChannels; j++) {
- FDKaacEnc_FDKaacEnc_CalcFormFactorChannel(qcOutChannel[j]->sfbFormFactorLdData, psyOutChannel[j]);
+ for (j = 0; j < nChannels; j++) {
+ FDKaacEnc_FDKaacEnc_CalcFormFactorChannel(
+ qcOutChannel[j]->sfbFormFactorLdData, psyOutChannel[j]);
}
}
@@ -165,40 +180,44 @@ FDKaacEnc_CalcFormFactor(QC_OUT_CHANNEL *qcOutChannel[(2)],
sfbNRelevantLines is scaled with the factor 1/((2^FORM_FAC_SHIFT) * 2.0)
*/
-static void
-FDKaacEnc_calcSfbRelevantLines( const FIXP_DBL *const sfbFormFactorLdData,
- const FIXP_DBL *const sfbEnergyLdData,
- const FIXP_DBL *const sfbThresholdLdData,
- const INT *const sfbOffsets,
- const INT sfbCnt,
- const INT sfbPerGroup,
- const INT maxSfbPerGroup,
- FIXP_DBL *sfbNRelevantLines)
-{
+static void FDKaacEnc_calcSfbRelevantLines(
+ const FIXP_DBL *const sfbFormFactorLdData,
+ const FIXP_DBL *const sfbEnergyLdData,
+ const FIXP_DBL *const sfbThresholdLdData, const INT *const sfbOffsets,
+ const INT sfbCnt, const INT sfbPerGroup, const INT maxSfbPerGroup,
+ FIXP_DBL *sfbNRelevantLines) {
INT sfbOffs, sfb;
FIXP_DBL sfbWidthLdData;
- FIXP_DBL asPeFacLdData = FL2FXCONST_DBL(0.109375); /* AS_PE_FAC_SHIFT*ld64(2) */
+ FIXP_DBL asPeFacLdData =
+ FL2FXCONST_DBL(0.109375); /* AS_PE_FAC_SHIFT*ld64(2) */
FIXP_DBL accu;
- /* sfbNRelevantLines[i] = 2^( (sfbFormFactorLdData[i] - 0.25 * (sfbEnergyLdData[i] - ld64(sfbWidth[i]/(2^7)) - AS_PE_FAC_SHIFT*ld64(2)) * 64); */
+ /* sfbNRelevantLines[i] = 2^( (sfbFormFactorLdData[i] - 0.25 *
+ * (sfbEnergyLdData[i] - ld64(sfbWidth[i]/(2^7)) - AS_PE_FAC_SHIFT*ld64(2)) *
+ * 64); */
FDKmemclear(sfbNRelevantLines, sfbCnt * sizeof(FIXP_DBL));
- for (sfbOffs=0; sfbOffs<sfbCnt; sfbOffs+=sfbPerGroup) {
- for(sfb=0; sfb<maxSfbPerGroup; sfb++) {
+ for (sfbOffs = 0; sfbOffs < sfbCnt; sfbOffs += sfbPerGroup) {
+ for (sfb = 0; sfb < maxSfbPerGroup; sfb++) {
/* calc sum of sqrt(spec) */
- if((FIXP_DBL)sfbEnergyLdData[sfbOffs+sfb] > (FIXP_DBL)sfbThresholdLdData[sfbOffs+sfb]) {
- INT sfbWidth = sfbOffsets[sfbOffs+sfb+1] - sfbOffsets[sfbOffs+sfb];
-
- /* avgFormFactorLdData = sqrtFixp(sqrtFixp(sfbEnergyLdData[sfbOffs+sfb]/sfbWidth)); */
- /* sfbNRelevantLines[sfbOffs+sfb] = sfbFormFactor[sfbOffs+sfb] / avgFormFactorLdData; */
- sfbWidthLdData = (FIXP_DBL)(sfbWidth << (DFRACT_BITS-1-AS_PE_FAC_SHIFT));
+ if ((FIXP_DBL)sfbEnergyLdData[sfbOffs + sfb] >
+ (FIXP_DBL)sfbThresholdLdData[sfbOffs + sfb]) {
+ INT sfbWidth =
+ sfbOffsets[sfbOffs + sfb + 1] - sfbOffsets[sfbOffs + sfb];
+
+ /* avgFormFactorLdData =
+ * sqrtFixp(sqrtFixp(sfbEnergyLdData[sfbOffs+sfb]/sfbWidth)); */
+ /* sfbNRelevantLines[sfbOffs+sfb] = sfbFormFactor[sfbOffs+sfb] /
+ * avgFormFactorLdData; */
+ sfbWidthLdData =
+ (FIXP_DBL)(sfbWidth << (DFRACT_BITS - 1 - AS_PE_FAC_SHIFT));
sfbWidthLdData = CalcLdData(sfbWidthLdData);
- accu = sfbEnergyLdData[sfbOffs+sfb] - sfbWidthLdData - asPeFacLdData;
- accu = sfbFormFactorLdData[sfbOffs+sfb] - (accu >> 2);
+ accu = sfbEnergyLdData[sfbOffs + sfb] - sfbWidthLdData - asPeFacLdData;
+ accu = sfbFormFactorLdData[sfbOffs + sfb] - (accu >> 2);
- sfbNRelevantLines[sfbOffs+sfb] = CalcInvLdData(accu) >> 1;
+ sfbNRelevantLines[sfbOffs + sfb] = CalcInvLdData(accu) >> 1;
}
}
}
@@ -211,14 +230,14 @@ FDKaacEnc_calcSfbRelevantLines( const FIXP_DBL *const sfbFormFactorLdData,
scfBitsFract is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
*/
-static FIXP_DBL FDKaacEnc_countSingleScfBits(INT scf, INT scfLeft, INT scfRight)
-{
+static FIXP_DBL FDKaacEnc_countSingleScfBits(INT scf, INT scfLeft,
+ INT scfRight) {
FIXP_DBL scfBitsFract;
- scfBitsFract = (FIXP_DBL) ( FDKaacEnc_bitCountScalefactorDelta(scfLeft-scf)
- + FDKaacEnc_bitCountScalefactorDelta(scf-scfRight) );
+ scfBitsFract = (FIXP_DBL)(FDKaacEnc_bitCountScalefactorDelta(scfLeft - scf) +
+ FDKaacEnc_bitCountScalefactorDelta(scf - scfRight));
- scfBitsFract = scfBitsFract << (DFRACT_BITS-1-(2*AS_PE_FAC_SHIFT));
+ scfBitsFract = scfBitsFract << (DFRACT_BITS - 1 - (2 * AS_PE_FAC_SHIFT));
return scfBitsFract; /* output scaled by 1/(2^(2*AS_PE_FAC)) */
}
@@ -228,21 +247,21 @@ static FIXP_DBL FDKaacEnc_countSingleScfBits(INT scf, INT scfLeft, INT scfRight)
specPe is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
*/
-static FIXP_DBL FDKaacEnc_calcSingleSpecPe(INT scf, FIXP_DBL sfbConstPePart, FIXP_DBL nLines)
-{
+static FIXP_DBL FDKaacEnc_calcSingleSpecPe(INT scf, FIXP_DBL sfbConstPePart,
+ FIXP_DBL nLines) {
FIXP_DBL specPe = FL2FXCONST_DBL(0.0f);
FIXP_DBL ldRatio;
FIXP_DBL scfFract;
- scfFract = (FIXP_DBL)(scf << (DFRACT_BITS-1-AS_PE_FAC_SHIFT));
+ scfFract = (FIXP_DBL)(scf << (DFRACT_BITS - 1 - AS_PE_FAC_SHIFT));
- ldRatio = sfbConstPePart - fMult(FL2FXCONST_DBL(0.375f),scfFract);
+ ldRatio = sfbConstPePart - fMult(FL2FXCONST_DBL(0.375f), scfFract);
if (ldRatio >= PE_C1) {
- specPe = fMult(FL2FXCONST_DBL(0.7f),fMult(nLines,ldRatio));
- }
- else {
- specPe = fMult(FL2FXCONST_DBL(0.7f),fMult(nLines,(PE_C2 + fMult(PE_C3,ldRatio))));
+ specPe = fMult(FL2FXCONST_DBL(0.7f), fMult(nLines, ldRatio));
+ } else {
+ specPe = fMult(FL2FXCONST_DBL(0.7f),
+ fMult(nLines, (PE_C2 + fMult(PE_C3, ldRatio))));
}
return specPe; /* output scaled by 1/(2^(2*AS_PE_FAC)) */
@@ -253,12 +272,8 @@ static FIXP_DBL FDKaacEnc_calcSingleSpecPe(INT scf, FIXP_DBL sfbConstPePart, FIX
scfBitsDiff is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
*/
-static FIXP_DBL FDKaacEnc_countScfBitsDiff(INT *scfOld,
- INT *scfNew,
- INT sfbCnt,
- INT startSfb,
- INT stopSfb)
-{
+static FIXP_DBL FDKaacEnc_countScfBitsDiff(INT *scfOld, INT *scfNew, INT sfbCnt,
+ INT startSfb, INT stopSfb) {
FIXP_DBL scfBitsFract;
INT scfBitsDiff = 0;
INT sfb = 0, sfbLast;
@@ -266,32 +281,33 @@ static FIXP_DBL FDKaacEnc_countScfBitsDiff(INT *scfOld,
/* search for first relevant sfb */
sfbLast = startSfb;
- while ((sfbLast<stopSfb) && (scfOld[sfbLast]==FDK_INT_MIN))
- sfbLast++;
+ while ((sfbLast < stopSfb) && (scfOld[sfbLast] == FDK_INT_MIN)) sfbLast++;
/* search for previous relevant sfb and count diff */
sfbPrev = startSfb - 1;
- while ((sfbPrev>=0) && (scfOld[sfbPrev]==FDK_INT_MIN))
- sfbPrev--;
- if (sfbPrev>=0)
- scfBitsDiff += FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbPrev]-scfNew[sfbLast]) -
- FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbPrev]-scfOld[sfbLast]);
+ while ((sfbPrev >= 0) && (scfOld[sfbPrev] == FDK_INT_MIN)) sfbPrev--;
+ if (sfbPrev >= 0)
+ scfBitsDiff +=
+ FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbPrev] - scfNew[sfbLast]) -
+ FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbPrev] - scfOld[sfbLast]);
/* now loop through all sfbs and count diffs of relevant sfbs */
- for (sfb=sfbLast+1; sfb<stopSfb; sfb++) {
- if (scfOld[sfb]!=FDK_INT_MIN) {
- scfBitsDiff += FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbLast]-scfNew[sfb]) -
- FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbLast]-scfOld[sfb]);
+ for (sfb = sfbLast + 1; sfb < stopSfb; sfb++) {
+ if (scfOld[sfb] != FDK_INT_MIN) {
+ scfBitsDiff +=
+ FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbLast] - scfNew[sfb]) -
+ FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbLast] - scfOld[sfb]);
sfbLast = sfb;
}
}
/* search for next relevant sfb and count diff */
sfbNext = stopSfb;
- while ((sfbNext<sfbCnt) && (scfOld[sfbNext]==FDK_INT_MIN))
- sfbNext++;
- if (sfbNext<sfbCnt)
- scfBitsDiff += FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbLast]-scfNew[sfbNext]) -
- FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbLast]-scfOld[sfbNext]);
+ while ((sfbNext < sfbCnt) && (scfOld[sfbNext] == FDK_INT_MIN)) sfbNext++;
+ if (sfbNext < sfbCnt)
+ scfBitsDiff +=
+ FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbLast] - scfNew[sfbNext]) -
+ FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbLast] - scfOld[sfbNext]);
- scfBitsFract = (FIXP_DBL) (scfBitsDiff << (DFRACT_BITS-1-(2*AS_PE_FAC_SHIFT)));
+ scfBitsFract =
+ (FIXP_DBL)(scfBitsDiff << (DFRACT_BITS - 1 - (2 * AS_PE_FAC_SHIFT)));
return scfBitsFract;
}
@@ -301,48 +317,51 @@ static FIXP_DBL FDKaacEnc_countScfBitsDiff(INT *scfOld,
specPeDiff is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
*/
-static FIXP_DBL FDKaacEnc_calcSpecPeDiff(PSY_OUT_CHANNEL *psyOutChan,
- QC_OUT_CHANNEL *qcOutChannel,
- INT *scfOld,
- INT *scfNew,
- FIXP_DBL *sfbConstPePart,
- FIXP_DBL *sfbFormFactorLdData,
- FIXP_DBL *sfbNRelevantLines,
- INT startSfb,
- INT stopSfb)
-{
+static FIXP_DBL FDKaacEnc_calcSpecPeDiff(
+ PSY_OUT_CHANNEL *psyOutChan, QC_OUT_CHANNEL *qcOutChannel, INT *scfOld,
+ INT *scfNew, FIXP_DBL *sfbConstPePart, FIXP_DBL *sfbFormFactorLdData,
+ FIXP_DBL *sfbNRelevantLines, INT startSfb, INT stopSfb) {
FIXP_DBL specPeDiff = FL2FXCONST_DBL(0.0f);
FIXP_DBL scfFract = FL2FXCONST_DBL(0.0f);
INT sfb;
/* loop through all sfbs and count pe difference */
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scfOld[sfb]!=FDK_INT_MIN) {
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scfOld[sfb] != FDK_INT_MIN) {
FIXP_DBL ldRatioOld, ldRatioNew, pOld, pNew;
- /* sfbConstPePart[sfb] = (float)log(psyOutChan->sfbEnergy[sfb] * 6.75f / sfbFormFactor[sfb]) * LOG2_1; */
- /* 0.02152255861f = log(6.75)/log(2)/AS_PE_FAC_FLOAT; LOG2_1 is 1.0 for log2 */
+ /* sfbConstPePart[sfb] = (float)log(psyOutChan->sfbEnergy[sfb] * 6.75f /
+ * sfbFormFactor[sfb]) * LOG2_1; */
+ /* 0.02152255861f = log(6.75)/log(2)/AS_PE_FAC_FLOAT; LOG2_1 is 1.0 for
+ * log2 */
/* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */
if (sfbConstPePart[sfb] == (FIXP_DBL)FDK_INT_MIN)
- sfbConstPePart[sfb] = ((psyOutChan->sfbEnergyLdData[sfb] - sfbFormFactorLdData[sfb] - FL2FXCONST_DBL(0.09375f)) >> 1) + FL2FXCONST_DBL(0.02152255861f);
+ sfbConstPePart[sfb] =
+ ((psyOutChan->sfbEnergyLdData[sfb] - sfbFormFactorLdData[sfb] -
+ FL2FXCONST_DBL(0.09375f)) >>
+ 1) +
+ FL2FXCONST_DBL(0.02152255861f);
- scfFract = (FIXP_DBL) (scfOld[sfb] << (DFRACT_BITS-1-AS_PE_FAC_SHIFT));
- ldRatioOld = sfbConstPePart[sfb] - fMult(FL2FXCONST_DBL(0.375f),scfFract);
+ scfFract = (FIXP_DBL)(scfOld[sfb] << (DFRACT_BITS - 1 - AS_PE_FAC_SHIFT));
+ ldRatioOld =
+ sfbConstPePart[sfb] - fMult(FL2FXCONST_DBL(0.375f), scfFract);
- scfFract = (FIXP_DBL) (scfNew[sfb] << (DFRACT_BITS-1-AS_PE_FAC_SHIFT));
- ldRatioNew = sfbConstPePart[sfb] - fMult(FL2FXCONST_DBL(0.375f),scfFract);
+ scfFract = (FIXP_DBL)(scfNew[sfb] << (DFRACT_BITS - 1 - AS_PE_FAC_SHIFT));
+ ldRatioNew =
+ sfbConstPePart[sfb] - fMult(FL2FXCONST_DBL(0.375f), scfFract);
if (ldRatioOld >= PE_C1)
pOld = ldRatioOld;
else
- pOld = PE_C2 + fMult(PE_C3,ldRatioOld);
+ pOld = PE_C2 + fMult(PE_C3, ldRatioOld);
if (ldRatioNew >= PE_C1)
pNew = ldRatioNew;
else
- pNew = PE_C2 + fMult(PE_C3,ldRatioNew);
+ pNew = PE_C2 + fMult(PE_C3, ldRatioNew);
- specPeDiff += fMult(FL2FXCONST_DBL(0.7f),fMult(sfbNRelevantLines[sfb],(pNew - pOld)));
+ specPeDiff += fMult(FL2FXCONST_DBL(0.7f),
+ fMult(sfbNRelevantLines[sfb], (pNew - pOld)));
}
}
@@ -352,123 +371,96 @@ static FIXP_DBL FDKaacEnc_calcSpecPeDiff(PSY_OUT_CHANNEL *psyOutChan,
/*
Function: FDKaacEnc_improveScf
- Description: Calculate the distortion by quantization and inverse quantization of the spectrum with
- various scalefactors. The scalefactor which provides the best results will be used.
+ Description: Calculate the distortion by quantization and inverse quantization
+ of the spectrum with various scalefactors. The scalefactor which provides the
+ best results will be used.
*/
-static INT FDKaacEnc_improveScf(FIXP_DBL *spec,
- SHORT *quantSpec,
- SHORT *quantSpecTmp,
- INT sfbWidth,
- FIXP_DBL threshLdData,
- INT scf,
- INT minScf,
- FIXP_DBL *distLdData,
- INT *minScfCalculated,
- INT dZoneQuantEnable
- )
-{
- FIXP_DBL sfbDistLdData;
- INT scfBest = scf;
- INT k;
- FIXP_DBL distFactorLdData = FL2FXCONST_DBL(-0.0050301265); /* ld64(1/1.25) */
-
- /* calc real distortion */
- sfbDistLdData = FDKaacEnc_calcSfbDist(spec,
- quantSpec,
- sfbWidth,
- scf,
- dZoneQuantEnable);
- *minScfCalculated = scf;
- /* nmr > 1.25 -> try to improve nmr */
- if (sfbDistLdData > (threshLdData-distFactorLdData)) {
- INT scfEstimated = scf;
- FIXP_DBL sfbDistBestLdData = sfbDistLdData;
- INT cnt;
- /* improve by bigger scf ? */
- cnt = 0;
-
- while ((sfbDistLdData > (threshLdData-distFactorLdData)) && (cnt++ < 3)) {
- scf++;
- sfbDistLdData = FDKaacEnc_calcSfbDist(spec,
- quantSpecTmp,
- sfbWidth,
- scf,
- dZoneQuantEnable);
-
- if (sfbDistLdData < sfbDistBestLdData) {
- scfBest = scf;
- sfbDistBestLdData = sfbDistLdData;
- for (k=0; k<sfbWidth; k++)
- quantSpec[k] = quantSpecTmp[k];
- }
+static INT FDKaacEnc_improveScf(const FIXP_DBL *spec, SHORT *quantSpec,
+ SHORT *quantSpecTmp, INT sfbWidth,
+ FIXP_DBL threshLdData, INT scf, INT minScf,
+ FIXP_DBL *distLdData, INT *minScfCalculated,
+ INT dZoneQuantEnable) {
+ FIXP_DBL sfbDistLdData;
+ INT scfBest = scf;
+ INT k;
+ FIXP_DBL distFactorLdData = FL2FXCONST_DBL(-0.0050301265); /* ld64(1/1.25) */
+
+ /* calc real distortion */
+ sfbDistLdData =
+ FDKaacEnc_calcSfbDist(spec, quantSpec, sfbWidth, scf, dZoneQuantEnable);
+ *minScfCalculated = scf;
+ /* nmr > 1.25 -> try to improve nmr */
+ if (sfbDistLdData > (threshLdData - distFactorLdData)) {
+ INT scfEstimated = scf;
+ FIXP_DBL sfbDistBestLdData = sfbDistLdData;
+ INT cnt;
+ /* improve by bigger scf ? */
+ cnt = 0;
+
+ while ((sfbDistLdData > (threshLdData - distFactorLdData)) &&
+ (cnt++ < UPCOUNT_LIMIT)) {
+ scf++;
+ sfbDistLdData = FDKaacEnc_calcSfbDist(spec, quantSpecTmp, sfbWidth, scf,
+ dZoneQuantEnable);
+
+ if (sfbDistLdData < sfbDistBestLdData) {
+ scfBest = scf;
+ sfbDistBestLdData = sfbDistLdData;
+ for (k = 0; k < sfbWidth; k++) quantSpec[k] = quantSpecTmp[k];
}
- /* improve by smaller scf ? */
- cnt = 0;
- scf = scfEstimated;
- sfbDistLdData = sfbDistBestLdData;
- while ((sfbDistLdData > (threshLdData-distFactorLdData)) && (cnt++ < 1) && (scf > minScf)) {
- scf--;
- sfbDistLdData = FDKaacEnc_calcSfbDist(spec,
- quantSpecTmp,
- sfbWidth,
- scf,
- dZoneQuantEnable);
-
- if (sfbDistLdData < sfbDistBestLdData) {
- scfBest = scf;
- sfbDistBestLdData = sfbDistLdData;
- for (k=0; k<sfbWidth; k++)
- quantSpec[k] = quantSpecTmp[k];
- }
- *minScfCalculated = scf;
+ }
+ /* improve by smaller scf ? */
+ cnt = 0;
+ scf = scfEstimated;
+ sfbDistLdData = sfbDistBestLdData;
+ while ((sfbDistLdData > (threshLdData - distFactorLdData)) && (cnt++ < 1) &&
+ (scf > minScf)) {
+ scf--;
+ sfbDistLdData = FDKaacEnc_calcSfbDist(spec, quantSpecTmp, sfbWidth, scf,
+ dZoneQuantEnable);
+
+ if (sfbDistLdData < sfbDistBestLdData) {
+ scfBest = scf;
+ sfbDistBestLdData = sfbDistLdData;
+ for (k = 0; k < sfbWidth; k++) quantSpec[k] = quantSpecTmp[k];
}
- *distLdData = sfbDistBestLdData;
- }
- else { /* nmr <= 1.25 -> try to find bigger scf to use less bits */
- FIXP_DBL sfbDistBestLdData = sfbDistLdData;
- FIXP_DBL sfbDistAllowedLdData = fixMin(sfbDistLdData-distFactorLdData,threshLdData);
- int cnt;
- for (cnt=0; cnt<3; cnt++) {
- scf++;
- sfbDistLdData = FDKaacEnc_calcSfbDist(spec,
- quantSpecTmp,
- sfbWidth,
- scf,
- dZoneQuantEnable);
-
- if (sfbDistLdData < sfbDistAllowedLdData) {
- *minScfCalculated = scfBest+1;
- scfBest = scf;
- sfbDistBestLdData = sfbDistLdData;
- for (k=0; k<sfbWidth; k++)
- quantSpec[k] = quantSpecTmp[k];
- }
+ *minScfCalculated = scf;
+ }
+ *distLdData = sfbDistBestLdData;
+ } else { /* nmr <= 1.25 -> try to find bigger scf to use less bits */
+ FIXP_DBL sfbDistBestLdData = sfbDistLdData;
+ FIXP_DBL sfbDistAllowedLdData =
+ fixMin(sfbDistLdData - distFactorLdData, threshLdData);
+ int cnt;
+ for (cnt = 0; cnt < UPCOUNT_LIMIT; cnt++) {
+ scf++;
+ sfbDistLdData = FDKaacEnc_calcSfbDist(spec, quantSpecTmp, sfbWidth, scf,
+ dZoneQuantEnable);
+
+ if (sfbDistLdData < sfbDistAllowedLdData) {
+ *minScfCalculated = scfBest + 1;
+ scfBest = scf;
+ sfbDistBestLdData = sfbDistLdData;
+ for (k = 0; k < sfbWidth; k++) quantSpec[k] = quantSpecTmp[k];
}
- *distLdData = sfbDistBestLdData;
- }
+ }
+ *distLdData = sfbDistBestLdData;
+ }
- /* return best scalefactor */
- return scfBest;
+ /* return best scalefactor */
+ return scfBest;
}
/*
Function: FDKaacEnc_assimilateSingleScf
*/
-static void FDKaacEnc_assimilateSingleScf(PSY_OUT_CHANNEL *psyOutChan,
- QC_OUT_CHANNEL *qcOutChannel,
- SHORT *quantSpec,
- SHORT *quantSpecTmp,
- INT dZoneQuantEnable,
- INT *scf,
- INT *minScf,
- FIXP_DBL *sfbDist,
- FIXP_DBL *sfbConstPePart,
- FIXP_DBL *sfbFormFactorLdData,
- FIXP_DBL *sfbNRelevantLines,
- INT *minScfCalculated,
- INT restartOnSuccess)
-{
+static void FDKaacEnc_assimilateSingleScf(
+ const PSY_OUT_CHANNEL *psyOutChan, const QC_OUT_CHANNEL *qcOutChannel,
+ SHORT *quantSpec, SHORT *quantSpecTmp, INT dZoneQuantEnable, INT *scf,
+ const INT *minScf, FIXP_DBL *sfbDist, FIXP_DBL *sfbConstPePart,
+ const FIXP_DBL *sfbFormFactorLdData, const FIXP_DBL *sfbNRelevantLines,
+ INT *minScfCalculated, INT restartOnSuccess) {
INT sfbLast, sfbAct, sfbNext;
INT scfAct, *scfLast, *scfNext, scfMin, scfMax;
INT sfbWidth, sfbOffs;
@@ -483,77 +475,82 @@ static void FDKaacEnc_assimilateSingleScf(PSY_OUT_CHANNEL *psyOutChan,
FIXP_DBL deltaPeLast[MAX_GROUPED_SFB];
INT updateMinScfCalculated;
- for (i=0; i<psyOutChan->sfbCnt; i++) {
+ for (i = 0; i < psyOutChan->sfbCnt; i++) {
prevScfLast[i] = FDK_INT_MAX;
prevScfNext[i] = FDK_INT_MAX;
deltaPeLast[i] = (FIXP_DBL)FDK_INT_MAX;
}
sfbLast = -1;
- sfbAct = -1;
+ sfbAct = -1;
sfbNext = -1;
scfLast = 0;
scfNext = 0;
- scfMin = FDK_INT_MAX;
- scfMax = FDK_INT_MAX;
+ scfMin = FDK_INT_MAX;
+ scfMax = FDK_INT_MAX;
do {
/* search for new relevant sfb */
sfbNext++;
while ((sfbNext < psyOutChan->sfbCnt) && (scf[sfbNext] == FDK_INT_MIN))
sfbNext++;
- if ((sfbLast>=0) && (sfbAct>=0) && (sfbNext<psyOutChan->sfbCnt)) {
+ if ((sfbLast >= 0) && (sfbAct >= 0) && (sfbNext < psyOutChan->sfbCnt)) {
/* relevant scfs to the left and to the right */
- scfAct = scf[sfbAct];
+ scfAct = scf[sfbAct];
scfLast = scf + sfbLast;
scfNext = scf + sfbNext;
- scfMin = fixMin(*scfLast, *scfNext);
- scfMax = fixMax(*scfLast, *scfNext);
- }
- else if ((sfbLast==-1) && (sfbAct>=0) && (sfbNext<psyOutChan->sfbCnt)) {
+ scfMin = fixMin(*scfLast, *scfNext);
+ scfMax = fixMax(*scfLast, *scfNext);
+ } else if ((sfbLast == -1) && (sfbAct >= 0) &&
+ (sfbNext < psyOutChan->sfbCnt)) {
/* first relevant scf */
- scfAct = scf[sfbAct];
+ scfAct = scf[sfbAct];
scfLast = &scfAct;
scfNext = scf + sfbNext;
- scfMin = *scfNext;
- scfMax = *scfNext;
- }
- else if ((sfbLast>=0) && (sfbAct>=0) && (sfbNext==psyOutChan->sfbCnt)) {
+ scfMin = *scfNext;
+ scfMax = *scfNext;
+ } else if ((sfbLast >= 0) && (sfbAct >= 0) &&
+ (sfbNext == psyOutChan->sfbCnt)) {
/* last relevant scf */
- scfAct = scf[sfbAct];
+ scfAct = scf[sfbAct];
scfLast = scf + sfbLast;
scfNext = &scfAct;
- scfMin = *scfLast;
- scfMax = *scfLast;
+ scfMin = *scfLast;
+ scfMax = *scfLast;
}
- if (sfbAct>=0)
- scfMin = fixMax(scfMin, minScf[sfbAct]);
-
- if ((sfbAct >= 0) &&
- (sfbLast>=0 || sfbNext<psyOutChan->sfbCnt) &&
- (scfAct > scfMin) &&
- (scfAct <= scfMin+MAX_SCF_DELTA) &&
- (scfAct >= scfMax-MAX_SCF_DELTA) &&
- (*scfLast != prevScfLast[sfbAct] ||
- *scfNext != prevScfNext[sfbAct] ||
+ if (sfbAct >= 0) scfMin = fixMax(scfMin, minScf[sfbAct]);
+
+ if ((sfbAct >= 0) && (sfbLast >= 0 || sfbNext < psyOutChan->sfbCnt) &&
+ (scfAct > scfMin) && (scfAct <= scfMin + MAX_SCF_DELTA) &&
+ (scfAct >= scfMax - MAX_SCF_DELTA) &&
+ (scfAct <=
+ fixMin(scfMin, fixMin(*scfLast, *scfNext)) + MAX_SCF_DELTA) &&
+ (*scfLast != prevScfLast[sfbAct] || *scfNext != prevScfNext[sfbAct] ||
deltaPe < deltaPeLast[sfbAct])) {
/* bigger than neighbouring scf found, try to use smaller scf */
success = 0;
- sfbWidth = psyOutChan->sfbOffsets[sfbAct+1] - psyOutChan->sfbOffsets[sfbAct];
+ sfbWidth =
+ psyOutChan->sfbOffsets[sfbAct + 1] - psyOutChan->sfbOffsets[sfbAct];
sfbOffs = psyOutChan->sfbOffsets[sfbAct];
/* estimate required bits for actual scf */
enLdData = qcOutChannel->sfbEnergyLdData[sfbAct];
- /* sfbConstPePart[sfbAct] = (float)log(6.75f*en/sfbFormFactor[sfbAct]) * LOG2_1; */
- /* 0.02152255861f = log(6.75)/log(2)/AS_PE_FAC_FLOAT; LOG2_1 is 1.0 for log2 */
+ /* sfbConstPePart[sfbAct] = (float)log(6.75f*en/sfbFormFactor[sfbAct]) *
+ * LOG2_1; */
+ /* 0.02152255861f = log(6.75)/log(2)/AS_PE_FAC_FLOAT; LOG2_1 is 1.0 for
+ * log2 */
/* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */
if (sfbConstPePart[sfbAct] == (FIXP_DBL)FDK_INT_MIN) {
- sfbConstPePart[sfbAct] = ((enLdData - sfbFormFactorLdData[sfbAct] - FL2FXCONST_DBL(0.09375f)) >> 1) + FL2FXCONST_DBL(0.02152255861f);
+ sfbConstPePart[sfbAct] = ((enLdData - sfbFormFactorLdData[sfbAct] -
+ FL2FXCONST_DBL(0.09375f)) >>
+ 1) +
+ FL2FXCONST_DBL(0.02152255861f);
}
- sfbPeOld = FDKaacEnc_calcSingleSpecPe(scfAct,sfbConstPePart[sfbAct],sfbNRelevantLines[sfbAct])
- +FDKaacEnc_countSingleScfBits(scfAct, *scfLast, *scfNext);
+ sfbPeOld = FDKaacEnc_calcSingleSpecPe(scfAct, sfbConstPePart[sfbAct],
+ sfbNRelevantLines[sfbAct]) +
+ FDKaacEnc_countSingleScfBits(scfAct, *scfLast, *scfNext);
deltaPeNew = deltaPe;
updateMinScfCalculated = 1;
@@ -562,10 +559,12 @@ static void FDKaacEnc_assimilateSingleScf(PSY_OUT_CHANNEL *psyOutChan,
/* estimate required bits for smaller scf */
scfAct--;
/* check only if the same check was not done before */
- if (scfAct < minScfCalculated[sfbAct] && scfAct>=scfMax-MAX_SCF_DELTA){
+ if (scfAct < minScfCalculated[sfbAct] &&
+ scfAct >= scfMax - MAX_SCF_DELTA) {
/* estimate required bits for new scf */
- sfbPeNew = FDKaacEnc_calcSingleSpecPe(scfAct,sfbConstPePart[sfbAct],sfbNRelevantLines[sfbAct])
- +FDKaacEnc_countSingleScfBits(scfAct,*scfLast, *scfNext);
+ sfbPeNew = FDKaacEnc_calcSingleSpecPe(scfAct, sfbConstPePart[sfbAct],
+ sfbNRelevantLines[sfbAct]) +
+ FDKaacEnc_countSingleScfBits(scfAct, *scfLast, *scfNext);
/* use new scf if no increase in pe and
quantization error is smaller */
@@ -573,28 +572,24 @@ static void FDKaacEnc_assimilateSingleScf(PSY_OUT_CHANNEL *psyOutChan,
/* 0.0006103515625f = 10.0f/(2^(2*AS_PE_FAC_SHIFT)) */
if (deltaPeTmp < FL2FXCONST_DBL(0.0006103515625f)) {
/* distortion of new scf */
- sfbDistNew = FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+sfbOffs,
- quantSpecTmp+sfbOffs,
- sfbWidth,
- scfAct,
- dZoneQuantEnable);
+ sfbDistNew = FDKaacEnc_calcSfbDist(
+ qcOutChannel->mdctSpectrum + sfbOffs, quantSpecTmp + sfbOffs,
+ sfbWidth, scfAct, dZoneQuantEnable);
if (sfbDistNew < sfbDist[sfbAct]) {
/* success, replace scf by new one */
scf[sfbAct] = scfAct;
sfbDist[sfbAct] = sfbDistNew;
- for (k=0; k<sfbWidth; k++)
- quantSpec[sfbOffs+k] = quantSpecTmp[sfbOffs+k];
+ for (k = 0; k < sfbWidth; k++)
+ quantSpec[sfbOffs + k] = quantSpecTmp[sfbOffs + k];
deltaPeNew = deltaPeTmp;
success = 1;
}
/* mark as already checked */
- if (updateMinScfCalculated)
- minScfCalculated[sfbAct] = scfAct;
- }
- else {
+ if (updateMinScfCalculated) minScfCalculated[sfbAct] = scfAct;
+ } else {
/* from this scf value on not all new values have been checked */
updateMinScfCalculated = 0;
}
@@ -612,18 +607,17 @@ static void FDKaacEnc_assimilateSingleScf(PSY_OUT_CHANNEL *psyOutChan,
if (success && restartOnSuccess) {
/* start again at first sfb */
sfbLast = -1;
- sfbAct = -1;
+ sfbAct = -1;
sfbNext = -1;
scfLast = 0;
scfNext = 0;
- scfMin = FDK_INT_MAX;
- scfMax = FDK_INT_MAX;
+ scfMin = FDK_INT_MAX;
+ scfMax = FDK_INT_MAX;
success = 0;
- }
- else {
+ } else {
/* shift sfbs for next band */
sfbLast = sfbAct;
- sfbAct = sfbNext;
+ sfbAct = sfbNext;
}
} while (sfbNext < psyOutChan->sfbCnt);
}
@@ -632,18 +626,11 @@ static void FDKaacEnc_assimilateSingleScf(PSY_OUT_CHANNEL *psyOutChan,
Function: FDKaacEnc_assimilateMultipleScf
*/
-static void FDKaacEnc_assimilateMultipleScf(PSY_OUT_CHANNEL *psyOutChan,
- QC_OUT_CHANNEL *qcOutChannel,
- SHORT *quantSpec,
- SHORT *quantSpecTmp,
- INT dZoneQuantEnable,
- INT *scf,
- INT *minScf,
- FIXP_DBL *sfbDist,
- FIXP_DBL *sfbConstPePart,
- FIXP_DBL *sfbFormFactorLdData,
- FIXP_DBL *sfbNRelevantLines)
-{
+static void FDKaacEnc_assimilateMultipleScf(
+ PSY_OUT_CHANNEL *psyOutChan, QC_OUT_CHANNEL *qcOutChannel, SHORT *quantSpec,
+ SHORT *quantSpecTmp, INT dZoneQuantEnable, INT *scf, const INT *minScf,
+ FIXP_DBL *sfbDist, FIXP_DBL *sfbConstPePart, FIXP_DBL *sfbFormFactorLdData,
+ FIXP_DBL *sfbNRelevantLines) {
INT sfb, startSfb, stopSfb;
INT scfTmp[MAX_GROUPED_SFB], scfMin, scfMax, scfAct;
INT possibleRegionFound;
@@ -658,31 +645,29 @@ static void FDKaacEnc_assimilateMultipleScf(PSY_OUT_CHANNEL *psyOutChan,
/* calc min and max scalfactors */
scfMin = FDK_INT_MAX;
scfMax = FDK_INT_MIN;
- for (sfb=0; sfb<sfbCnt; sfb++) {
- if (scf[sfb]!=FDK_INT_MIN) {
+ for (sfb = 0; sfb < sfbCnt; sfb++) {
+ if (scf[sfb] != FDK_INT_MIN) {
scfMin = fixMin(scfMin, scf[sfb]);
scfMax = fixMax(scfMax, scf[sfb]);
}
}
- if (scfMax != FDK_INT_MIN && scfMax <= scfMin+MAX_SCF_DELTA) {
-
+ if (scfMax != FDK_INT_MIN && scfMax <= scfMin + MAX_SCF_DELTA) {
scfAct = scfMax;
do {
/* try smaller scf */
scfAct--;
- for (i=0; i<MAX_GROUPED_SFB; i++)
- scfTmp[i] = scf[i];
+ for (i = 0; i < MAX_GROUPED_SFB; i++) scfTmp[i] = scf[i];
stopSfb = 0;
do {
/* search for region where all scfs are bigger than scfAct */
sfb = stopSfb;
- while (sfb<sfbCnt && (scf[sfb]==FDK_INT_MIN || scf[sfb] <= scfAct))
+ while (sfb < sfbCnt && (scf[sfb] == FDK_INT_MIN || scf[sfb] <= scfAct))
sfb++;
startSfb = sfb;
sfb++;
- while (sfb<sfbCnt && (scf[sfb]==FDK_INT_MIN || scf[sfb] > scfAct))
+ while (sfb < sfbCnt && (scf[sfb] == FDK_INT_MIN || scf[sfb] > scfAct))
sfb++;
stopSfb = sfb;
@@ -690,7 +675,7 @@ static void FDKaacEnc_assimilateMultipleScf(PSY_OUT_CHANNEL *psyOutChan,
possibleRegionFound = 0;
if (startSfb < sfbCnt) {
possibleRegionFound = 1;
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scf[sfb] != FDK_INT_MIN)
if (scfAct < minScf[sfb]) {
possibleRegionFound = 0;
@@ -702,40 +687,38 @@ static void FDKaacEnc_assimilateMultipleScf(PSY_OUT_CHANNEL *psyOutChan,
if (possibleRegionFound) { /* region found */
/* replace scfs in region by scfAct */
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scfTmp[sfb] != FDK_INT_MIN)
- scfTmp[sfb] = scfAct;
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN) scfTmp[sfb] = scfAct;
}
/* estimate change in bit demand for new scfs */
- deltaScfBits = FDKaacEnc_countScfBitsDiff(scf,scfTmp,sfbCnt,startSfb,stopSfb);
+ deltaScfBits = FDKaacEnc_countScfBitsDiff(scf, scfTmp, sfbCnt,
+ startSfb, stopSfb);
- deltaSpecPe = FDKaacEnc_calcSpecPeDiff(psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
- sfbFormFactorLdData, sfbNRelevantLines,
- startSfb, stopSfb);
+ deltaSpecPe = FDKaacEnc_calcSpecPeDiff(
+ psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
+ sfbFormFactorLdData, sfbNRelevantLines, startSfb, stopSfb);
deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;
/* new bit demand small enough ? */
/* 0.0006103515625f = 10.0f/(2^(2*AS_PE_FAC_SHIFT)) */
if (deltaPeNew < FL2FXCONST_DBL(0.0006103515625f)) {
-
/* quantize and calc sum of new distortion */
distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scfTmp[sfb] != FDK_INT_MIN) {
distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;
- sfbWidth = psyOutChan->sfbOffsets[sfb+1] - psyOutChan->sfbOffsets[sfb];
+ sfbWidth = psyOutChan->sfbOffsets[sfb + 1] -
+ psyOutChan->sfbOffsets[sfb];
sfbOffs = psyOutChan->sfbOffsets[sfb];
- sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+sfbOffs,
- quantSpecTmp+sfbOffs,
- sfbWidth,
- scfAct,
- dZoneQuantEnable);
+ sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(
+ qcOutChannel->mdctSpectrum + sfbOffs,
+ quantSpecTmp + sfbOffs, sfbWidth, scfAct, dZoneQuantEnable);
- if (sfbDistNew[sfb] >qcOutChannel->sfbThresholdLdData[sfb]) {
+ if (sfbDistNew[sfb] > qcOutChannel->sfbThresholdLdData[sfb]) {
/* no improvement, skip further dist. calculations */
distNewSum = distOldSum << 1;
break;
@@ -746,20 +729,19 @@ static void FDKaacEnc_assimilateMultipleScf(PSY_OUT_CHANNEL *psyOutChan,
/* distortion smaller ? -> use new scalefactors */
if (distNewSum < distOldSum) {
deltaPe = deltaPeNew;
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scf[sfb] != FDK_INT_MIN) {
- sfbWidth = psyOutChan->sfbOffsets[sfb+1] -
+ sfbWidth = psyOutChan->sfbOffsets[sfb + 1] -
psyOutChan->sfbOffsets[sfb];
sfbOffs = psyOutChan->sfbOffsets[sfb];
scf[sfb] = scfAct;
sfbDist[sfb] = sfbDistNew[sfb];
- for (k=0; k<sfbWidth; k++)
- quantSpec[sfbOffs+k] = quantSpecTmp[sfbOffs+k];
+ for (k = 0; k < sfbWidth; k++)
+ quantSpec[sfbOffs + k] = quantSpecTmp[sfbOffs + k];
}
}
}
-
}
}
@@ -773,18 +755,11 @@ static void FDKaacEnc_assimilateMultipleScf(PSY_OUT_CHANNEL *psyOutChan,
Function: FDKaacEnc_FDKaacEnc_assimilateMultipleScf2
*/
-static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(PSY_OUT_CHANNEL *psyOutChan,
- QC_OUT_CHANNEL *qcOutChannel,
- SHORT *quantSpec,
- SHORT *quantSpecTmp,
- INT dZoneQuantEnable,
- INT *scf,
- INT *minScf,
- FIXP_DBL *sfbDist,
- FIXP_DBL *sfbConstPePart,
- FIXP_DBL *sfbFormFactorLdData,
- FIXP_DBL *sfbNRelevantLines)
-{
+static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(
+ PSY_OUT_CHANNEL *psyOutChan, QC_OUT_CHANNEL *qcOutChannel, SHORT *quantSpec,
+ SHORT *quantSpecTmp, INT dZoneQuantEnable, INT *scf, const INT *minScf,
+ FIXP_DBL *sfbDist, FIXP_DBL *sfbConstPePart, FIXP_DBL *sfbFormFactorLdData,
+ FIXP_DBL *sfbNRelevantLines) {
INT sfb, startSfb, stopSfb;
INT scfTmp[MAX_GROUPED_SFB], scfAct, scfNew;
INT scfPrev, scfNext, scfPrevNextMin, scfPrevNextMax, scfLo, scfHi;
@@ -798,13 +773,13 @@ static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(PSY_OUT_CHANNEL *psyOutCh
FIXP_DBL deltaPeNew = FL2FXCONST_DBL(0.0f);
INT sfbCnt = psyOutChan->sfbCnt;
INT bSuccess, bCheckScf;
- INT i,k;
+ INT i, k;
/* calc min and max scalfactors */
scfMin = FDK_INT_MAX;
scfMax = FDK_INT_MIN;
- for (sfb=0; sfb<sfbCnt; sfb++) {
- if (scf[sfb]!=FDK_INT_MIN) {
+ for (sfb = 0; sfb < sfbCnt; sfb++) {
+ if (scf[sfb] != FDK_INT_MIN) {
scfMin = fixMin(scfMin, scf[sfb]);
scfMax = fixMax(scfMax, scf[sfb]);
}
@@ -817,12 +792,12 @@ static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(PSY_OUT_CHANNEL *psyOutCh
scfPrev = scfAct;
sfb = stopSfb;
- while (sfb<sfbCnt && (scf[sfb]==FDK_INT_MIN))
- sfb++;
+ while (sfb < sfbCnt && (scf[sfb] == FDK_INT_MIN)) sfb++;
startSfb = sfb;
scfAct = scf[startSfb];
sfb++;
- while (sfb<sfbCnt && ((scf[sfb]==FDK_INT_MIN) || (scf[sfb]==scf[startSfb])))
+ while (sfb < sfbCnt &&
+ ((scf[sfb] == FDK_INT_MIN) || (scf[sfb] == scf[startSfb])))
sfb++;
stopSfb = sfb;
@@ -831,8 +806,7 @@ static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(PSY_OUT_CHANNEL *psyOutCh
else
scfNext = scfAct;
- if (scfPrev == FDK_INT_MIN)
- scfPrev = scfAct;
+ if (scfPrev == FDK_INT_MIN) scfPrev = scfAct;
scfPrevNextMax = fixMax(scfPrev, scfNext);
scfPrevNextMin = fixMin(scfPrev, scfNext);
@@ -847,39 +821,49 @@ static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(PSY_OUT_CHANNEL *psyOutCh
else
scfLo = scfPrevNextMax;
- if (startSfb < sfbCnt && scfHi-scfLo <= MAX_SCF_DELTA) { /* region found */
+ if (startSfb < sfbCnt &&
+ scfHi - scfLo <= MAX_SCF_DELTA) { /* region found */
/* 1. try to save bits by coarser quantization */
if (scfHi > scf[startSfb]) {
/* calculate the allowed distortion */
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scf[sfb] != FDK_INT_MIN) {
- /* sfbDistMax[sfb] = (float)pow(qcOutChannel->sfbThreshold[sfb]*sfbDist[sfb]*sfbDist[sfb],1.0f/3.0f); */
- /* sfbDistMax[sfb] = fixMax(sfbDistMax[sfb],qcOutChannel->sfbEnergy[sfb]*FL2FXCONST_DBL(1.e-3f)); */
+ /* sfbDistMax[sfb] =
+ * (float)pow(qcOutChannel->sfbThreshold[sfb]*sfbDist[sfb]*sfbDist[sfb],1.0f/3.0f);
+ */
+ /* sfbDistMax[sfb] =
+ * fixMax(sfbDistMax[sfb],qcOutChannel->sfbEnergy[sfb]*FL2FXCONST_DBL(1.e-3f));
+ */
/* -0.15571537944 = ld64(1.e-3f)*/
- sfbDistMax[sfb] = fMult(FL2FXCONST_DBL(1.0f/3.0f),qcOutChannel->sfbThresholdLdData[sfb])+fMult(FL2FXCONST_DBL(1.0f/3.0f),sfbDist[sfb])+fMult(FL2FXCONST_DBL(1.0f/3.0f),sfbDist[sfb]);
- sfbDistMax[sfb] = fixMax(sfbDistMax[sfb],qcOutChannel->sfbEnergyLdData[sfb]-FL2FXCONST_DBL(0.15571537944));
- sfbDistMax[sfb] = fixMin(sfbDistMax[sfb],qcOutChannel->sfbThresholdLdData[sfb]);
+ sfbDistMax[sfb] = fMult(FL2FXCONST_DBL(1.0f / 3.0f),
+ qcOutChannel->sfbThresholdLdData[sfb]) +
+ fMult(FL2FXCONST_DBL(1.0f / 3.0f), sfbDist[sfb]) +
+ fMult(FL2FXCONST_DBL(1.0f / 3.0f), sfbDist[sfb]);
+ sfbDistMax[sfb] =
+ fixMax(sfbDistMax[sfb], qcOutChannel->sfbEnergyLdData[sfb] -
+ FL2FXCONST_DBL(0.15571537944));
+ sfbDistMax[sfb] =
+ fixMin(sfbDistMax[sfb], qcOutChannel->sfbThresholdLdData[sfb]);
}
}
/* loop over all possible scf values for this region */
bCheckScf = 1;
- for (scfNew=scf[startSfb]+1; scfNew<=scfHi; scfNew++) {
- for (k=0; k<MAX_GROUPED_SFB; k++)
- scfTmp[k] = scf[k];
+ for (scfNew = scf[startSfb] + 1; scfNew <= scfHi; scfNew++) {
+ for (k = 0; k < MAX_GROUPED_SFB; k++) scfTmp[k] = scf[k];
/* replace scfs in region by scfNew */
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scfTmp[sfb] != FDK_INT_MIN)
- scfTmp[sfb] = scfNew;
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN) scfTmp[sfb] = scfNew;
}
/* estimate change in bit demand for new scfs */
- deltaScfBits = FDKaacEnc_countScfBitsDiff(scf,scfTmp,sfbCnt,startSfb,stopSfb);
+ deltaScfBits = FDKaacEnc_countScfBitsDiff(scf, scfTmp, sfbCnt,
+ startSfb, stopSfb);
- deltaSpecPe = FDKaacEnc_calcSpecPeDiff(psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
- sfbFormFactorLdData, sfbNRelevantLines,
- startSfb, stopSfb);
+ deltaSpecPe = FDKaacEnc_calcSpecPeDiff(
+ psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
+ sfbFormFactorLdData, sfbNRelevantLines, startSfb, stopSfb);
deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;
@@ -888,13 +872,12 @@ static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(PSY_OUT_CHANNEL *psyOutCh
bSuccess = 1;
/* quantize and calc sum of new distortion */
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scfTmp[sfb] != FDK_INT_MIN) {
- sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+sfbOffs[sfb],
- quantSpecTmp+sfbOffs[sfb],
- sfbOffs[sfb+1]-sfbOffs[sfb],
- scfNew,
- dZoneQuantEnable);
+ sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(
+ qcOutChannel->mdctSpectrum + sfbOffs[sfb],
+ quantSpecTmp + sfbOffs[sfb],
+ sfbOffs[sfb + 1] - sfbOffs[sfb], scfNew, dZoneQuantEnable);
if (sfbDistNew[sfb] > sfbDistMax[sfb]) {
/* no improvement, skip further dist. calculations */
@@ -908,18 +891,19 @@ static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(PSY_OUT_CHANNEL *psyOutCh
}
}
}
- if (bCheckScf==0) /* further calculations useless ? */
- break;
+ if (bCheckScf == 0) /* further calculations useless ? */
+ break;
/* distortion small enough ? -> use new scalefactors */
if (bSuccess) {
deltaPe = deltaPeNew;
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scf[sfb] != FDK_INT_MIN) {
scf[sfb] = scfNew;
sfbDist[sfb] = sfbDistNew[sfb];
- for (k=0; k<sfbOffs[sfb+1]-sfbOffs[sfb]; k++)
- quantSpec[sfbOffs[sfb]+k] = quantSpecTmp[sfbOffs[sfb]+k];
+ for (k = 0; k < sfbOffs[sfb + 1] - sfbOffs[sfb]; k++)
+ quantSpec[sfbOffs[sfb] + k] =
+ quantSpecTmp[sfbOffs[sfb] + k];
}
}
}
@@ -930,52 +914,47 @@ static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(PSY_OUT_CHANNEL *psyOutCh
/* 2. only if coarser quantization was not successful, try to find
a better solution by finer quantization and reducing bits for
scalefactor coding */
- if (scfAct==scf[startSfb] &&
- scfLo < scfAct &&
- scfMax-scfMin <= MAX_SCF_DELTA) {
-
+ if (scfAct == scf[startSfb] && scfLo < scfAct &&
+ scfMax - scfMin <= MAX_SCF_DELTA) {
int bminScfViolation = 0;
- for (k=0; k<MAX_GROUPED_SFB; k++)
- scfTmp[k] = scf[k];
+ for (k = 0; k < MAX_GROUPED_SFB; k++) scfTmp[k] = scf[k];
scfNew = scfLo;
/* replace scfs in region by scfNew and
check if in all sfb scfNew >= minScf[sfb] */
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scfTmp[sfb] != FDK_INT_MIN) {
scfTmp[sfb] = scfNew;
- if (scfNew < minScf[sfb])
- bminScfViolation = 1;
+ if (scfNew < minScf[sfb]) bminScfViolation = 1;
}
}
if (!bminScfViolation) {
/* estimate change in bit demand for new scfs */
- deltaScfBits = FDKaacEnc_countScfBitsDiff(scf,scfTmp,sfbCnt,startSfb,stopSfb);
+ deltaScfBits = FDKaacEnc_countScfBitsDiff(scf, scfTmp, sfbCnt,
+ startSfb, stopSfb);
- deltaSpecPe = FDKaacEnc_calcSpecPeDiff(psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
- sfbFormFactorLdData, sfbNRelevantLines,
- startSfb, stopSfb);
+ deltaSpecPe = FDKaacEnc_calcSpecPeDiff(
+ psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
+ sfbFormFactorLdData, sfbNRelevantLines, startSfb, stopSfb);
deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;
}
/* new bit demand small enough ? */
if (!bminScfViolation && deltaPeNew < FL2FXCONST_DBL(0.0f)) {
-
/* quantize and calc sum of new distortion */
distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scfTmp[sfb] != FDK_INT_MIN) {
distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;
- sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+sfbOffs[sfb],
- quantSpecTmp+sfbOffs[sfb],
- sfbOffs[sfb+1]-sfbOffs[sfb],
- scfNew,
- dZoneQuantEnable);
+ sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(
+ qcOutChannel->mdctSpectrum + sfbOffs[sfb],
+ quantSpecTmp + sfbOffs[sfb], sfbOffs[sfb + 1] - sfbOffs[sfb],
+ scfNew, dZoneQuantEnable);
if (sfbDistNew[sfb] > qcOutChannel->sfbThresholdLdData[sfb]) {
/* no improvement, skip further dist. calculations */
@@ -986,15 +965,15 @@ static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(PSY_OUT_CHANNEL *psyOutCh
}
}
/* distortion smaller ? -> use new scalefactors */
- if (distNewSum < fMult(FL2FXCONST_DBL(0.8f),distOldSum)) {
+ if (distNewSum < fMult(FL2FXCONST_DBL(0.8f), distOldSum)) {
deltaPe = deltaPeNew;
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scf[sfb] != FDK_INT_MIN) {
scf[sfb] = scfNew;
sfbDist[sfb] = sfbDistNew[sfb];
- for (k=0; k<sfbOffs[sfb+1]-sfbOffs[sfb]; k++)
- quantSpec[sfbOffs[sfb]+k] = quantSpecTmp[sfbOffs[sfb]+k];
+ for (k = 0; k < sfbOffs[sfb + 1] - sfbOffs[sfb]; k++)
+ quantSpec[sfbOffs[sfb] + k] = quantSpecTmp[sfbOffs[sfb] + k];
}
}
}
@@ -1003,43 +982,45 @@ static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(PSY_OUT_CHANNEL *psyOutCh
/* 3. try to find a better solution (save bits) by only reducing the
scalefactor without new quantization */
- if (scfMax-scfMin <= MAX_SCF_DELTA-3) { /* 3 bec. scf is reduced 3 times,
- see for loop below */
+ if (scfMax - scfMin <=
+ MAX_SCF_DELTA - 3) { /* 3 bec. scf is reduced 3 times,
+ see for loop below */
- for (k=0; k<sfbCnt; k++)
- scfTmp[k] = scf[k];
+ for (k = 0; k < sfbCnt; k++) scfTmp[k] = scf[k];
- for (i=0; i<3; i++) {
- scfNew = scfTmp[startSfb]-1;
+ for (i = 0; i < 3; i++) {
+ scfNew = scfTmp[startSfb] - 1;
/* replace scfs in region by scfNew */
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
- if (scfTmp[sfb] != FDK_INT_MIN)
- scfTmp[sfb] = scfNew;
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN) scfTmp[sfb] = scfNew;
}
/* estimate change in bit demand for new scfs */
- deltaScfBits = FDKaacEnc_countScfBitsDiff(scf,scfTmp,sfbCnt,startSfb,stopSfb);
+ deltaScfBits = FDKaacEnc_countScfBitsDiff(scf, scfTmp, sfbCnt,
+ startSfb, stopSfb);
deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits;
/* new bit demand small enough ? */
if (deltaPeNew <= FL2FXCONST_DBL(0.0f)) {
-
bSuccess = 1;
distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scfTmp[sfb] != FDK_INT_MIN) {
FIXP_DBL sfbEnQ;
/* calc the energy and distortion of the quantized spectrum for
a smaller scf */
- FDKaacEnc_calcSfbQuantEnergyAndDist(qcOutChannel->mdctSpectrum+sfbOffs[sfb],
- quantSpec+sfbOffs[sfb],
- sfbOffs[sfb+1]-sfbOffs[sfb], scfNew,
- &sfbEnQ, &sfbDistNew[sfb]);
+ FDKaacEnc_calcSfbQuantEnergyAndDist(
+ qcOutChannel->mdctSpectrum + sfbOffs[sfb],
+ quantSpec + sfbOffs[sfb], sfbOffs[sfb + 1] - sfbOffs[sfb],
+ scfNew, &sfbEnQ, &sfbDistNew[sfb]);
distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;
distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT;
/* 0.00259488556167 = ld64(1.122f) */
/* -0.00778722686652 = ld64(0.7079f) */
- if ((sfbDistNew[sfb] > (sfbDist[sfb]+FL2FXCONST_DBL(0.00259488556167f))) || (sfbEnQ < (qcOutChannel->sfbEnergyLdData[sfb] - FL2FXCONST_DBL(0.00778722686652f)))){
+ if ((sfbDistNew[sfb] >
+ (sfbDist[sfb] + FL2FXCONST_DBL(0.00259488556167f))) ||
+ (sfbEnQ < (qcOutChannel->sfbEnergyLdData[sfb] -
+ FL2FXCONST_DBL(0.00778722686652f)))) {
bSuccess = 0;
break;
}
@@ -1048,7 +1029,7 @@ static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(PSY_OUT_CHANNEL *psyOutCh
/* distortion smaller ? -> use new scalefactors */
if (distNewSum < distOldSum && bSuccess) {
deltaPe = deltaPeNew;
- for (sfb=startSfb; sfb<stopSfb; sfb++) {
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
if (scf[sfb] != FDK_INT_MIN) {
scf[sfb] = scfNew;
sfbDist[sfb] = sfbDistNew[sfb];
@@ -1060,20 +1041,13 @@ static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(PSY_OUT_CHANNEL *psyOutCh
}
}
} while (stopSfb <= sfbCnt);
-
}
-static void
-FDKaacEnc_FDKaacEnc_EstimateScaleFactorsChannel(QC_OUT_CHANNEL *qcOutChannel,
- PSY_OUT_CHANNEL *psyOutChannel,
- INT *RESTRICT scf,
- INT *RESTRICT globalGain,
- FIXP_DBL *RESTRICT sfbFormFactorLdData
- ,const INT invQuant,
- SHORT *RESTRICT quantSpec,
- const INT dZoneQuantEnable
- )
-{
+static void FDKaacEnc_EstimateScaleFactorsChannel(
+ QC_OUT_CHANNEL *qcOutChannel, PSY_OUT_CHANNEL *psyOutChannel,
+ INT *RESTRICT scf, INT *RESTRICT globalGain,
+ FIXP_DBL *RESTRICT sfbFormFactorLdData, const INT invQuant,
+ SHORT *RESTRICT quantSpec, const INT dZoneQuantEnable) {
INT i, j, sfb, sfbOffs;
INT scfInt;
INT maxSf;
@@ -1084,46 +1058,45 @@ FDKaacEnc_FDKaacEnc_EstimateScaleFactorsChannel(QC_OUT_CHANNEL *qcOutChannel,
FIXP_DBL thresholdPartLdData;
FIXP_DBL scfFract;
FIXP_DBL maxSpec;
- FIXP_DBL absSpec;
INT minScfCalculated[MAX_GROUPED_SFB];
FIXP_DBL sfbDistLdData[MAX_GROUPED_SFB];
- C_ALLOC_SCRATCH_START(quantSpecTmp, SHORT, (1024));
+ C_ALLOC_SCRATCH_START(quantSpecTmp, SHORT, (1024))
INT minSfMaxQuant[MAX_GROUPED_SFB];
- FIXP_DBL threshConstLdData=FL2FXCONST_DBL(0.04304511722f); /* log10(6.75)/log10(2.0)/64.0 */
- FIXP_DBL convConst=FL2FXCONST_DBL(0.30102999566f); /* log10(2.0) */
- FIXP_DBL c1Const=FL2FXCONST_DBL(-0.27083183594f); /* C1 = -69.33295 => C1/2^8 */
-
+ FIXP_DBL threshConstLdData =
+ FL2FXCONST_DBL(0.04304511722f); /* log10(6.75)/log10(2.0)/64.0 */
+ FIXP_DBL convConst = FL2FXCONST_DBL(0.30102999566f); /* log10(2.0) */
+ FIXP_DBL c1Const =
+ FL2FXCONST_DBL(-0.27083183594f); /* C1 = -69.33295 => C1/2^8 */
-
- if (invQuant>0) {
- FDKmemclear(quantSpec, (1024)*sizeof(SHORT));
+ if (invQuant > 0) {
+ FDKmemclear(quantSpec, (1024) * sizeof(SHORT));
}
/* scfs without energy or with thresh>energy are marked with FDK_INT_MIN */
- for(i=0; i<psyOutChannel->sfbCnt; i++) {
+ for (i = 0; i < psyOutChannel->sfbCnt; i++) {
scf[i] = FDK_INT_MIN;
}
- for (i=0; i<MAX_GROUPED_SFB; i++) {
+ for (i = 0; i < MAX_GROUPED_SFB; i++) {
minSfMaxQuant[i] = FDK_INT_MIN;
}
- for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
- for(sfb=0; sfb<psyOutChannel->maxSfbPerGroup; sfb++) {
-
- threshLdData = qcOutChannel->sfbThresholdLdData[sfbOffs+sfb];
- energyLdData = qcOutChannel->sfbEnergyLdData[sfbOffs+sfb];
-
- sfbDistLdData[sfbOffs+sfb] = energyLdData;
+ for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
+ sfbOffs += psyOutChannel->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
+ threshLdData = qcOutChannel->sfbThresholdLdData[sfbOffs + sfb];
+ energyLdData = qcOutChannel->sfbEnergyLdData[sfbOffs + sfb];
+ sfbDistLdData[sfbOffs + sfb] = energyLdData;
if (energyLdData > threshLdData) {
FIXP_DBL tmp;
/* energyPart = (float)log10(sfbFormFactor[sfbOffs+sfb]); */
/* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */
- energyPartLdData = sfbFormFactorLdData[sfbOffs+sfb] + FL2FXCONST_DBL(0.09375f);
+ energyPartLdData =
+ sfbFormFactorLdData[sfbOffs + sfb] + FL2FXCONST_DBL(0.09375f);
/* influence of allowed distortion */
/* thresholdPart = (float)log10(6.75*thresh+FLT_MIN); */
@@ -1133,165 +1106,166 @@ FDKaacEnc_FDKaacEnc_EstimateScaleFactorsChannel(QC_OUT_CHANNEL *qcOutChannel,
/* scfFloat = 8.8585f * (thresholdPart - energyPart); */
scfFract = thresholdPartLdData - energyPartLdData;
/* conversion from log2 to log10 */
- scfFract = fMult(convConst,scfFract);
+ scfFract = fMult(convConst, scfFract);
/* (8.8585f * scfFract)/8 = 8/8 * scfFract + 0.8585 * scfFract/8 */
- scfFract = scfFract + fMult(FL2FXCONST_DBL(0.8585f),scfFract >> 3);
+ scfFract = scfFract + fMult(FL2FXCONST_DBL(0.8585f), scfFract >> 3);
/* integer scalefactor */
/* scfInt = (int)floor(scfFloat); */
- scfInt = (INT)(scfFract>>((DFRACT_BITS-1)-3-LD_DATA_SHIFT)); /* 3 bits => scfFract/8.0; 6 bits => ld64 */
+ scfInt =
+ (INT)(scfFract >>
+ ((DFRACT_BITS - 1) - 3 -
+ LD_DATA_SHIFT)); /* 3 bits => scfFract/8.0; 6 bits => ld64 */
/* maximum of spectrum */
maxSpec = FL2FXCONST_DBL(0.0f);
- for(j=psyOutChannel->sfbOffsets[sfbOffs+sfb]; j<psyOutChannel->sfbOffsets[sfbOffs+sfb+1]; j++ ){
- absSpec = fixp_abs(qcOutChannel->mdctSpectrum[j]);
- maxSpec = (absSpec > maxSpec) ? absSpec : maxSpec;
+ /* Unroll by 4, allow dual memory access */
+ DWORD_ALIGNED(qcOutChannel->mdctSpectrum);
+ for (j = psyOutChannel->sfbOffsets[sfbOffs + sfb];
+ j < psyOutChannel->sfbOffsets[sfbOffs + sfb + 1]; j += 4) {
+ maxSpec = fMax(maxSpec,
+ fMax(fMax(fAbs(qcOutChannel->mdctSpectrum[j + 0]),
+ fAbs(qcOutChannel->mdctSpectrum[j + 1])),
+ fMax(fAbs(qcOutChannel->mdctSpectrum[j + 2]),
+ fAbs(qcOutChannel->mdctSpectrum[j + 3]))));
}
-
/* lower scf limit to avoid quantized values bigger than MAX_QUANT */
/* C1 = -69.33295f, C2 = 5.77078f = 4/log(2) */
/* minSfMaxQuant[sfbOffs+sfb] = (int)ceil(C1 + C2*log(maxSpec)); */
- /* C1/2^8 + 4/log(2.0)*log(maxSpec)/2^8 => C1/2^8 + log(maxSpec)/log(2.0)*4/2^8 => C1/2^8 + log(maxSpec)/log(2.0)/64.0 */
+ /* C1/2^8 + 4/log(2.0)*log(maxSpec)/2^8 => C1/2^8 +
+ * log(maxSpec)/log(2.0)*4/2^8 => C1/2^8 + log(maxSpec)/log(2.0)/64.0 */
- //minSfMaxQuant[sfbOffs+sfb] = ((INT) ((c1Const + CalcLdData(maxSpec)) >> ((DFRACT_BITS-1)-8))) + 1;
+ // minSfMaxQuant[sfbOffs+sfb] = ((INT) ((c1Const + CalcLdData(maxSpec))
+ // >> ((DFRACT_BITS-1)-8))) + 1;
tmp = CalcLdData(maxSpec);
- if (c1Const>FL2FXCONST_DBL(-1.f)-tmp) {
- minSfMaxQuant[sfbOffs+sfb] = ((INT) ((c1Const + tmp) >> ((DFRACT_BITS-1)-8))) + 1;
+ if (c1Const > FL2FXCONST_DBL(-1.f) - tmp) {
+ minSfMaxQuant[sfbOffs + sfb] =
+ ((INT)((c1Const + tmp) >> ((DFRACT_BITS - 1) - 8))) + 1;
+ } else {
+ minSfMaxQuant[sfbOffs + sfb] =
+ ((INT)(FL2FXCONST_DBL(-1.f) >> ((DFRACT_BITS - 1) - 8))) + 1;
}
- else {
- minSfMaxQuant[sfbOffs+sfb] = ((INT) (FL2FXCONST_DBL(-1.f) >> ((DFRACT_BITS-1)-8))) + 1;
- }
-
- scfInt = fixMax(scfInt, minSfMaxQuant[sfbOffs+sfb]);
+ scfInt = fixMax(scfInt, minSfMaxQuant[sfbOffs + sfb]);
/* find better scalefactor with analysis by synthesis */
- if (invQuant>0) {
- scfInt = FDKaacEnc_improveScf(qcOutChannel->mdctSpectrum+psyOutChannel->sfbOffsets[sfbOffs+sfb],
- quantSpec+psyOutChannel->sfbOffsets[sfbOffs+sfb],
- quantSpecTmp+psyOutChannel->sfbOffsets[sfbOffs+sfb],
- psyOutChannel->sfbOffsets[sfbOffs+sfb+1]-psyOutChannel->sfbOffsets[sfbOffs+sfb],
- threshLdData, scfInt, minSfMaxQuant[sfbOffs+sfb],
- &sfbDistLdData[sfbOffs+sfb], &minScfCalculated[sfbOffs+sfb],
- dZoneQuantEnable
- );
+ if (invQuant > 0) {
+ scfInt = FDKaacEnc_improveScf(
+ qcOutChannel->mdctSpectrum +
+ psyOutChannel->sfbOffsets[sfbOffs + sfb],
+ quantSpec + psyOutChannel->sfbOffsets[sfbOffs + sfb],
+ quantSpecTmp + psyOutChannel->sfbOffsets[sfbOffs + sfb],
+ psyOutChannel->sfbOffsets[sfbOffs + sfb + 1] -
+ psyOutChannel->sfbOffsets[sfbOffs + sfb],
+ threshLdData, scfInt, minSfMaxQuant[sfbOffs + sfb],
+ &sfbDistLdData[sfbOffs + sfb], &minScfCalculated[sfbOffs + sfb],
+ dZoneQuantEnable);
}
- scf[sfbOffs+sfb] = scfInt;
+ scf[sfbOffs + sfb] = scfInt;
}
}
}
-
- if (invQuant>1) {
+ if (invQuant > 0) {
/* try to decrease scf differences */
FIXP_DBL sfbConstPePart[MAX_GROUPED_SFB];
FIXP_DBL sfbNRelevantLines[MAX_GROUPED_SFB];
- for (i=0; i<psyOutChannel->sfbCnt; i++)
+ for (i = 0; i < psyOutChannel->sfbCnt; i++)
sfbConstPePart[i] = (FIXP_DBL)FDK_INT_MIN;
- FDKaacEnc_calcSfbRelevantLines( sfbFormFactorLdData,
- qcOutChannel->sfbEnergyLdData,
- qcOutChannel->sfbThresholdLdData,
- psyOutChannel->sfbOffsets,
- psyOutChannel->sfbCnt,
- psyOutChannel->sfbPerGroup,
- psyOutChannel->maxSfbPerGroup,
- sfbNRelevantLines);
-
-
- FDKaacEnc_assimilateSingleScf(psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp,
- dZoneQuantEnable,
- scf,
- minSfMaxQuant, sfbDistLdData, sfbConstPePart,
- sfbFormFactorLdData, sfbNRelevantLines, minScfCalculated, 1);
-
- if(invQuant > 1) {
- FDKaacEnc_assimilateMultipleScf(psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp,
- dZoneQuantEnable,
- scf,
- minSfMaxQuant, sfbDistLdData, sfbConstPePart,
- sfbFormFactorLdData, sfbNRelevantLines);
-
- FDKaacEnc_assimilateMultipleScf(psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp,
- dZoneQuantEnable,
- scf,
- minSfMaxQuant, sfbDistLdData, sfbConstPePart,
- sfbFormFactorLdData, sfbNRelevantLines);
-
-
- FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp,
- dZoneQuantEnable,
- scf,
- minSfMaxQuant, sfbDistLdData, sfbConstPePart,
- sfbFormFactorLdData, sfbNRelevantLines);
+ FDKaacEnc_calcSfbRelevantLines(
+ sfbFormFactorLdData, qcOutChannel->sfbEnergyLdData,
+ qcOutChannel->sfbThresholdLdData, psyOutChannel->sfbOffsets,
+ psyOutChannel->sfbCnt, psyOutChannel->sfbPerGroup,
+ psyOutChannel->maxSfbPerGroup, sfbNRelevantLines);
+
+ FDKaacEnc_assimilateSingleScf(
+ psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp, dZoneQuantEnable,
+ scf, minSfMaxQuant, sfbDistLdData, sfbConstPePart, sfbFormFactorLdData,
+ sfbNRelevantLines, minScfCalculated, 1);
+
+ if (invQuant > 1) {
+ FDKaacEnc_assimilateMultipleScf(
+ psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp,
+ dZoneQuantEnable, scf, minSfMaxQuant, sfbDistLdData, sfbConstPePart,
+ sfbFormFactorLdData, sfbNRelevantLines);
+
+ FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(
+ psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp,
+ dZoneQuantEnable, scf, minSfMaxQuant, sfbDistLdData, sfbConstPePart,
+ sfbFormFactorLdData, sfbNRelevantLines);
}
}
-
/* get min scalefac */
minSf = FDK_INT_MAX;
- for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
+ for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
+ sfbOffs += psyOutChannel->sfbPerGroup) {
for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
- if (scf[sfbOffs+sfb]!=FDK_INT_MIN)
- minSf = fixMin(minSf,scf[sfbOffs+sfb]);
+ if (scf[sfbOffs + sfb] != FDK_INT_MIN)
+ minSf = fixMin(minSf, scf[sfbOffs + sfb]);
}
}
/* limit scf delta */
- for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
+ for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
+ sfbOffs += psyOutChannel->sfbPerGroup) {
for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
- if ((scf[sfbOffs+sfb] != FDK_INT_MIN) && (minSf+MAX_SCF_DELTA) < scf[sfbOffs+sfb]) {
- scf[sfbOffs+sfb] = minSf + MAX_SCF_DELTA;
+ if ((scf[sfbOffs + sfb] != FDK_INT_MIN) &&
+ (minSf + MAX_SCF_DELTA) < scf[sfbOffs + sfb]) {
+ scf[sfbOffs + sfb] = minSf + MAX_SCF_DELTA;
if (invQuant > 0) { /* changed bands need to be quantized again */
- sfbDistLdData[sfbOffs+sfb] =
- FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+psyOutChannel->sfbOffsets[sfbOffs+sfb],
- quantSpec+psyOutChannel->sfbOffsets[sfbOffs+sfb],
- psyOutChannel->sfbOffsets[sfbOffs+sfb+1]-psyOutChannel->sfbOffsets[sfbOffs+sfb],
- scf[sfbOffs+sfb],
- dZoneQuantEnable
- );
+ sfbDistLdData[sfbOffs + sfb] = FDKaacEnc_calcSfbDist(
+ qcOutChannel->mdctSpectrum +
+ psyOutChannel->sfbOffsets[sfbOffs + sfb],
+ quantSpec + psyOutChannel->sfbOffsets[sfbOffs + sfb],
+ psyOutChannel->sfbOffsets[sfbOffs + sfb + 1] -
+ psyOutChannel->sfbOffsets[sfbOffs + sfb],
+ scf[sfbOffs + sfb], dZoneQuantEnable);
}
}
}
}
-
/* get max scalefac for global gain */
maxSf = FDK_INT_MIN;
- for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
+ for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
+ sfbOffs += psyOutChannel->sfbPerGroup) {
for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
- maxSf = fixMax(maxSf,scf[sfbOffs+sfb]);
+ maxSf = fixMax(maxSf, scf[sfbOffs + sfb]);
}
}
/* calc loop scalefactors, if spec is not all zero (i.e. maxSf == -99) */
- if( maxSf > FDK_INT_MIN ) {
+ if (maxSf > FDK_INT_MIN) {
*globalGain = maxSf;
- for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
+ for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
+ sfbOffs += psyOutChannel->sfbPerGroup) {
for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
- if( scf[sfbOffs+sfb] == FDK_INT_MIN ) {
- scf[sfbOffs+sfb] = 0;
+ if (scf[sfbOffs + sfb] == FDK_INT_MIN) {
+ scf[sfbOffs + sfb] = 0;
/* set band explicitely to zero */
- for(j=psyOutChannel->sfbOffsets[sfbOffs+sfb]; j<psyOutChannel->sfbOffsets[sfbOffs+sfb+1]; j++ ) {
+ for (j = psyOutChannel->sfbOffsets[sfbOffs + sfb];
+ j < psyOutChannel->sfbOffsets[sfbOffs + sfb + 1]; j++) {
qcOutChannel->mdctSpectrum[j] = FL2FXCONST_DBL(0.0f);
}
- }
- else {
- scf[sfbOffs+sfb] = maxSf - scf[sfbOffs+sfb];
+ } else {
+ scf[sfbOffs + sfb] = maxSf - scf[sfbOffs + sfb];
}
}
}
- }
- else{
+ } else {
*globalGain = 0;
/* set spectrum explicitely to zero */
- for (sfbOffs=0; sfbOffs<psyOutChannel->sfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) {
+ for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
+ sfbOffs += psyOutChannel->sfbPerGroup) {
for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
- scf[sfbOffs+sfb] = 0;
+ scf[sfbOffs + sfb] = 0;
/* set band explicitely to zero */
- for(j=psyOutChannel->sfbOffsets[sfbOffs+sfb]; j<psyOutChannel->sfbOffsets[sfbOffs+sfb+1]; j++ ) {
+ for (j = psyOutChannel->sfbOffsets[sfbOffs + sfb];
+ j < psyOutChannel->sfbOffsets[sfbOffs + sfb + 1]; j++) {
qcOutChannel->mdctSpectrum[j] = FL2FXCONST_DBL(0.0f);
}
}
@@ -1299,32 +1273,20 @@ FDKaacEnc_FDKaacEnc_EstimateScaleFactorsChannel(QC_OUT_CHANNEL *qcOutChannel,
}
/* free quantSpecTmp from scratch */
- C_ALLOC_SCRATCH_END(quantSpecTmp, SHORT, (1024));
-
-
+ C_ALLOC_SCRATCH_END(quantSpecTmp, SHORT, (1024))
}
-void
-FDKaacEnc_EstimateScaleFactors(PSY_OUT_CHANNEL *psyOutChannel[],
- QC_OUT_CHANNEL* qcOutChannel[],
- const int invQuant,
- const INT dZoneQuantEnable,
- const int nChannels)
-{
+void FDKaacEnc_EstimateScaleFactors(PSY_OUT_CHANNEL *psyOutChannel[],
+ QC_OUT_CHANNEL *qcOutChannel[],
+ const INT invQuant,
+ const INT dZoneQuantEnable,
+ const INT nChannels) {
int ch;
- for (ch = 0; ch < nChannels; ch++)
- {
- FDKaacEnc_FDKaacEnc_EstimateScaleFactorsChannel(qcOutChannel[ch],
- psyOutChannel[ch],
- qcOutChannel[ch]->scf,
- &qcOutChannel[ch]->globalGain,
- qcOutChannel[ch]->sfbFormFactorLdData
- ,invQuant,
- qcOutChannel[ch]->quantSpec,
- dZoneQuantEnable
- );
+ for (ch = 0; ch < nChannels; ch++) {
+ FDKaacEnc_EstimateScaleFactorsChannel(
+ qcOutChannel[ch], psyOutChannel[ch], qcOutChannel[ch]->scf,
+ &qcOutChannel[ch]->globalGain, qcOutChannel[ch]->sfbFormFactorLdData,
+ invQuant, qcOutChannel[ch]->quantSpec, dZoneQuantEnable);
}
-
}
-