aboutsummaryrefslogtreecommitdiffstats
path: root/libAACenc/src/adj_thr.cpp
diff options
context:
space:
mode:
authorFraunhofer IIS FDK <audio-fdk@iis.fraunhofer.de>2018-04-30 17:22:06 -0700
committerandroid-build-merger <android-build-merger@google.com>2018-04-30 17:22:06 -0700
commitdf390e34924dd8ccf7d16f5f4781f9da523e225e (patch)
tree01c0a19f2735e8b5d2407555fe992d4230d089eb /libAACenc/src/adj_thr.cpp
parent6288a1e34c4dede4c2806beb1736ece6580558c7 (diff)
parent6cfabd35363c3ef5e3b209b867169a500b3ccc3c (diff)
downloadfdk-aac-df390e34924dd8ccf7d16f5f4781f9da523e225e.tar.gz
fdk-aac-df390e34924dd8ccf7d16f5f4781f9da523e225e.tar.bz2
fdk-aac-df390e34924dd8ccf7d16f5f4781f9da523e225e.zip
Upgrade to FDKv2
am: 6cfabd3536 Change-Id: I5abc38a4b00222ae983a057f006b0af9bd61ffb3
Diffstat (limited to 'libAACenc/src/adj_thr.cpp')
-rw-r--r--libAACenc/src/adj_thr.cpp4162
1 files changed, 2210 insertions, 1952 deletions
diff --git a/libAACenc/src/adj_thr.cpp b/libAACenc/src/adj_thr.cpp
index 09584f4..6e19680 100644
--- a/libAACenc/src/adj_thr.cpp
+++ b/libAACenc/src/adj_thr.cpp
@@ -1,74 +1,85 @@
-
-/* -----------------------------------------------------------------------------------------------------------
+/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
-© Copyright 1995 - 2015 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- All rights reserved.
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
1. INTRODUCTION
-The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
-the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
-This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
-
-AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
-audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
-independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
-of the MPEG specifications.
-
-Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
-may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
-individually for the purpose of encoding or decoding bit streams in products that are compliant with
-the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
-these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
-software may already be covered under those patent licenses when it is used for those licensed purposes only.
-
-Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
-are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
-applications information and documentation.
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
2. COPYRIGHT LICENSE
-Redistribution and use in source and binary forms, with or without modification, are permitted without
-payment of copyright license fees provided that you satisfy the following conditions:
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
-You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
-your modifications thereto in source code form.
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
-You must retain the complete text of this software license in the documentation and/or other materials
-provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
-You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
-The name of Fraunhofer may not be used to endorse or promote products derived from this library without
-prior written permission.
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
-You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
-software or your modifications thereto.
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
-Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
-and the date of any change. For modified versions of the FDK AAC Codec, the term
-"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
-"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
3. NO PATENT LICENSE
-NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
-ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
-respect to this software.
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
-You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
-by appropriate patent licenses.
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
-This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
-"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
-of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
-CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
-including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
-or business interruption, however caused and on any theory of liability, whether in contract, strict
-liability, or tort (including negligence), arising in any way out of the use of this software, even if
-advised of the possibility of such damage.
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
@@ -79,889 +90,1015 @@ Am Wolfsmantel 33
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
------------------------------------------------------------------------------------------------------------ */
+----------------------------------------------------------------------------- */
-/******************************** MPEG Audio Encoder **************************
+/**************************** AAC encoder library ******************************
- Initial author: M. Werner
- contents/description: Threshold compensation
+ Author(s): M. Werner
-******************************************************************************/
+ Description: Threshold compensation
-#include "common_fix.h"
+*******************************************************************************/
-#include "adj_thr_data.h"
#include "adj_thr.h"
-#include "qc_data.h"
#include "sf_estim.h"
#include "aacEnc_ram.h"
+#define NUM_NRG_LEVS (8)
+#define INV_INT_TAB_SIZE (8)
+static const FIXP_DBL invInt[INV_INT_TAB_SIZE] = {
+ 0x7fffffff, 0x7fffffff, 0x40000000, 0x2aaaaaaa,
+ 0x20000000, 0x19999999, 0x15555555, 0x12492492};
-
-
-#define INV_INT_TAB_SIZE (8)
-static const FIXP_DBL invInt[INV_INT_TAB_SIZE] =
-{
- 0x7fffffff, 0x7fffffff, 0x40000000, 0x2aaaaaaa, 0x20000000, 0x19999999, 0x15555555, 0x12492492
-};
-
-
-#define INV_SQRT4_TAB_SIZE (8)
-static const FIXP_DBL invSqrt4[INV_SQRT4_TAB_SIZE] =
-{
- 0x7fffffff, 0x7fffffff, 0x6ba27e65, 0x61424bb5, 0x5a827999, 0x55994845, 0x51c8e33c, 0x4eb160d1
-};
-
+#define INV_SQRT4_TAB_SIZE (8)
+static const FIXP_DBL invSqrt4[INV_SQRT4_TAB_SIZE] = {
+ 0x7fffffff, 0x7fffffff, 0x6ba27e65, 0x61424bb5,
+ 0x5a827999, 0x55994845, 0x51c8e33c, 0x4eb160d1};
/*static const INT invRedExp = 4;*/
-static const FIXP_DBL SnrLdMin1 = (FIXP_DBL)0xfcad0ddf; /*FL2FXCONST_DBL(FDKlog(0.316)/FDKlog(2.0)/LD_DATA_SCALING);*/
-static const FIXP_DBL SnrLdMin2 = (FIXP_DBL)0x0351e1a2; /*FL2FXCONST_DBL(FDKlog(3.16) /FDKlog(2.0)/LD_DATA_SCALING);*/
-static const FIXP_DBL SnrLdFac = (FIXP_DBL)0xff5b2c3e; /*FL2FXCONST_DBL(FDKlog(0.8) /FDKlog(2.0)/LD_DATA_SCALING);*/
-
-static const FIXP_DBL SnrLdMin3 = (FIXP_DBL)0xfe000000; /*FL2FXCONST_DBL(FDKlog(0.5) /FDKlog(2.0)/LD_DATA_SCALING);*/
-static const FIXP_DBL SnrLdMin4 = (FIXP_DBL)0x02000000; /*FL2FXCONST_DBL(FDKlog(2.0) /FDKlog(2.0)/LD_DATA_SCALING);*/
-static const FIXP_DBL SnrLdMin5 = (FIXP_DBL)0xfc000000; /*FL2FXCONST_DBL(FDKlog(0.25) /FDKlog(2.0)/LD_DATA_SCALING);*/
-
+static const FIXP_DBL SnrLdMin1 =
+ (FIXP_DBL)0xfcad0ddf; /*FL2FXCONST_DBL(FDKlog(0.316)/FDKlog(2.0)/LD_DATA_SCALING);*/
+static const FIXP_DBL SnrLdMin2 =
+ (FIXP_DBL)0x0351e1a2; /*FL2FXCONST_DBL(FDKlog(3.16)
+ /FDKlog(2.0)/LD_DATA_SCALING);*/
+static const FIXP_DBL SnrLdFac =
+ (FIXP_DBL)0xff5b2c3e; /*FL2FXCONST_DBL(FDKlog(0.8)
+ /FDKlog(2.0)/LD_DATA_SCALING);*/
+
+static const FIXP_DBL SnrLdMin3 =
+ (FIXP_DBL)0xfe000000; /*FL2FXCONST_DBL(FDKlog(0.5)
+ /FDKlog(2.0)/LD_DATA_SCALING);*/
+static const FIXP_DBL SnrLdMin4 =
+ (FIXP_DBL)0x02000000; /*FL2FXCONST_DBL(FDKlog(2.0)
+ /FDKlog(2.0)/LD_DATA_SCALING);*/
+static const FIXP_DBL SnrLdMin5 =
+ (FIXP_DBL)0xfc000000; /*FL2FXCONST_DBL(FDKlog(0.25)
+ /FDKlog(2.0)/LD_DATA_SCALING);*/
/*
The bits2Pe factors are choosen for the case that some times
the crash recovery strategy will be activated once.
*/
+#define AFTERBURNER_STATI 2
+#define MAX_ALLOWED_EL_CHANNELS 2
typedef struct {
- INT bitrate;
- ULONG bits2PeFactor_mono;
- ULONG bits2PeFactor_mono_slope;
- ULONG bits2PeFactor_stereo;
- ULONG bits2PeFactor_stereo_slope;
- ULONG bits2PeFactor_mono_scfOpt;
- ULONG bits2PeFactor_mono_scfOpt_slope;
- ULONG bits2PeFactor_stereo_scfOpt;
- ULONG bits2PeFactor_stereo_scfOpt_slope;
-
+ INT bitrate;
+ FIXP_DBL bits2PeFactor[AFTERBURNER_STATI][MAX_ALLOWED_EL_CHANNELS];
} BIT_PE_SFAC;
typedef struct {
- const INT sampleRate;
- const BIT_PE_SFAC * pPeTab;
- const INT nEntries;
+ INT sampleRate;
+ const BIT_PE_SFAC *pPeTab;
+ INT nEntries;
} BITS2PE_CFG_TAB;
+#define FL2B2PE(value) FL2FXCONST_DBL((value) / (1 << 2))
+
static const BIT_PE_SFAC S_Bits2PeTab16000[] = {
- { 10000, 0x228F5C29, 0x02FEF55D, 0x1D70A3D7, 0x09BC9D6D, 0x228F5C29, 0x02FEF55D, 0x1C28F5C3, 0x0CBB92CA},
- { 24000, 0x23D70A3D, 0x029F16B1, 0x2199999A, 0x07DD4413, 0x23D70A3D, 0x029F16B1, 0x2199999A, 0x07DD4413},
- { 32000, 0x247AE148, 0x11B1D92B, 0x23851EB8, 0x01F75105, 0x247AE148, 0x110A137F, 0x23851EB8, 0x01F75105},
- { 48000, 0x2D1EB852, 0x6833C600, 0x247AE148, 0x014F8B59, 0x2CCCCCCD, 0x68DB8BAC, 0x247AE148, 0x01F75105},
- { 64000, 0x25c28f40, 0x00000000, 0x251EB852, 0x01480000, 0x25c28f40, 0x00000000, 0x2570A3D7, 0x01480000},
- { 96000, 0x25c28f40, 0x00000000, 0x26000000, 0x01000000, 0x25c28f40, 0x00000000, 0x26000000, 0x01000000},
- {128000, 0x25c28f40, 0x00000000, 0x270a3d80, 0x01000000, 0x25c28f40, 0x00000000, 0x270a3d80, 0x01000000},
- {148000, 0x25c28f40, 0x00000000, 0x28000000, 0x00000000, 0x25c28f40, 0x00000000, 0x28000000, 0x00000000}
-};
+ /* bitrate| afterburner off | afterburner on | | nCh=1
+ | nCh=2 | nCh=1 | nCh=2 */
+ {10000,
+ {{FL2B2PE(1.60f), FL2B2PE(0.00f)}, {FL2B2PE(1.40f), FL2B2PE(0.00f)}}},
+ {24000,
+ {{FL2B2PE(1.80f), FL2B2PE(1.40f)}, {FL2B2PE(1.60f), FL2B2PE(1.20f)}}},
+ {32000,
+ {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}},
+ {48000,
+ {{FL2B2PE(1.60f), FL2B2PE(1.80f)}, {FL2B2PE(1.60f), FL2B2PE(1.60f)}}},
+ {64000,
+ {{FL2B2PE(1.20f), FL2B2PE(1.60f)}, {FL2B2PE(1.20f), FL2B2PE(1.60f)}}},
+ {96000,
+ {{FL2B2PE(1.40f), FL2B2PE(1.80f)}, {FL2B2PE(1.40f), FL2B2PE(1.60f)}}},
+ {128000,
+ {{FL2B2PE(1.40f), FL2B2PE(1.80f)}, {FL2B2PE(1.40f), FL2B2PE(1.80f)}}},
+ {148000,
+ {{FL2B2PE(1.40f), FL2B2PE(1.80f)}, {FL2B2PE(1.40f), FL2B2PE(1.40f)}}}};
static const BIT_PE_SFAC S_Bits2PeTab22050[] = {
- { 16000, 0x1a8f5c29, 0x1797cc3a, 0x128f5c29, 0x18e75793, 0x175c28f6, 0x221426fe, 0x00000000, 0x5a708ede},
- { 24000, 0x2051eb85, 0x092ccf6c, 0x18a3d70a, 0x13a92a30, 0x1fae147b, 0xbcbe61d, 0x16147ae1, 0x18e75793},
- { 32000, 0x228f5c29, 0x029f16b1, 0x1d70a3d7, 0x088509c0, 0x228f5c29, 0x29f16b1, 0x1c28f5c3, 0x0b242071},
- { 48000, 0x23d70a3d, 0x014f8b59, 0x2199999a, 0x03eea20a, 0x23d70a3d, 0x14f8b59, 0x2199999a, 0x03eea20a},
- { 64000, 0x247ae148, 0x08d8ec96, 0x23851eb8, 0x00fba882, 0x247ae148, 0x88509c0, 0x23851eb8, 0x00fba882},
- { 96000, 0x2d1eb852, 0x3419e300, 0x247ae148, 0x00a7c5ac, 0x2ccccccd, 0x346dc5d6, 0x247ae148, 0x00fba882},
- {128000, 0x25c28f40, 0x00000000, 0x251eb852, 0x029f16b1, 0x60000000, 0x25c28f40, 0x2570a3d7, 0x009f16b1},
- {148000, 0x25c28f40, 0x00000000, 0x26b851ec, 0x00000000, 0x60000000, 0x25c28f40, 0x270a3d71, 0x00000000}
-};
+ /* bitrate| afterburner off | afterburner on | | nCh=1
+ | nCh=2 | nCh=1 | nCh=2 */
+ {16000,
+ {{FL2B2PE(1.60f), FL2B2PE(1.40f)}, {FL2B2PE(1.20f), FL2B2PE(0.80f)}}},
+ {24000,
+ {{FL2B2PE(1.60f), FL2B2PE(1.40f)}, {FL2B2PE(1.40f), FL2B2PE(1.00f)}}},
+ {32000,
+ {{FL2B2PE(1.40f), FL2B2PE(1.40f)}, {FL2B2PE(1.40f), FL2B2PE(1.20f)}}},
+ {48000,
+ {{FL2B2PE(1.20f), FL2B2PE(1.60f)}, {FL2B2PE(1.20f), FL2B2PE(1.40f)}}},
+ {64000,
+ {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}},
+ {96000,
+ {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.60f)}}},
+ {128000,
+ {{FL2B2PE(1.80f), FL2B2PE(1.80f)}, {FL2B2PE(1.60f), FL2B2PE(1.60f)}}},
+ {148000,
+ {{FL2B2PE(1.40f), FL2B2PE(1.80f)}, {FL2B2PE(1.40f), FL2B2PE(1.60f)}}}};
static const BIT_PE_SFAC S_Bits2PeTab24000[] = {
- { 16000, 0x19eb851f, 0x13a92a30, 0x1147ae14, 0x164840e1, 0x1999999a, 0x12599ed8, 0x00000000, 0x46c764ae},
- { 24000, 0x1eb851ec, 0x0d1b7176, 0x16b851ec, 0x18e75793, 0x1e147ae1, 0x0fba8827, 0x1147ae14, 0x2c9081c3},
- { 32000, 0x21eb851f, 0x049667b6, 0x1ccccccd, 0x07357e67, 0x21eb851f, 0x03eea20a, 0x1c28f5c3, 0x07357e67},
- { 48000, 0x2428f5c3, 0x014f8b59, 0x2051eb85, 0x053e2d62, 0x23d70a3d, 0x01f75105, 0x1fae147b, 0x07357e67},
- { 64000, 0x24cccccd, 0x05e5f30e, 0x22e147ae, 0x01a36e2f, 0x24cccccd, 0x05e5f30e, 0x23333333, 0x014f8b59},
- { 96000, 0x2a8f5c29, 0x24b33db0, 0x247ae148, 0x00fba882, 0x2a8f5c29, 0x26fe718b, 0x247ae148, 0x00fba882},
- {128000, 0x4e666666, 0x1cd5f99c, 0x2570a3d7, 0x010c6f7a, 0x50a3d70a, 0x192a7371, 0x2570a3d7, 0x010c6f7a},
- {148000, 0x25c28f40, 0x00000000, 0x26147ae1, 0x00000000, 0x25c28f40, 0x00000000, 0x26147ae1, 0x00000000}
-};
+ /* bitrate| afterburner off | afterburner on | | nCh=1
+ | nCh=2 | nCh=1 | nCh=2 */
+ {16000,
+ {{FL2B2PE(1.40f), FL2B2PE(1.40f)}, {FL2B2PE(1.20f), FL2B2PE(0.80f)}}},
+ {24000,
+ {{FL2B2PE(1.60f), FL2B2PE(1.20f)}, {FL2B2PE(1.40f), FL2B2PE(1.00f)}}},
+ {32000,
+ {{FL2B2PE(1.40f), FL2B2PE(1.20f)}, {FL2B2PE(1.40f), FL2B2PE(0.80f)}}},
+ {48000,
+ {{FL2B2PE(1.40f), FL2B2PE(1.60f)}, {FL2B2PE(1.40f), FL2B2PE(1.40f)}}},
+ {64000,
+ {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}},
+ {96000,
+ {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.60f)}}},
+ {128000,
+ {{FL2B2PE(1.40f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.80f)}}},
+ {148000,
+ {{FL2B2PE(1.40f), FL2B2PE(1.60f)}, {FL2B2PE(1.40f), FL2B2PE(1.80f)}}}};
static const BIT_PE_SFAC S_Bits2PeTab32000[] = {
- { 16000, 0x247ae140, 0xFFFFAC1E, 0x270a3d80, 0xFFFE9B7C, 0x14ccccc0, 0x000110A1, 0x15c28f60, 0xFFFEEF5F},
- { 24000, 0x23333340, 0x0fba8827, 0x21999980, 0x1b866e44, 0x18f5c280, 0x0fba8827, 0x119999a0, 0x4d551d69},
- { 32000, 0x1d70a3d7, 0x07357e67, 0x17ae147b, 0x09d49518, 0x1b851eb8, 0x0a7c5ac4, 0x12e147ae, 0x110a137f},
- { 48000, 0x20f5c28f, 0x049667b6, 0x1c7ae148, 0x053e2d62, 0x20a3d70a, 0x053e2d62, 0x1b333333, 0x05e5f30e},
- { 64000, 0x23333333, 0x029f16b1, 0x1f0a3d71, 0x02f2f987, 0x23333333, 0x029f16b1, 0x1e147ae1, 0x03eea20a},
- { 96000, 0x25c28f5c, 0x2c3c9eed, 0x21eb851f, 0x01f75105, 0x25c28f5c, 0x0a7c5ac4, 0x21eb851f, 0x01a36e2f},
- {128000, 0x50f5c28f, 0x18a43bb4, 0x23d70a3d, 0x010c6f7a, 0x30000000, 0x168b5cc0, 0x23851eb8, 0x0192a737},
- {148000, 0x25c28f40, 0x00000000, 0x247ae148, 0x00dfb23b, 0x3dc28f5c, 0x300f4aaf, 0x247ae148, 0x01bf6476},
- {160000, 0x25c28f40, 0xb15b5740, 0x24cccccd, 0x053e2d62, 0x4f5c28f6, 0xbefd0072, 0x251eb852, 0x04fb1184},
- {200000, 0x25c28f40, 0x00000000, 0x2b333333, 0x0836be91, 0x25c28f40, 0x00000000, 0x2b333333, 0x0890390f},
- {320000, 0x25c28f40, 0x00000000, 0x4947ae14, 0x00000000, 0x25c28f40, 0x00000000, 0x4a8f5c29, 0x00000000}
-};
+ /* bitrate| afterburner off | afterburner on | | nCh=1
+ | nCh=2 | nCh=1 | nCh=2 */
+ {16000,
+ {{FL2B2PE(1.20f), FL2B2PE(1.40f)}, {FL2B2PE(0.80f), FL2B2PE(0.80f)}}},
+ {24000,
+ {{FL2B2PE(1.40f), FL2B2PE(1.20f)}, {FL2B2PE(1.00f), FL2B2PE(0.60f)}}},
+ {32000,
+ {{FL2B2PE(1.20f), FL2B2PE(1.20f)}, {FL2B2PE(1.00f), FL2B2PE(0.80f)}}},
+ {48000,
+ {{FL2B2PE(1.40f), FL2B2PE(1.40f)}, {FL2B2PE(1.20f), FL2B2PE(1.20f)}}},
+ {64000,
+ {{FL2B2PE(1.60f), FL2B2PE(1.40f)}, {FL2B2PE(1.60f), FL2B2PE(1.20f)}}},
+ {96000,
+ {{FL2B2PE(1.60f), FL2B2PE(1.40f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}},
+ {128000,
+ {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.60f)}}},
+ {148000,
+ {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.60f)}}},
+ {160000,
+ {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.60f)}}},
+ {200000,
+ {{FL2B2PE(1.40f), FL2B2PE(1.60f)}, {FL2B2PE(1.40f), FL2B2PE(1.60f)}}},
+ {320000,
+ {{FL2B2PE(3.20f), FL2B2PE(1.80f)}, {FL2B2PE(3.20f), FL2B2PE(1.80f)}}}};
static const BIT_PE_SFAC S_Bits2PeTab44100[] = {
- { 16000, 0x10a3d70a, 0x1797cc3a, 0x00000000, 0x00000000, 0x00000000, 0x59210386, 0x00000000, 0x00000000},
- { 24000, 0x16666666, 0x1797cc3a, 0x00000000, 0x639d5e4a, 0x15c28f5c, 0x12599ed8, 0x00000000, 0x5bc01a37},
- { 32000, 0x1c28f5c3, 0x049667b6, 0x1851eb85, 0x049667b6, 0x1a3d70a4, 0x088509c0, 0x16666666, 0x053e2d62},
- { 48000, 0x1e666666, 0x05e5f30e, 0x1a8f5c29, 0x049667b6, 0x1e666666, 0x05e5f30e, 0x18f5c28f, 0x05e5f30e},
- { 64000, 0x2147ae14, 0x0346dc5d, 0x1ccccccd, 0x02f2f987, 0x2147ae14, 0x02f2f987, 0x1bd70a3d, 0x039abf34},
- { 96000, 0x247ae148, 0x068db8bb, 0x1fae147b, 0x029f16b1, 0x2428f5c3, 0x0639d5e5, 0x1f5c28f6, 0x029f16b1},
- {128000, 0x2ae147ae, 0x1b435265, 0x223d70a4, 0x0192a737, 0x2a3d70a4, 0x1040bfe4, 0x21eb851f, 0x0192a737},
- {148000, 0x3b851eb8, 0x2832069c, 0x23333333, 0x00dfb23b, 0x3428f5c3, 0x2054c288, 0x22e147ae, 0x00dfb23b},
- {160000, 0x4a3d70a4, 0xc32ebe5a, 0x23851eb8, 0x01d5c316, 0x40000000, 0xcb923a2b, 0x23333333, 0x01d5c316},
- {200000, 0x25c28f40, 0x00000000, 0x25c28f5c, 0x0713f078, 0x25c28f40, 0x00000000, 0x2570a3d7, 0x072a4f17},
- {320000, 0x25c28f40, 0x00000000, 0x3fae147b, 0x00000000, 0x25c28f40, 0x00000000, 0x3fae147b, 0x00000000}
-};
+ /* bitrate| afterburner off | afterburner on | | nCh=1
+ | nCh=2 | nCh=1 | nCh=2 */
+ {16000,
+ {{FL2B2PE(1.20f), FL2B2PE(1.60f)}, {FL2B2PE(0.80f), FL2B2PE(1.00f)}}},
+ {24000,
+ {{FL2B2PE(1.00f), FL2B2PE(1.20f)}, {FL2B2PE(1.00f), FL2B2PE(0.80f)}}},
+ {32000,
+ {{FL2B2PE(1.20f), FL2B2PE(1.20f)}, {FL2B2PE(0.80f), FL2B2PE(0.60f)}}},
+ {48000,
+ {{FL2B2PE(1.20f), FL2B2PE(1.20f)}, {FL2B2PE(1.20f), FL2B2PE(0.80f)}}},
+ {64000,
+ {{FL2B2PE(1.40f), FL2B2PE(1.20f)}, {FL2B2PE(1.20f), FL2B2PE(1.00f)}}},
+ {96000,
+ {{FL2B2PE(1.60f), FL2B2PE(1.20f)}, {FL2B2PE(1.60f), FL2B2PE(1.20f)}}},
+ {128000,
+ {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}},
+ {148000,
+ {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.60f)}}},
+ {160000,
+ {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.60f)}}},
+ {200000,
+ {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.60f)}}},
+ {320000,
+ {{FL2B2PE(3.20f), FL2B2PE(1.60f)}, {FL2B2PE(3.20f), FL2B2PE(1.60f)}}}};
static const BIT_PE_SFAC S_Bits2PeTab48000[] = {
- { 16000, 0x0f5c28f6, 0x31ceaf25, 0x00000000, 0x00000000, 0x00000000, 0x74a771c9, 0x00000000, 0x00000000},
- { 24000, 0x1b851eb8, 0x029f16b1, 0x00000000, 0x663c74fb, 0x1c7ae148, 0xe47991bd, 0x00000000, 0x49667b5f},
- { 32000, 0x1c28f5c3, 0x029f16b1, 0x18f5c28f, 0x07357e67, 0x15c28f5c, 0x0f12c27a, 0x11eb851f, 0x13016484},
- { 48000, 0x1d70a3d7, 0x053e2d62, 0x1c7ae148, 0xfe08aefc, 0x1d1eb852, 0x068db8bb, 0x1b333333, 0xfeb074a8},
- { 64000, 0x20000000, 0x03eea20a, 0x1b851eb8, 0x0346dc5d, 0x2051eb85, 0x0346dc5d, 0x1a8f5c29, 0x039abf34},
- { 96000, 0x23d70a3d, 0x053e2d62, 0x1eb851ec, 0x029f16b1, 0x23851eb8, 0x04ea4a8c, 0x1e147ae1, 0x02f2f987},
- {128000, 0x28f5c28f, 0x14727dcc, 0x2147ae14, 0x0218def4, 0x2851eb85, 0x0e27e0f0, 0x20f5c28f, 0x0218def4},
- {148000, 0x3570a3d7, 0x1cd5f99c, 0x228f5c29, 0x01bf6476, 0x30f5c28f, 0x18777e75, 0x223d70a4, 0x01bf6476},
- {160000, 0x40000000, 0xcb923a2b, 0x23333333, 0x0192a737, 0x39eb851f, 0xd08d4bae, 0x22e147ae, 0x0192a737},
- {200000, 0x25c28f40, 0x00000000, 0x251eb852, 0x06775a1b, 0x25c28f40, 0x00000000, 0x24cccccd, 0x06a4175a},
- {320000, 0x25c28f40, 0x00000000, 0x3ccccccd, 0x00000000, 0x25c28f40, 0x00000000, 0x3d1eb852, 0x00000000}
-};
+ /* bitrate| afterburner off | afterburner on | | nCh=1
+ | nCh=2 | nCh=1 | nCh=2 */
+ {16000,
+ {{FL2B2PE(1.40f), FL2B2PE(0.00f)}, {FL2B2PE(0.80f), FL2B2PE(0.00f)}}},
+ {24000,
+ {{FL2B2PE(1.40f), FL2B2PE(1.20f)}, {FL2B2PE(1.00f), FL2B2PE(0.80f)}}},
+ {32000,
+ {{FL2B2PE(1.00f), FL2B2PE(1.20f)}, {FL2B2PE(0.60f), FL2B2PE(0.80f)}}},
+ {48000,
+ {{FL2B2PE(1.20f), FL2B2PE(1.00f)}, {FL2B2PE(0.80f), FL2B2PE(0.80f)}}},
+ {64000,
+ {{FL2B2PE(1.20f), FL2B2PE(1.20f)}, {FL2B2PE(1.20f), FL2B2PE(1.00f)}}},
+ {96000,
+ {{FL2B2PE(1.60f), FL2B2PE(1.40f)}, {FL2B2PE(1.60f), FL2B2PE(1.20f)}}},
+ {128000,
+ {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}},
+ {148000,
+ {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}},
+ {160000,
+ {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}},
+ {200000,
+ {{FL2B2PE(1.20f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}},
+ {320000,
+ {{FL2B2PE(3.20f), FL2B2PE(1.60f)}, {FL2B2PE(3.20f), FL2B2PE(1.60f)}}}};
static const BITS2PE_CFG_TAB bits2PeConfigTab[] = {
- { 16000, S_Bits2PeTab16000, sizeof(S_Bits2PeTab16000)/sizeof(BIT_PE_SFAC) },
- { 22050, S_Bits2PeTab22050, sizeof(S_Bits2PeTab22050)/sizeof(BIT_PE_SFAC) },
- { 24000, S_Bits2PeTab24000, sizeof(S_Bits2PeTab24000)/sizeof(BIT_PE_SFAC) },
- { 32000, S_Bits2PeTab32000, sizeof(S_Bits2PeTab32000)/sizeof(BIT_PE_SFAC) },
- { 44100, S_Bits2PeTab44100, sizeof(S_Bits2PeTab44100)/sizeof(BIT_PE_SFAC) },
- { 48000, S_Bits2PeTab48000, sizeof(S_Bits2PeTab48000)/sizeof(BIT_PE_SFAC) }
-};
-
-
+ {16000, S_Bits2PeTab16000, sizeof(S_Bits2PeTab16000) / sizeof(BIT_PE_SFAC)},
+ {22050, S_Bits2PeTab22050, sizeof(S_Bits2PeTab22050) / sizeof(BIT_PE_SFAC)},
+ {24000, S_Bits2PeTab24000, sizeof(S_Bits2PeTab24000) / sizeof(BIT_PE_SFAC)},
+ {32000, S_Bits2PeTab32000, sizeof(S_Bits2PeTab32000) / sizeof(BIT_PE_SFAC)},
+ {44100, S_Bits2PeTab44100, sizeof(S_Bits2PeTab44100) / sizeof(BIT_PE_SFAC)},
+ {48000, S_Bits2PeTab48000,
+ sizeof(S_Bits2PeTab48000) / sizeof(BIT_PE_SFAC)}};
/* values for avoid hole flag */
-enum _avoid_hole_state {
- NO_AH =0,
- AH_INACTIVE =1,
- AH_ACTIVE =2
-};
-
+enum _avoid_hole_state { NO_AH = 0, AH_INACTIVE = 1, AH_ACTIVE = 2 };
/* Q format definitions */
-#define Q_BITFAC (24) /* Q scaling used in FDKaacEnc_bitresCalcBitFac() calculation */
-#define Q_AVGBITS (17) /* scale bit values */
-
+#define Q_BITFAC \
+ (24) /* Q scaling used in FDKaacEnc_bitresCalcBitFac() calculation */
+#define Q_AVGBITS (17) /* scale bit values */
/*****************************************************************************
functionname: FDKaacEnc_InitBits2PeFactor
description: retrieve bits2PeFactor from table
*****************************************************************************/
static void FDKaacEnc_InitBits2PeFactor(
- FIXP_DBL *bits2PeFactor_m,
- INT *bits2PeFactor_e,
- const INT bitRate,
- const INT nChannels,
- const INT sampleRate,
- const INT advancedBitsToPe,
- const INT dZoneQuantEnable,
- const INT invQuant
- )
-{
- /* default bits2pe factor */
- FIXP_DBL bit2PE_m = FL2FXCONST_DBL(1.18f/(1<<(1)));
- INT bit2PE_e = 1;
-
- /* make use of advanced bits to pe factor table */
- if (advancedBitsToPe) {
-
+ FIXP_DBL *bits2PeFactor_m, INT *bits2PeFactor_e, const INT bitRate,
+ const INT nChannels, const INT sampleRate, const INT advancedBitsToPe,
+ const INT dZoneQuantEnable, const INT invQuant) {
+ /**** 1) Set default bits2pe factor ****/
+ FIXP_DBL bit2PE_m = FL2FXCONST_DBL(1.18f / (1 << (1)));
+ INT bit2PE_e = 1;
+
+ /**** 2) For AAC-(E)LD, make use of advanced bits to pe factor table ****/
+ if (advancedBitsToPe && nChannels <= (2)) {
int i;
const BIT_PE_SFAC *peTab = NULL;
INT size = 0;
-
- /* Get correct table entry */
- for (i=0; i<(INT)(sizeof(bits2PeConfigTab)/sizeof(BITS2PE_CFG_TAB)); i++) {
+ /*** 2.1) Get correct table entry ***/
+ for (i = 0; i < (INT)(sizeof(bits2PeConfigTab) / sizeof(BITS2PE_CFG_TAB));
+ i++) {
if (sampleRate >= bits2PeConfigTab[i].sampleRate) {
peTab = bits2PeConfigTab[i].pPeTab;
- size = bits2PeConfigTab[i].nEntries;
+ size = bits2PeConfigTab[i].nEntries;
}
}
- if ( (peTab!=NULL) && (size!=0) ) {
-
- INT startB = -1;
- LONG startPF = 0;
- LONG peSlope = 0;
-
- /* stereo or mono mode and invQuant used or not */
- for (i=0; i<size-1; i++)
- {
- if ((peTab[i].bitrate<=bitRate) && ((peTab[i+1].bitrate>bitRate) || ((i==size-2)) ))
- {
- if (nChannels==1)
- {
- startPF = (!invQuant) ? peTab[i].bits2PeFactor_mono : peTab[i].bits2PeFactor_mono_scfOpt;
- peSlope = (!invQuant) ? peTab[i].bits2PeFactor_mono_slope : peTab[i].bits2PeFactor_mono_scfOpt_slope;
- /*endPF = (!invQuant) ? peTab[i+1].bits2PeFactor_mono : peTab[i+1].bits2PeFactor_mono_scfOpt;
- endB=peTab[i+1].bitrate;*/
- startB=peTab[i].bitrate;
- break;
- }
- else
- {
- startPF = (!invQuant) ? peTab[i].bits2PeFactor_stereo : peTab[i].bits2PeFactor_stereo_scfOpt;
- peSlope = (!invQuant) ? peTab[i].bits2PeFactor_stereo_slope : peTab[i].bits2PeFactor_stereo_scfOpt_slope;
- /*endPF = (!invQuant) ? peTab[i+1].bits2PeFactor_stereo : peTab[i+1].bits2PeFactor_stereo_scfOpt;
- endB=peTab[i+1].bitrate;*/
- startB=peTab[i].bitrate;
+ if ((peTab != NULL) && (size != 0)) {
+ INT startB = -1; /* bitrate entry in table that is the next-lower to
+ actual bitrate */
+ INT stopB = -1; /* bitrate entry in table that is the next-higher to
+ actual bitrate */
+ FIXP_DBL startPF =
+ FL2FXCONST_DBL(0.0f); /* bits2PE factor entry in table that is the
+ next-lower to actual bits2PE factor */
+ FIXP_DBL stopPF = FL2FXCONST_DBL(0.0f); /* bits2PE factor entry in table
+ that is the next-higher to
+ actual bits2PE factor */
+ FIXP_DBL slope = FL2FXCONST_DBL(
+ 0.0f); /* the slope from the start bits2Pe entry to the next one */
+ const int qualityIdx = (invQuant == 0) ? 0 : 1;
+
+ if (bitRate >= peTab[size - 1].bitrate) {
+ /* Chosen bitrate is higher than the highest bitrate in table.
+ The slope for extrapolating the bits2PE factor must be zero.
+ Values are set accordingly. */
+ startB = peTab[size - 1].bitrate;
+ stopB =
+ bitRate +
+ 1; /* Can be an arbitrary value greater than startB and bitrate. */
+ startPF = peTab[size - 1].bits2PeFactor[qualityIdx][nChannels - 1];
+ stopPF = peTab[size - 1].bits2PeFactor[qualityIdx][nChannels - 1];
+ } else {
+ for (i = 0; i < size - 1; i++) {
+ if ((peTab[i].bitrate <= bitRate) &&
+ (peTab[i + 1].bitrate > bitRate)) {
+ startB = peTab[i].bitrate;
+ stopB = peTab[i + 1].bitrate;
+ startPF = peTab[i].bits2PeFactor[qualityIdx][nChannels - 1];
+ stopPF = peTab[i + 1].bits2PeFactor[qualityIdx][nChannels - 1];
break;
}
}
- } /* for i */
+ }
- /* if a configuration is available */
- if (startB!=-1) {
- /* linear interpolate to actual PEfactor */
- FIXP_DBL peFac = fMult((FIXP_DBL)(bitRate-startB)<<14, (FIXP_DBL)peSlope) << 2;
- FIXP_DBL bit2PE = peFac + (FIXP_DBL)startPF; /* startPF_float = startPF << 2 */
+ /*** 2.2) Configuration available? ***/
+ if (startB != -1) {
+ /** 2.2.1) linear interpolate to actual PEfactor **/
+ FIXP_DBL bit2PE = 0;
- /* sanity check if bits2pe value is high enough */
- if ( bit2PE >= (FL2FXCONST_DBL(0.35f) >> 2) ) {
+ const FIXP_DBL maxBit2PE = FL2FXCONST_DBL(3.f / 4.f);
+
+ /* bit2PE = ((stopPF-startPF)/(stopB-startB))*(bitRate-startB)+startPF;
+ */
+ slope = fDivNorm(bitRate - startB, stopB - startB);
+ bit2PE = fMult(slope, stopPF - startPF) + startPF;
+
+ bit2PE = fMin(maxBit2PE, bit2PE);
+
+ /** 2.2.2) sanity check if bits2pe value is high enough **/
+ if (bit2PE >= (FL2FXCONST_DBL(0.35f) >> 2)) {
bit2PE_m = bit2PE;
bit2PE_e = 2; /* table is fixed scaled */
}
} /* br */
- } /* sr */
- } /* advancedBitsToPe */
+ } /* sr */
+ } /* advancedBitsToPe */
-
- if (dZoneQuantEnable)
- {
- if(bit2PE_m >= (FL2FXCONST_DBL(0.6f))>>bit2PE_e)
- {
+ if (dZoneQuantEnable) {
+ if (bit2PE_m >= (FL2FXCONST_DBL(0.6f)) >> bit2PE_e) {
/* Additional headroom for addition */
bit2PE_m >>= 1;
- bit2PE_e += 1;
+ bit2PE_e += 1;
}
- /* the quantTendencyCompensator compensates a lower bit consumption due to increasing the tendency to quantize low spectral values to the lower quantizer border for bitrates below a certain bitrate threshold --> see also function calcSfbDistLD in quantize.c */
- if ((bitRate/nChannels > 32000) && (bitRate/nChannels <= 40000)) {
- bit2PE_m += (FL2FXCONST_DBL(0.4f))>>bit2PE_e;
- }
- else if (bitRate/nChannels > 20000) {
- bit2PE_m += (FL2FXCONST_DBL(0.3f))>>bit2PE_e;
- }
- else if (bitRate/nChannels >= 16000) {
- bit2PE_m += (FL2FXCONST_DBL(0.3f))>>bit2PE_e;
- }
- else {
- bit2PE_m += (FL2FXCONST_DBL(0.0f))>>bit2PE_e;
+ /* the quantTendencyCompensator compensates a lower bit consumption due to
+ * increasing the tendency to quantize low spectral values to the lower
+ * quantizer border for bitrates below a certain bitrate threshold --> see
+ * also function calcSfbDistLD in quantize.c */
+ if ((bitRate / nChannels > 32000) && (bitRate / nChannels <= 40000)) {
+ bit2PE_m += (FL2FXCONST_DBL(0.4f)) >> bit2PE_e;
+ } else if (bitRate / nChannels > 20000) {
+ bit2PE_m += (FL2FXCONST_DBL(0.3f)) >> bit2PE_e;
+ } else if (bitRate / nChannels >= 16000) {
+ bit2PE_m += (FL2FXCONST_DBL(0.3f)) >> bit2PE_e;
+ } else {
+ bit2PE_m += (FL2FXCONST_DBL(0.0f)) >> bit2PE_e;
}
}
-
/***** 3.) Return bits2pe factor *****/
*bits2PeFactor_m = bit2PE_m;
*bits2PeFactor_e = bit2PE_e;
}
-
/*****************************************************************************
functionname: FDKaacEnc_bits2pe2
description: convert from bits to pe
*****************************************************************************/
-static INT FDKaacEnc_bits2pe2(
- const INT bits,
- const FIXP_DBL factor_m,
- const INT factor_e
- )
-{
- return (INT)(fMult(factor_m, (FIXP_DBL)(bits<<Q_AVGBITS)) >> (Q_AVGBITS-factor_e));
+FDK_INLINE INT FDKaacEnc_bits2pe2(const INT bits, const FIXP_DBL factor_m,
+ const INT factor_e) {
+ return (INT)(fMult(factor_m, (FIXP_DBL)(bits << Q_AVGBITS)) >>
+ (Q_AVGBITS - factor_e));
}
/*****************************************************************************
functionname: FDKaacEnc_calcThreshExp
description: loudness calculation (threshold to the power of redExp)
*****************************************************************************/
-static void FDKaacEnc_calcThreshExp(FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB],
- QC_OUT_CHANNEL* qcOutChannel[(2)],
- PSY_OUT_CHANNEL* psyOutChannel[(2)],
- const INT nChannels)
-{
- INT ch, sfb, sfbGrp;
- FIXP_DBL thrExpLdData;
-
- for (ch=0; ch<nChannels; ch++) {
- for(sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt;sfbGrp+= psyOutChannel[ch]->sfbPerGroup) {
- for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
- thrExpLdData = psyOutChannel[ch]->sfbThresholdLdData[sfbGrp+sfb]>>2 ;
- thrExp[ch][sfbGrp+sfb] = CalcInvLdData(thrExpLdData);
- }
- }
- }
+static void FDKaacEnc_calcThreshExp(
+ FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB],
+ const QC_OUT_CHANNEL *const qcOutChannel[(2)],
+ const PSY_OUT_CHANNEL *const psyOutChannel[(2)], const INT nChannels) {
+ INT ch, sfb, sfbGrp;
+ FIXP_DBL thrExpLdData;
+
+ for (ch = 0; ch < nChannels; ch++) {
+ for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt;
+ sfbGrp += psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ thrExpLdData = psyOutChannel[ch]->sfbThresholdLdData[sfbGrp + sfb] >> 2;
+ thrExp[ch][sfbGrp + sfb] = CalcInvLdData(thrExpLdData);
+ }
+ }
+ }
}
-
/*****************************************************************************
functionname: FDKaacEnc_adaptMinSnr
- description: reduce minSnr requirements for bands with relative low energies
+ description: reduce minSnr requirements for bands with relative low
+energies
*****************************************************************************/
-static void FDKaacEnc_adaptMinSnr(QC_OUT_CHANNEL *qcOutChannel[(2)],
- PSY_OUT_CHANNEL *psyOutChannel[(2)],
- MINSNR_ADAPT_PARAM *msaParam,
- const INT nChannels)
-{
+static void FDKaacEnc_adaptMinSnr(
+ QC_OUT_CHANNEL *const qcOutChannel[(2)],
+ const PSY_OUT_CHANNEL *const psyOutChannel[(2)],
+ const MINSNR_ADAPT_PARAM *const msaParam, const INT nChannels) {
INT ch, sfb, sfbGrp, nSfb;
FIXP_DBL avgEnLD64, dbRatio, minSnrRed;
- FIXP_DBL minSnrLimitLD64 = FL2FXCONST_DBL(-0.00503012648262f); /* ld64(0.8f) */
+ FIXP_DBL minSnrLimitLD64 =
+ FL2FXCONST_DBL(-0.00503012648262f); /* ld64(0.8f) */
FIXP_DBL nSfbLD64;
FIXP_DBL accu;
- for (ch=0; ch<nChannels; ch++) {
+ FIXP_DBL msaParam_maxRed = msaParam->maxRed;
+ FIXP_DBL msaParam_startRatio = msaParam->startRatio;
+ FIXP_DBL msaParam_redRatioFac =
+ fMult(msaParam->redRatioFac, FL2FXCONST_DBL(0.3010299956f));
+ FIXP_DBL msaParam_redOffs = msaParam->redOffs;
+
+ for (ch = 0; ch < nChannels; ch++) {
/* calc average energy per scalefactor band */
nSfb = 0;
accu = FL2FXCONST_DBL(0.0f);
- for (sfbGrp=0; sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutChannel[ch]->sfbPerGroup) {
- for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
- accu += psyOutChannel[ch]->sfbEnergy[sfbGrp+sfb]>>6;
- nSfb++;
- }
+ DWORD_ALIGNED(psyOutChannel[ch]->sfbEnergy);
+
+ for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt;
+ sfbGrp += psyOutChannel[ch]->sfbPerGroup) {
+ int maxSfbPerGroup = psyOutChannel[ch]->maxSfbPerGroup;
+ nSfb += maxSfbPerGroup;
+ for (sfb = 0; sfb < maxSfbPerGroup; sfb++) {
+ accu += psyOutChannel[ch]->sfbEnergy[sfbGrp + sfb] >> 6;
+ }
}
if ((accu == FL2FXCONST_DBL(0.0f)) || (nSfb == 0)) {
avgEnLD64 = FL2FXCONST_DBL(-1.0f);
- }
- else {
- nSfbLD64 = CalcLdInt(nSfb);
+ } else {
+ nSfbLD64 = CalcLdInt(nSfb);
avgEnLD64 = CalcLdData(accu);
- avgEnLD64 = avgEnLD64 + FL2FXCONST_DBL(0.09375f) - nSfbLD64; /* 0.09375f: compensate shift with 6 */
+ avgEnLD64 = avgEnLD64 + FL2FXCONST_DBL(0.09375f) -
+ nSfbLD64; /* 0.09375f: compensate shift with 6 */
}
/* reduce minSnr requirement by minSnr^minSnrRed dependent on avgEn/sfbEn */
- for (sfbGrp=0; sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutChannel[ch]->sfbPerGroup) {
- for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
- if ( (msaParam->startRatio + qcOutChannel[ch]->sfbEnergyLdData[sfbGrp+sfb]) < avgEnLD64 ) {
- dbRatio = fMult((avgEnLD64 - qcOutChannel[ch]->sfbEnergyLdData[sfbGrp+sfb]),FL2FXCONST_DBL(0.3010299956f)); /* scaled by (1.0f/(10.0f*64.0f)) */
- minSnrRed = msaParam->redOffs + fMult(msaParam->redRatioFac,dbRatio); /* scaled by 1.0f/64.0f*/
- minSnrRed = fixMax(minSnrRed, msaParam->maxRed); /* scaled by 1.0f/64.0f*/
- qcOutChannel[ch]->sfbMinSnrLdData[sfbGrp+sfb] = (fMult(qcOutChannel[ch]->sfbMinSnrLdData[sfbGrp+sfb],minSnrRed)) << 6;
- qcOutChannel[ch]->sfbMinSnrLdData[sfbGrp+sfb] = fixMin(minSnrLimitLD64, qcOutChannel[ch]->sfbMinSnrLdData[sfbGrp+sfb]);
- }
+ int maxSfbPerGroup = psyOutChannel[ch]->maxSfbPerGroup;
+ int sfbCnt = psyOutChannel[ch]->sfbCnt;
+ int sfbPerGroup = psyOutChannel[ch]->sfbPerGroup;
+
+ for (sfbGrp = 0; sfbGrp < sfbCnt; sfbGrp += sfbPerGroup) {
+ FIXP_DBL *RESTRICT psfbEnergyLdData =
+ &qcOutChannel[ch]->sfbEnergyLdData[sfbGrp];
+ FIXP_DBL *RESTRICT psfbMinSnrLdData =
+ &qcOutChannel[ch]->sfbMinSnrLdData[sfbGrp];
+ for (sfb = 0; sfb < maxSfbPerGroup; sfb++) {
+ FIXP_DBL sfbEnergyLdData = *psfbEnergyLdData++;
+ FIXP_DBL sfbMinSnrLdData = *psfbMinSnrLdData;
+ dbRatio = avgEnLD64 - sfbEnergyLdData;
+ int update = (msaParam_startRatio < dbRatio) ? 1 : 0;
+ minSnrRed = msaParam_redOffs + fMult(msaParam_redRatioFac,
+ dbRatio); /* scaled by 1.0f/64.0f*/
+ minSnrRed =
+ fixMax(minSnrRed, msaParam_maxRed); /* scaled by 1.0f/64.0f*/
+ minSnrRed = (fMult(sfbMinSnrLdData, minSnrRed)) << 6;
+ minSnrRed = fixMin(minSnrLimitLD64, minSnrRed);
+ *psfbMinSnrLdData++ = update ? minSnrRed : sfbMinSnrLdData;
}
}
}
}
-
/*****************************************************************************
functionname: FDKaacEnc_initAvoidHoleFlag
description: determine bands where avoid hole is not necessary resp. possible
*****************************************************************************/
-static void FDKaacEnc_initAvoidHoleFlag(QC_OUT_CHANNEL *qcOutChannel[(2)],
- PSY_OUT_CHANNEL *psyOutChannel[(2)],
- UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
- struct TOOLSINFO *toolsInfo,
- const INT nChannels,
- const PE_DATA *peData,
- AH_PARAM *ahParam)
-{
- INT ch, sfb, sfbGrp;
- FIXP_DBL sfbEn, sfbEnm1;
- FIXP_DBL sfbEnLdData;
- FIXP_DBL avgEnLdData;
-
- /* decrease spread energy by 3dB for long blocks, resp. 2dB for shorts
- (avoid more holes in long blocks) */
- for (ch=0; ch<nChannels; ch++) {
- INT sfbGrp, sfb;
- QC_OUT_CHANNEL* qcOutChan = qcOutChannel[ch];
-
- if (psyOutChannel[ch]->lastWindowSequence != SHORT_WINDOW) {
- for (sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt;sfbGrp+= psyOutChannel[ch]->sfbPerGroup)
- for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++)
- qcOutChan->sfbSpreadEnergy[sfbGrp+sfb] >>= 1 ;
- }
- else {
- for (sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt;sfbGrp+= psyOutChannel[ch]->sfbPerGroup)
- for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++)
- qcOutChan->sfbSpreadEnergy[sfbGrp+sfb] =
- fMult(FL2FXCONST_DBL(0.63f),
- qcOutChan->sfbSpreadEnergy[sfbGrp+sfb]) ;
- }
- }
-
- /* increase minSnr for local peaks, decrease it for valleys */
- if (ahParam->modifyMinSnr) {
- for(ch=0; ch<nChannels; ch++) {
- QC_OUT_CHANNEL* qcOutChan = qcOutChannel[ch];
- for(sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt;sfbGrp+= psyOutChannel[ch]->sfbPerGroup){
- for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
- FIXP_DBL sfbEnp1, avgEn;
- if (sfb > 0)
- sfbEnm1 = qcOutChan->sfbEnergy[sfbGrp+sfb-1];
- else
- sfbEnm1 = qcOutChan->sfbEnergy[sfbGrp+sfb];
-
- if (sfb < psyOutChannel[ch]->maxSfbPerGroup-1)
- sfbEnp1 = qcOutChan->sfbEnergy[sfbGrp+sfb+1];
- else
- sfbEnp1 = qcOutChan->sfbEnergy[sfbGrp+sfb];
-
- avgEn = (sfbEnm1>>1) + (sfbEnp1>>1);
- avgEnLdData = CalcLdData(avgEn);
- sfbEn = qcOutChan->sfbEnergy[sfbGrp+sfb];
- sfbEnLdData = qcOutChan->sfbEnergyLdData[sfbGrp+sfb];
- /* peak ? */
- if (sfbEn > avgEn) {
- FIXP_DBL tmpMinSnrLdData;
- if (psyOutChannel[ch]->lastWindowSequence==LONG_WINDOW)
- tmpMinSnrLdData = fixMax( SnrLdFac + (FIXP_DBL)(avgEnLdData - sfbEnLdData), (FIXP_DBL)SnrLdMin1 ) ;
- else
- tmpMinSnrLdData = fixMax( SnrLdFac + (FIXP_DBL)(avgEnLdData - sfbEnLdData), (FIXP_DBL)SnrLdMin3 ) ;
-
- qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] =
- fixMin(qcOutChan->sfbMinSnrLdData[sfbGrp+sfb], tmpMinSnrLdData);
- }
- /* valley ? */
- if ( ((sfbEnLdData+(FIXP_DBL)SnrLdMin4) < (FIXP_DBL)avgEnLdData) && (sfbEn > FL2FXCONST_DBL(0.0)) ) {
- FIXP_DBL tmpMinSnrLdData = avgEnLdData - sfbEnLdData -(FIXP_DBL)SnrLdMin4 + qcOutChan->sfbMinSnrLdData[sfbGrp+sfb];
- tmpMinSnrLdData = fixMin((FIXP_DBL)SnrLdFac, tmpMinSnrLdData);
- qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] = fixMin(tmpMinSnrLdData,
- (FIXP_DBL)(qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] + SnrLdMin2 ));
- }
- }
- }
- }
- }
-
- /* stereo: adapt the minimum requirements sfbMinSnr of mid and
- side channels to avoid spending unnoticable bits */
- if (nChannels == 2) {
- QC_OUT_CHANNEL* qcOutChanM = qcOutChannel[0];
- QC_OUT_CHANNEL* qcOutChanS = qcOutChannel[1];
- PSY_OUT_CHANNEL* psyOutChanM = psyOutChannel[0];
- for(sfbGrp = 0;sfbGrp < psyOutChanM->sfbCnt;sfbGrp+= psyOutChanM->sfbPerGroup){
- for (sfb=0; sfb<psyOutChanM->maxSfbPerGroup; sfb++) {
- if (toolsInfo->msMask[sfbGrp+sfb]) {
- FIXP_DBL maxSfbEnLd = fixMax(qcOutChanM->sfbEnergyLdData[sfbGrp+sfb],qcOutChanS->sfbEnergyLdData[sfbGrp+sfb]);
- FIXP_DBL maxThrLd, sfbMinSnrTmpLd;
-
- if ( ((SnrLdMin5>>1) + (maxSfbEnLd>>1) + (qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb]>>1)) <= FL2FXCONST_DBL(-0.5f))
- maxThrLd = FL2FXCONST_DBL(-1.0f) ;
- else
- maxThrLd = SnrLdMin5 + maxSfbEnLd + qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb];
-
- if (qcOutChanM->sfbEnergy[sfbGrp+sfb] > FL2FXCONST_DBL(0.0f))
- sfbMinSnrTmpLd = maxThrLd - qcOutChanM->sfbEnergyLdData[sfbGrp+sfb];
- else
- sfbMinSnrTmpLd = FL2FXCONST_DBL(0.0f);
-
- qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb] = fixMax(qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb],sfbMinSnrTmpLd);
-
- if (qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb] <= FL2FXCONST_DBL(0.0f))
- qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb] = fixMin(qcOutChanM->sfbMinSnrLdData[sfbGrp+sfb], (FIXP_DBL)SnrLdFac);
-
- if (qcOutChanS->sfbEnergy[sfbGrp+sfb] > FL2FXCONST_DBL(0.0f))
- sfbMinSnrTmpLd = maxThrLd - qcOutChanS->sfbEnergyLdData[sfbGrp+sfb];
- else
- sfbMinSnrTmpLd = FL2FXCONST_DBL(0.0f);
-
- qcOutChanS->sfbMinSnrLdData[sfbGrp+sfb] = fixMax(qcOutChanS->sfbMinSnrLdData[sfbGrp+sfb],sfbMinSnrTmpLd);
-
- if (qcOutChanS->sfbMinSnrLdData[sfbGrp+sfb] <= FL2FXCONST_DBL(0.0f))
- qcOutChanS->sfbMinSnrLdData[sfbGrp+sfb] = fixMin(qcOutChanS->sfbMinSnrLdData[sfbGrp+sfb],(FIXP_DBL)SnrLdFac);
-
- if (qcOutChanM->sfbEnergy[sfbGrp+sfb]>qcOutChanM->sfbSpreadEnergy[sfbGrp+sfb])
- qcOutChanS->sfbSpreadEnergy[sfbGrp+sfb] =
- fMult(qcOutChanS->sfbEnergy[sfbGrp+sfb], FL2FXCONST_DBL(0.9f));
-
- if (qcOutChanS->sfbEnergy[sfbGrp+sfb]>qcOutChanS->sfbSpreadEnergy[sfbGrp+sfb])
- qcOutChanM->sfbSpreadEnergy[sfbGrp+sfb] =
- fMult(qcOutChanM->sfbEnergy[sfbGrp+sfb], FL2FXCONST_DBL(0.9f));
- }
- }
- }
- }
-
- /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */
- for(ch=0; ch<nChannels; ch++) {
- QC_OUT_CHANNEL *qcOutChan = qcOutChannel[ch];
- PSY_OUT_CHANNEL *psyOutChan = psyOutChannel[ch];
- for(sfbGrp = 0;sfbGrp < psyOutChan->sfbCnt;sfbGrp+= psyOutChan->sfbPerGroup){
- for (sfb=0; sfb<psyOutChan->maxSfbPerGroup; sfb++) {
- if ((qcOutChan->sfbSpreadEnergy[sfbGrp+sfb] > qcOutChan->sfbEnergy[sfbGrp+sfb])
- || (qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] > FL2FXCONST_DBL(0.0f))) {
- ahFlag[ch][sfbGrp+sfb] = NO_AH;
+static void FDKaacEnc_initAvoidHoleFlag(
+ QC_OUT_CHANNEL *const qcOutChannel[(2)],
+ const PSY_OUT_CHANNEL *const psyOutChannel[(2)],
+ UCHAR ahFlag[(2)][MAX_GROUPED_SFB], const struct TOOLSINFO *const toolsInfo,
+ const INT nChannels, const AH_PARAM *const ahParam) {
+ INT ch, sfb, sfbGrp;
+ FIXP_DBL sfbEn, sfbEnm1;
+ FIXP_DBL sfbEnLdData;
+ FIXP_DBL avgEnLdData;
+
+ /* decrease spread energy by 3dB for long blocks, resp. 2dB for shorts
+ (avoid more holes in long blocks) */
+ for (ch = 0; ch < nChannels; ch++) {
+ QC_OUT_CHANNEL *const qcOutChan = qcOutChannel[ch];
+
+ if (psyOutChannel[ch]->lastWindowSequence != SHORT_WINDOW) {
+ for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt;
+ sfbGrp += psyOutChannel[ch]->sfbPerGroup)
+ for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++)
+ qcOutChan->sfbSpreadEnergy[sfbGrp + sfb] >>= 1;
+ } else {
+ for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt;
+ sfbGrp += psyOutChannel[ch]->sfbPerGroup)
+ for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++)
+ qcOutChan->sfbSpreadEnergy[sfbGrp + sfb] = fMult(
+ FL2FXCONST_DBL(0.63f), qcOutChan->sfbSpreadEnergy[sfbGrp + sfb]);
+ }
+ }
+
+ /* increase minSnr for local peaks, decrease it for valleys */
+ if (ahParam->modifyMinSnr) {
+ for (ch = 0; ch < nChannels; ch++) {
+ QC_OUT_CHANNEL *const qcOutChan = qcOutChannel[ch];
+ for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt;
+ sfbGrp += psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ FIXP_DBL sfbEnp1, avgEn;
+ if (sfb > 0)
+ sfbEnm1 = qcOutChan->sfbEnergy[sfbGrp + sfb - 1];
+ else
+ sfbEnm1 = qcOutChan->sfbEnergy[sfbGrp + sfb];
+
+ if (sfb < psyOutChannel[ch]->maxSfbPerGroup - 1)
+ sfbEnp1 = qcOutChan->sfbEnergy[sfbGrp + sfb + 1];
+ else
+ sfbEnp1 = qcOutChan->sfbEnergy[sfbGrp + sfb];
+
+ avgEn = (sfbEnm1 >> 1) + (sfbEnp1 >> 1);
+ avgEnLdData = CalcLdData(avgEn);
+ sfbEn = qcOutChan->sfbEnergy[sfbGrp + sfb];
+ sfbEnLdData = qcOutChan->sfbEnergyLdData[sfbGrp + sfb];
+ /* peak ? */
+ if (sfbEn > avgEn) {
+ FIXP_DBL tmpMinSnrLdData;
+ if (psyOutChannel[ch]->lastWindowSequence == LONG_WINDOW)
+ tmpMinSnrLdData =
+ fixMax(SnrLdFac + (FIXP_DBL)(avgEnLdData - sfbEnLdData),
+ (FIXP_DBL)SnrLdMin1);
+ else
+ tmpMinSnrLdData =
+ fixMax(SnrLdFac + (FIXP_DBL)(avgEnLdData - sfbEnLdData),
+ (FIXP_DBL)SnrLdMin3);
+
+ qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] = fixMin(
+ qcOutChan->sfbMinSnrLdData[sfbGrp + sfb], tmpMinSnrLdData);
}
- else {
- ahFlag[ch][sfbGrp+sfb] = AH_INACTIVE;
+ /* valley ? */
+ if (((sfbEnLdData + (FIXP_DBL)SnrLdMin4) < (FIXP_DBL)avgEnLdData) &&
+ (sfbEn > FL2FXCONST_DBL(0.0))) {
+ FIXP_DBL tmpMinSnrLdData = avgEnLdData - sfbEnLdData -
+ (FIXP_DBL)SnrLdMin4 +
+ qcOutChan->sfbMinSnrLdData[sfbGrp + sfb];
+ tmpMinSnrLdData = fixMin((FIXP_DBL)SnrLdFac, tmpMinSnrLdData);
+ qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] =
+ fixMin(tmpMinSnrLdData,
+ (FIXP_DBL)(qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] +
+ SnrLdMin2));
}
}
}
- }
-}
+ }
+ }
+
+ /* stereo: adapt the minimum requirements sfbMinSnr of mid and
+ side channels to avoid spending unnoticable bits */
+ if (nChannels == 2) {
+ QC_OUT_CHANNEL *qcOutChanM = qcOutChannel[0];
+ QC_OUT_CHANNEL *qcOutChanS = qcOutChannel[1];
+ const PSY_OUT_CHANNEL *const psyOutChanM = psyOutChannel[0];
+ for (sfbGrp = 0; sfbGrp < psyOutChanM->sfbCnt;
+ sfbGrp += psyOutChanM->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChanM->maxSfbPerGroup; sfb++) {
+ if (toolsInfo->msMask[sfbGrp + sfb]) {
+ FIXP_DBL maxSfbEnLd =
+ fixMax(qcOutChanM->sfbEnergyLdData[sfbGrp + sfb],
+ qcOutChanS->sfbEnergyLdData[sfbGrp + sfb]);
+ FIXP_DBL maxThrLd, sfbMinSnrTmpLd;
+
+ if (((SnrLdMin5 >> 1) + (maxSfbEnLd >> 1) +
+ (qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb] >> 1)) <=
+ FL2FXCONST_DBL(-0.5f))
+ maxThrLd = FL2FXCONST_DBL(-1.0f);
+ else
+ maxThrLd = SnrLdMin5 + maxSfbEnLd +
+ qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb];
+
+ if (qcOutChanM->sfbEnergy[sfbGrp + sfb] > FL2FXCONST_DBL(0.0f))
+ sfbMinSnrTmpLd =
+ maxThrLd - qcOutChanM->sfbEnergyLdData[sfbGrp + sfb];
+ else
+ sfbMinSnrTmpLd = FL2FXCONST_DBL(0.0f);
+ qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb] =
+ fixMax(qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb], sfbMinSnrTmpLd);
+ if (qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb] <= FL2FXCONST_DBL(0.0f))
+ qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb] = fixMin(
+ qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb], (FIXP_DBL)SnrLdFac);
+
+ if (qcOutChanS->sfbEnergy[sfbGrp + sfb] > FL2FXCONST_DBL(0.0f))
+ sfbMinSnrTmpLd =
+ maxThrLd - qcOutChanS->sfbEnergyLdData[sfbGrp + sfb];
+ else
+ sfbMinSnrTmpLd = FL2FXCONST_DBL(0.0f);
+
+ qcOutChanS->sfbMinSnrLdData[sfbGrp + sfb] =
+ fixMax(qcOutChanS->sfbMinSnrLdData[sfbGrp + sfb], sfbMinSnrTmpLd);
+
+ if (qcOutChanS->sfbMinSnrLdData[sfbGrp + sfb] <= FL2FXCONST_DBL(0.0f))
+ qcOutChanS->sfbMinSnrLdData[sfbGrp + sfb] = fixMin(
+ qcOutChanS->sfbMinSnrLdData[sfbGrp + sfb], (FIXP_DBL)SnrLdFac);
+
+ if (qcOutChanM->sfbEnergy[sfbGrp + sfb] >
+ qcOutChanM->sfbSpreadEnergy[sfbGrp + sfb])
+ qcOutChanS->sfbSpreadEnergy[sfbGrp + sfb] = fMult(
+ qcOutChanS->sfbEnergy[sfbGrp + sfb], FL2FXCONST_DBL(0.9f));
+
+ if (qcOutChanS->sfbEnergy[sfbGrp + sfb] >
+ qcOutChanS->sfbSpreadEnergy[sfbGrp + sfb])
+ qcOutChanM->sfbSpreadEnergy[sfbGrp + sfb] = fMult(
+ qcOutChanM->sfbEnergy[sfbGrp + sfb], FL2FXCONST_DBL(0.9f));
+
+ } /* if (toolsInfo->msMask[sfbGrp+sfb]) */
+ } /* sfb */
+ } /* sfbGrp */
+ } /* nChannels==2 */
+
+ /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */
+ for (ch = 0; ch < nChannels; ch++) {
+ QC_OUT_CHANNEL *qcOutChan = qcOutChannel[ch];
+ const PSY_OUT_CHANNEL *const psyOutChan = psyOutChannel[ch];
+ for (sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt;
+ sfbGrp += psyOutChan->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChan->maxSfbPerGroup; sfb++) {
+ if ((qcOutChan->sfbSpreadEnergy[sfbGrp + sfb] >
+ qcOutChan->sfbEnergy[sfbGrp + sfb]) ||
+ (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] > FL2FXCONST_DBL(0.0f))) {
+ ahFlag[ch][sfbGrp + sfb] = NO_AH;
+ } else {
+ ahFlag[ch][sfbGrp + sfb] = AH_INACTIVE;
+ }
+ }
+ }
+ }
+}
/**
- * \brief Calculate constants that do not change during successive pe calculations.
+ * \brief Calculate constants that do not change during successive pe
+ * calculations.
*
- * \param peData Pointer to structure containing PE data of current element.
- * \param psyOutChannel Pointer to PSY_OUT_CHANNEL struct holding nChannels elements.
- * \param qcOutChannel Pointer to QC_OUT_CHANNEL struct holding nChannels elements.
+ * \param peData Pointer to structure containing PE data of
+ * current element.
+ * \param psyOutChannel Pointer to PSY_OUT_CHANNEL struct holding
+ * nChannels elements.
+ * \param qcOutChannel Pointer to QC_OUT_CHANNEL struct holding
+ * nChannels elements.
* \param nChannels Number of channels in element.
- * \param peOffset Fixed PE offset defined while FDKaacEnc_AdjThrInit() depending on bitrate.
+ * \param peOffset Fixed PE offset defined while
+ * FDKaacEnc_AdjThrInit() depending on bitrate.
*
* \return void
*/
-static
-void FDKaacEnc_preparePe(PE_DATA *peData,
- PSY_OUT_CHANNEL* psyOutChannel[(2)],
- QC_OUT_CHANNEL* qcOutChannel[(2)],
- const INT nChannels,
- const INT peOffset)
-{
- INT ch;
-
- for(ch=0; ch<nChannels; ch++) {
- PSY_OUT_CHANNEL *psyOutChan = psyOutChannel[ch];
- FDKaacEnc_prepareSfbPe(&peData->peChannelData[ch],
- psyOutChan->sfbEnergyLdData,
- psyOutChan->sfbThresholdLdData,
- qcOutChannel[ch]->sfbFormFactorLdData,
- psyOutChan->sfbOffsets,
- psyOutChan->sfbCnt,
- psyOutChan->sfbPerGroup,
- psyOutChan->maxSfbPerGroup);
- }
- peData->offset = peOffset;
+static void FDKaacEnc_preparePe(PE_DATA *const peData,
+ const PSY_OUT_CHANNEL *const psyOutChannel[(2)],
+ const QC_OUT_CHANNEL *const qcOutChannel[(2)],
+ const INT nChannels, const INT peOffset) {
+ INT ch;
+
+ for (ch = 0; ch < nChannels; ch++) {
+ const PSY_OUT_CHANNEL *const psyOutChan = psyOutChannel[ch];
+ FDKaacEnc_prepareSfbPe(
+ &peData->peChannelData[ch], psyOutChan->sfbEnergyLdData,
+ psyOutChan->sfbThresholdLdData, qcOutChannel[ch]->sfbFormFactorLdData,
+ psyOutChan->sfbOffsets, psyOutChan->sfbCnt, psyOutChan->sfbPerGroup,
+ psyOutChan->maxSfbPerGroup);
+ }
+ peData->offset = peOffset;
}
/**
* \brief Calculate weighting factor for threshold adjustment.
*
- * Calculate weighting factor to be applied at energies and thresholds in ld64 format.
+ * Calculate weighting factor to be applied at energies and thresholds in ld64
+ * format.
*
* \param peData, Pointer to PE data in current element.
- * \param psyOutChannel Pointer to PSY_OUT_CHANNEL struct holding nChannels elements.
- * \param qcOutChannel Pointer to QC_OUT_CHANNEL struct holding nChannels elements.
+ * \param psyOutChannel Pointer to PSY_OUT_CHANNEL struct holding
+ * nChannels elements.
+ * \param qcOutChannel Pointer to QC_OUT_CHANNEL struct holding
+ * nChannels elements.
* \param toolsInfo Pointer to tools info struct of current element.
- * \param adjThrStateElement Pointer to ATS_ELEMENT holding enFacPatch states.
+ * \param adjThrStateElement Pointer to ATS_ELEMENT holding enFacPatch
+ * states.
* \param nChannels Number of channels in element.
* \param usePatchTool Apply the weighting tool 0 (no) else (yes).
*
* \return void
*/
-static
-void FDKaacEnc_calcWeighting(PE_DATA *peData,
- PSY_OUT_CHANNEL* psyOutChannel[(2)],
- QC_OUT_CHANNEL* qcOutChannel[(2)],
- struct TOOLSINFO *toolsInfo,
- ATS_ELEMENT* adjThrStateElement,
- const INT nChannels,
- const INT usePatchTool)
-{
- int ch, noShortWindowInFrame = TRUE;
- INT exePatchM = 0;
-
- for (ch=0; ch<nChannels; ch++) {
- if (psyOutChannel[ch]->lastWindowSequence == SHORT_WINDOW) {
- noShortWindowInFrame = FALSE;
- }
- FDKmemclear(qcOutChannel[ch]->sfbEnFacLd, MAX_GROUPED_SFB*sizeof(FIXP_DBL));
- }
-
- if (usePatchTool==0) {
- return; /* tool is disabled */
+static void FDKaacEnc_calcWeighting(
+ const PE_DATA *const peData,
+ const PSY_OUT_CHANNEL *const psyOutChannel[(2)],
+ QC_OUT_CHANNEL *const qcOutChannel[(2)],
+ const struct TOOLSINFO *const toolsInfo,
+ ATS_ELEMENT *const adjThrStateElement, const INT nChannels,
+ const INT usePatchTool) {
+ int ch, noShortWindowInFrame = TRUE;
+ INT exePatchM = 0;
+
+ for (ch = 0; ch < nChannels; ch++) {
+ if (psyOutChannel[ch]->lastWindowSequence == SHORT_WINDOW) {
+ noShortWindowInFrame = FALSE;
}
+ FDKmemclear(qcOutChannel[ch]->sfbEnFacLd,
+ MAX_GROUPED_SFB * sizeof(FIXP_DBL));
+ }
- for (ch=0; ch<nChannels; ch++) {
-
- PSY_OUT_CHANNEL *psyOutChan = psyOutChannel[ch];
-
- if (noShortWindowInFrame) { /* retain energy ratio between blocks of different length */
-
- FIXP_DBL nrgSum14, nrgSum12, nrgSum34, nrgTotal;
- FIXP_DBL nrgFacLd_14, nrgFacLd_12, nrgFacLd_34;
- INT usePatch, exePatch;
- int sfb, sfbGrp, nLinesSum = 0;
+ if (usePatchTool == 0) {
+ return; /* tool is disabled */
+ }
- nrgSum14 = nrgSum12 = nrgSum34 = nrgTotal = FL2FXCONST_DBL(0.f);
+ for (ch = 0; ch < nChannels; ch++) {
+ const PSY_OUT_CHANNEL *const psyOutChan = psyOutChannel[ch];
+
+ if (noShortWindowInFrame) { /* retain energy ratio between blocks of
+ different length */
+
+ FIXP_DBL nrgSum14, nrgSum12, nrgSum34, nrgTotal;
+ FIXP_DBL nrgFacLd_14, nrgFacLd_12, nrgFacLd_34;
+ INT usePatch, exePatch;
+ int sfb, sfbGrp, nLinesSum = 0;
+
+ nrgSum14 = nrgSum12 = nrgSum34 = nrgTotal = FL2FXCONST_DBL(0.f);
+
+ /* calculate flatness of audible spectrum, i.e. spectrum above masking
+ * threshold. */
+ for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt;
+ sfbGrp += psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ FIXP_DBL nrgFac12 = CalcInvLdData(
+ psyOutChan->sfbEnergyLdData[sfbGrp + sfb] >> 1); /* nrg^(1/2) */
+ FIXP_DBL nrgFac14 = CalcInvLdData(
+ psyOutChan->sfbEnergyLdData[sfbGrp + sfb] >> 2); /* nrg^(1/4) */
+
+ /* maximal number of bands is 64, results scaling factor 6 */
+ nLinesSum += peData->peChannelData[ch]
+ .sfbNLines[sfbGrp + sfb]; /* relevant lines */
+ nrgTotal +=
+ (psyOutChan->sfbEnergy[sfbGrp + sfb] >> 6); /* sum up nrg */
+ nrgSum12 += (nrgFac12 >> 6); /* sum up nrg^(2/4) */
+ nrgSum14 += (nrgFac14 >> 6); /* sum up nrg^(1/4) */
+ nrgSum34 += (fMult(nrgFac14, nrgFac12) >> 6); /* sum up nrg^(3/4) */
+ }
+ }
- /* calculate flatness of audible spectrum, i.e. spectrum above masking threshold. */
- for (sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutChannel[ch]->sfbPerGroup) {
- for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
- FIXP_DBL nrgFac12 = CalcInvLdData(psyOutChan->sfbEnergyLdData[sfbGrp+sfb]>>1); /* nrg^(1/2) */
- FIXP_DBL nrgFac14 = CalcInvLdData(psyOutChan->sfbEnergyLdData[sfbGrp+sfb]>>2); /* nrg^(1/4) */
+ nrgTotal = CalcLdData(nrgTotal); /* get ld64 of total nrg */
+
+ nrgFacLd_14 =
+ CalcLdData(nrgSum14) - nrgTotal; /* ld64(nrgSum14/nrgTotal) */
+ nrgFacLd_12 =
+ CalcLdData(nrgSum12) - nrgTotal; /* ld64(nrgSum12/nrgTotal) */
+ nrgFacLd_34 =
+ CalcLdData(nrgSum34) - nrgTotal; /* ld64(nrgSum34/nrgTotal) */
+
+ /* Note: nLinesSum cannot be larger than the number of total lines, thats
+ * taken care of in line_pe.cpp FDKaacEnc_prepareSfbPe() */
+ adjThrStateElement->chaosMeasureEnFac[ch] =
+ fMax(FL2FXCONST_DBL(0.1875f),
+ fDivNorm(nLinesSum, psyOutChan->sfbOffsets[psyOutChan->sfbCnt]));
+
+ usePatch = (adjThrStateElement->chaosMeasureEnFac[ch] >
+ FL2FXCONST_DBL(0.78125f));
+ exePatch = ((usePatch) && (adjThrStateElement->lastEnFacPatch[ch]));
+
+ for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt;
+ sfbGrp += psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ INT sfbExePatch;
+ /* for MS coupled SFBs, also execute patch in side channel if done in
+ * mid channel */
+ if ((ch == 1) && (toolsInfo->msMask[sfbGrp + sfb])) {
+ sfbExePatch = exePatchM;
+ } else {
+ sfbExePatch = exePatch;
+ }
- /* maximal number of bands is 64, results scaling factor 6 */
- nLinesSum += peData->peChannelData[ch].sfbNLines[sfbGrp+sfb]; /* relevant lines */
- nrgTotal += ( psyOutChan->sfbEnergy[sfbGrp+sfb] >> 6 ); /* sum up nrg */
- nrgSum12 += ( nrgFac12 >> 6 ); /* sum up nrg^(2/4) */
- nrgSum14 += ( nrgFac14 >> 6 ); /* sum up nrg^(1/4) */
- nrgSum34 += ( fMult(nrgFac14, nrgFac12) >> 6 ); /* sum up nrg^(3/4) */
- }
+ if ((sfbExePatch) &&
+ (psyOutChan->sfbEnergy[sfbGrp + sfb] > FL2FXCONST_DBL(0.f))) {
+ /* execute patch based on spectral flatness calculated above */
+ if (adjThrStateElement->chaosMeasureEnFac[ch] >
+ FL2FXCONST_DBL(0.8125f)) {
+ qcOutChannel[ch]->sfbEnFacLd[sfbGrp + sfb] =
+ ((nrgFacLd_14 +
+ (psyOutChan->sfbEnergyLdData[sfbGrp + sfb] +
+ (psyOutChan->sfbEnergyLdData[sfbGrp + sfb] >> 1))) >>
+ 1); /* sfbEnergy^(3/4) */
+ } else if (adjThrStateElement->chaosMeasureEnFac[ch] >
+ FL2FXCONST_DBL(0.796875f)) {
+ qcOutChannel[ch]->sfbEnFacLd[sfbGrp + sfb] =
+ ((nrgFacLd_12 + psyOutChan->sfbEnergyLdData[sfbGrp + sfb]) >>
+ 1); /* sfbEnergy^(2/4) */
+ } else {
+ qcOutChannel[ch]->sfbEnFacLd[sfbGrp + sfb] =
+ ((nrgFacLd_34 +
+ (psyOutChan->sfbEnergyLdData[sfbGrp + sfb] >> 1)) >>
+ 1); /* sfbEnergy^(1/4) */
}
-
- nrgTotal = CalcLdData(nrgTotal); /* get ld64 of total nrg */
-
- nrgFacLd_14 = CalcLdData(nrgSum14) - nrgTotal; /* ld64(nrgSum14/nrgTotal) */
- nrgFacLd_12 = CalcLdData(nrgSum12) - nrgTotal; /* ld64(nrgSum12/nrgTotal) */
- nrgFacLd_34 = CalcLdData(nrgSum34) - nrgTotal; /* ld64(nrgSum34/nrgTotal) */
-
- adjThrStateElement->chaosMeasureEnFac[ch] = FDKmax( FL2FXCONST_DBL(0.1875f), fDivNorm(nLinesSum,psyOutChan->sfbOffsets[psyOutChan->sfbCnt]) );
-
- usePatch = (adjThrStateElement->chaosMeasureEnFac[ch] > FL2FXCONST_DBL(0.78125f));
- exePatch = ((usePatch) && (adjThrStateElement->lastEnFacPatch[ch]));
-
- for (sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutChannel[ch]->sfbPerGroup) {
- for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
-
- INT sfbExePatch;
-
- /* for MS coupled SFBs, also execute patch in side channel if done in mid channel */
- if ((ch == 1) && (toolsInfo->msMask[sfbGrp+sfb])) {
- sfbExePatch = exePatchM;
- }
- else {
- sfbExePatch = exePatch;
- }
-
- if ( (sfbExePatch) && (psyOutChan->sfbEnergy[sfbGrp+sfb]>FL2FXCONST_DBL(0.f)) )
- {
- /* execute patch based on spectral flatness calculated above */
- if (adjThrStateElement->chaosMeasureEnFac[ch] > FL2FXCONST_DBL(0.8125f)) {
- qcOutChannel[ch]->sfbEnFacLd[sfbGrp+sfb] = ( (nrgFacLd_14 + (psyOutChan->sfbEnergyLdData[sfbGrp+sfb]+(psyOutChan->sfbEnergyLdData[sfbGrp+sfb]>>1)))>>1 ); /* sfbEnergy^(3/4) */
- }
- else if (adjThrStateElement->chaosMeasureEnFac[ch] > FL2FXCONST_DBL(0.796875f)) {
- qcOutChannel[ch]->sfbEnFacLd[sfbGrp+sfb] = ( (nrgFacLd_12 + psyOutChan->sfbEnergyLdData[sfbGrp+sfb])>>1 ); /* sfbEnergy^(2/4) */
- }
- else {
- qcOutChannel[ch]->sfbEnFacLd[sfbGrp+sfb] = ( (nrgFacLd_34 + (psyOutChan->sfbEnergyLdData[sfbGrp+sfb]>>1))>>1 ); /* sfbEnergy^(1/4) */
- }
- qcOutChannel[ch]->sfbEnFacLd[sfbGrp+sfb] = fixMin(qcOutChannel[ch]->sfbEnFacLd[sfbGrp+sfb],(FIXP_DBL)0);
-
- }
- }
- } /* sfb loop */
-
- adjThrStateElement->lastEnFacPatch[ch] = usePatch;
- exePatchM = exePatch;
- }
- else {
- /* !noShortWindowInFrame */
- adjThrStateElement->chaosMeasureEnFac[ch] = FL2FXCONST_DBL(0.75f);
- adjThrStateElement->lastEnFacPatch[ch] = TRUE; /* allow use of sfbEnFac patch in upcoming frame */
+ qcOutChannel[ch]->sfbEnFacLd[sfbGrp + sfb] =
+ fixMin(qcOutChannel[ch]->sfbEnFacLd[sfbGrp + sfb], (FIXP_DBL)0);
+ }
}
+ } /* sfb loop */
- } /* ch loop */
+ adjThrStateElement->lastEnFacPatch[ch] = usePatch;
+ exePatchM = exePatch;
+ } else {
+ /* !noShortWindowInFrame */
+ adjThrStateElement->chaosMeasureEnFac[ch] = FL2FXCONST_DBL(0.75f);
+ adjThrStateElement->lastEnFacPatch[ch] =
+ TRUE; /* allow use of sfbEnFac patch in upcoming frame */
+ }
+ } /* ch loop */
}
-
-
-
/*****************************************************************************
functionname: FDKaacEnc_calcPe
description: calculate pe for both channels
*****************************************************************************/
-static
-void FDKaacEnc_calcPe(PSY_OUT_CHANNEL* psyOutChannel[(2)],
- QC_OUT_CHANNEL* qcOutChannel[(2)],
- PE_DATA *peData,
- const INT nChannels)
-{
- INT ch;
-
- peData->pe = peData->offset;
- peData->constPart = 0;
- peData->nActiveLines = 0;
- for(ch=0; ch<nChannels; ch++) {
- PE_CHANNEL_DATA *peChanData = &peData->peChannelData[ch];
- FDKaacEnc_calcSfbPe(&peData->peChannelData[ch],
- qcOutChannel[ch]->sfbWeightedEnergyLdData,
- qcOutChannel[ch]->sfbThresholdLdData,
- psyOutChannel[ch]->sfbCnt,
- psyOutChannel[ch]->sfbPerGroup,
- psyOutChannel[ch]->maxSfbPerGroup,
- psyOutChannel[ch]->isBook,
- psyOutChannel[ch]->isScale);
-
- peData->pe += peChanData->pe;
- peData->constPart += peChanData->constPart;
- peData->nActiveLines += peChanData->nActiveLines;
- }
+static void FDKaacEnc_calcPe(const PSY_OUT_CHANNEL *const psyOutChannel[(2)],
+ const QC_OUT_CHANNEL *const qcOutChannel[(2)],
+ PE_DATA *const peData, const INT nChannels) {
+ INT ch;
+
+ peData->pe = peData->offset;
+ peData->constPart = 0;
+ peData->nActiveLines = 0;
+ for (ch = 0; ch < nChannels; ch++) {
+ PE_CHANNEL_DATA *peChanData = &peData->peChannelData[ch];
+
+ FDKaacEnc_calcSfbPe(
+ peChanData, qcOutChannel[ch]->sfbWeightedEnergyLdData,
+ qcOutChannel[ch]->sfbThresholdLdData, psyOutChannel[ch]->sfbCnt,
+ psyOutChannel[ch]->sfbPerGroup, psyOutChannel[ch]->maxSfbPerGroup,
+ psyOutChannel[ch]->isBook, psyOutChannel[ch]->isScale);
+
+ peData->pe += peChanData->pe;
+ peData->constPart += peChanData->constPart;
+ peData->nActiveLines += peChanData->nActiveLines;
+ }
}
-void FDKaacEnc_peCalculation(PE_DATA *peData,
- PSY_OUT_CHANNEL* psyOutChannel[(2)],
- QC_OUT_CHANNEL* qcOutChannel[(2)],
- struct TOOLSINFO *toolsInfo,
- ATS_ELEMENT* adjThrStateElement,
- const INT nChannels)
-{
+void FDKaacEnc_peCalculation(PE_DATA *const peData,
+ const PSY_OUT_CHANNEL *const psyOutChannel[(2)],
+ QC_OUT_CHANNEL *const qcOutChannel[(2)],
+ const struct TOOLSINFO *const toolsInfo,
+ ATS_ELEMENT *const adjThrStateElement,
+ const INT nChannels) {
/* constants that will not change during successive pe calculations */
- FDKaacEnc_preparePe(peData, psyOutChannel, qcOutChannel, nChannels, adjThrStateElement->peOffset);
+ FDKaacEnc_preparePe(peData, psyOutChannel, qcOutChannel, nChannels,
+ adjThrStateElement->peOffset);
/* calculate weighting factor for threshold adjustment */
- FDKaacEnc_calcWeighting(peData, psyOutChannel, qcOutChannel, toolsInfo, adjThrStateElement, nChannels, 1);
-{
+ FDKaacEnc_calcWeighting(peData, psyOutChannel, qcOutChannel, toolsInfo,
+ adjThrStateElement, nChannels, 1);
+ {
/* no weighting of threholds and energies for mlout */
/* weight energies and thresholds */
int ch;
- for (ch=0; ch<nChannels; ch++) {
-
- int sfb, sfbGrp;
- QC_OUT_CHANNEL* pQcOutCh = qcOutChannel[ch];
-
- for (sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutChannel[ch]->sfbPerGroup) {
- for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
- pQcOutCh->sfbWeightedEnergyLdData[sfb+sfbGrp] = pQcOutCh->sfbEnergyLdData[sfb+sfbGrp] - pQcOutCh->sfbEnFacLd[sfb+sfbGrp];
- pQcOutCh->sfbThresholdLdData[sfb+sfbGrp] -= pQcOutCh->sfbEnFacLd[sfb+sfbGrp];
- }
+ for (ch = 0; ch < nChannels; ch++) {
+ int sfb, sfbGrp;
+ QC_OUT_CHANNEL *pQcOutCh = qcOutChannel[ch];
+
+ for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt;
+ sfbGrp += psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ pQcOutCh->sfbWeightedEnergyLdData[sfb + sfbGrp] =
+ pQcOutCh->sfbEnergyLdData[sfb + sfbGrp] -
+ pQcOutCh->sfbEnFacLd[sfb + sfbGrp];
+ pQcOutCh->sfbThresholdLdData[sfb + sfbGrp] -=
+ pQcOutCh->sfbEnFacLd[sfb + sfbGrp];
}
+ }
}
-}
+ }
/* pe without reduction */
FDKaacEnc_calcPe(psyOutChannel, qcOutChannel, peData, nChannels);
}
-
-
/*****************************************************************************
functionname: FDKaacEnc_FDKaacEnc_calcPeNoAH
description: sum the pe data only for bands where avoid hole is inactive
*****************************************************************************/
-static void FDKaacEnc_FDKaacEnc_calcPeNoAH(INT *pe,
- INT *constPart,
- INT *nActiveLines,
- PE_DATA *peData,
- UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
- PSY_OUT_CHANNEL* psyOutChannel[(2)],
- const INT nChannels)
-{
- INT ch, sfb,sfbGrp;
-
- INT pe_tmp = peData->offset;
- INT constPart_tmp = 0;
- INT nActiveLines_tmp = 0;
- for(ch=0; ch<nChannels; ch++) {
- PE_CHANNEL_DATA *peChanData = &peData->peChannelData[ch];
- for(sfbGrp = 0;sfbGrp < psyOutChannel[ch]->sfbCnt;sfbGrp+= psyOutChannel[ch]->sfbPerGroup){
- for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
- if(ahFlag[ch][sfbGrp+sfb] < AH_ACTIVE) {
- pe_tmp += peChanData->sfbPe[sfbGrp+sfb];
- constPart_tmp += peChanData->sfbConstPart[sfbGrp+sfb];
- nActiveLines_tmp += peChanData->sfbNActiveLines[sfbGrp+sfb];
- }
- }
+#define CONSTPART_HEADROOM 4
+static void FDKaacEnc_FDKaacEnc_calcPeNoAH(
+ INT *const pe, INT *const constPart, INT *const nActiveLines,
+ const PE_DATA *const peData, const UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
+ const PSY_OUT_CHANNEL *const psyOutChannel[(2)], const INT nChannels) {
+ INT ch, sfb, sfbGrp;
+
+ INT pe_tmp = peData->offset;
+ INT constPart_tmp = 0;
+ INT nActiveLines_tmp = 0;
+ for (ch = 0; ch < nChannels; ch++) {
+ const PE_CHANNEL_DATA *const peChanData = &peData->peChannelData[ch];
+ for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt;
+ sfbGrp += psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ if (ahFlag[ch][sfbGrp + sfb] < AH_ACTIVE) {
+ pe_tmp += peChanData->sfbPe[sfbGrp + sfb];
+ constPart_tmp +=
+ peChanData->sfbConstPart[sfbGrp + sfb] >> CONSTPART_HEADROOM;
+ nActiveLines_tmp += peChanData->sfbNActiveLines[sfbGrp + sfb];
}
+ }
}
- /* correct scaled pe and constPart values */
- *pe = pe_tmp >> PE_CONSTPART_SHIFT;
- *constPart = constPart_tmp >> PE_CONSTPART_SHIFT;
+ }
+ /* correct scaled pe and constPart values */
+ *pe = pe_tmp >> PE_CONSTPART_SHIFT;
+ *constPart = constPart_tmp >> (PE_CONSTPART_SHIFT - CONSTPART_HEADROOM);
- *nActiveLines = nActiveLines_tmp;
+ *nActiveLines = nActiveLines_tmp;
}
-
/*****************************************************************************
functionname: FDKaacEnc_reduceThresholdsCBR
description: apply reduction formula
*****************************************************************************/
-static const FIXP_DBL limitThrReducedLdData = (FIXP_DBL)0x00008000; /*FL2FXCONST_DBL(FDKpow(2.0,-LD_DATA_SCALING/4.0));*/
-
-static void FDKaacEnc_reduceThresholdsCBR(QC_OUT_CHANNEL* qcOutChannel[(2)],
- PSY_OUT_CHANNEL* psyOutChannel[(2)],
- UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
- FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB],
- const INT nChannels,
- const FIXP_DBL redVal,
- const SCHAR redValScaling)
-{
- INT ch, sfb, sfbGrp;
- FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrReducedLdData;
- FIXP_DBL sfbThrExp;
-
- for(ch=0; ch<nChannels; ch++) {
- QC_OUT_CHANNEL *qcOutChan = qcOutChannel[ch];
- for(sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+= psyOutChannel[ch]->sfbPerGroup){
- for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
- sfbEnLdData = qcOutChan->sfbWeightedEnergyLdData[sfbGrp+sfb];
- sfbThrLdData = qcOutChan->sfbThresholdLdData[sfbGrp+sfb];
- sfbThrExp = thrExp[ch][sfbGrp+sfb];
- if ((sfbEnLdData > sfbThrLdData) && (ahFlag[ch][sfbGrp+sfb] != AH_ACTIVE)) {
-
- /* threshold reduction formula:
- float tmp = thrExp[ch][sfb]+redVal;
- tmp *= tmp;
- sfbThrReduced = tmp*tmp;
- */
- int minScale = fixMin(CountLeadingBits(sfbThrExp), CountLeadingBits(redVal) - (DFRACT_BITS-1-redValScaling) )-1;
-
- /* 4*log( sfbThrExp + redVal ) */
- sfbThrReducedLdData = CalcLdData(fAbs(scaleValue(sfbThrExp, minScale) + scaleValue(redVal,(DFRACT_BITS-1-redValScaling)+minScale)))
- - (FIXP_DBL)(minScale<<(DFRACT_BITS-1-LD_DATA_SHIFT));
- sfbThrReducedLdData <<= 2;
-
- /* avoid holes */
- if ( ((sfbThrReducedLdData - sfbEnLdData) > qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] )
- && (ahFlag[ch][sfbGrp+sfb] != NO_AH) )
- {
- if (qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] > (FL2FXCONST_DBL(-1.0f) - sfbEnLdData) ){
- sfbThrReducedLdData = fixMax((qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] + sfbEnLdData), sfbThrLdData);
- }
- else sfbThrReducedLdData = sfbThrLdData;
- ahFlag[ch][sfbGrp+sfb] = AH_ACTIVE;
- }
+static const FIXP_DBL limitThrReducedLdData =
+ (FIXP_DBL)0x00008000; /*FL2FXCONST_DBL(FDKpow(2.0,-LD_DATA_SCALING/4.0));*/
+
+static void FDKaacEnc_reduceThresholdsCBR(
+ QC_OUT_CHANNEL *const qcOutChannel[(2)],
+ const PSY_OUT_CHANNEL *const psyOutChannel[(2)],
+ UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
+ const FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB], const INT nChannels,
+ const FIXP_DBL redVal_m, const SCHAR redVal_e) {
+ INT ch, sfb, sfbGrp;
+ FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrReducedLdData;
+ FIXP_DBL sfbThrExp;
+
+ for (ch = 0; ch < nChannels; ch++) {
+ QC_OUT_CHANNEL *qcOutChan = qcOutChannel[ch];
+ for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt;
+ sfbGrp += psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ sfbEnLdData = qcOutChan->sfbWeightedEnergyLdData[sfbGrp + sfb];
+ sfbThrLdData = qcOutChan->sfbThresholdLdData[sfbGrp + sfb];
+ sfbThrExp = thrExp[ch][sfbGrp + sfb];
+ if ((sfbEnLdData > sfbThrLdData) &&
+ (ahFlag[ch][sfbGrp + sfb] != AH_ACTIVE)) {
+ /* threshold reduction formula:
+ float tmp = thrExp[ch][sfb]+redVal;
+ tmp *= tmp;
+ sfbThrReduced = tmp*tmp;
+ */
+ int minScale = fixMin(CountLeadingBits(sfbThrExp),
+ CountLeadingBits(redVal_m) - redVal_e) -
+ 1;
+
+ /* 4*log( sfbThrExp + redVal ) */
+ sfbThrReducedLdData =
+ CalcLdData(fAbs(scaleValue(sfbThrExp, minScale) +
+ scaleValue(redVal_m, redVal_e + minScale))) -
+ (FIXP_DBL)(minScale << (DFRACT_BITS - 1 - LD_DATA_SHIFT));
+ sfbThrReducedLdData <<= 2;
- /* minimum of 29 dB Ratio for Thresholds */
- if ((sfbEnLdData+(FIXP_DBL)MAXVAL_DBL) > FL2FXCONST_DBL(9.6336206/LD_DATA_SCALING)){
- sfbThrReducedLdData = fixMax(sfbThrReducedLdData, (sfbEnLdData - FL2FXCONST_DBL(9.6336206/LD_DATA_SCALING)));
- }
+ /* avoid holes */
+ if ((sfbThrReducedLdData >
+ (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] + sfbEnLdData)) &&
+ (ahFlag[ch][sfbGrp + sfb] != NO_AH)) {
+ if (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] >
+ (FL2FXCONST_DBL(-1.0f) - sfbEnLdData)) {
+ sfbThrReducedLdData = fixMax(
+ (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] + sfbEnLdData),
+ sfbThrLdData);
+ } else
+ sfbThrReducedLdData = sfbThrLdData;
+ ahFlag[ch][sfbGrp + sfb] = AH_ACTIVE;
+ }
- qcOutChan->sfbThresholdLdData[sfbGrp+sfb] = sfbThrReducedLdData;
- }
+ /* minimum of 29 dB Ratio for Thresholds */
+ if ((sfbEnLdData + (FIXP_DBL)MAXVAL_DBL) >
+ FL2FXCONST_DBL(9.6336206 / LD_DATA_SCALING)) {
+ sfbThrReducedLdData = fixMax(
+ sfbThrReducedLdData,
+ (sfbEnLdData - FL2FXCONST_DBL(9.6336206 / LD_DATA_SCALING)));
+ }
+
+ qcOutChan->sfbThresholdLdData[sfbGrp + sfb] = sfbThrReducedLdData;
}
}
- }
+ }
+ }
}
/* similar to prepareSfbPe1() */
-static FIXP_DBL FDKaacEnc_calcChaosMeasure(PSY_OUT_CHANNEL *psyOutChannel,
- const FIXP_DBL *sfbFormFactorLdData)
-{
- #define SCALE_FORM_FAC (4) /* (SCALE_FORM_FAC+FORM_FAC_SHIFT) >= ld(FRAME_LENGTH)*/
- #define SCALE_NRGS (8)
- #define SCALE_NLINES (16)
- #define SCALE_NRGS_SQRT4 (2) /* 0.25 * SCALE_NRGS */
- #define SCALE_NLINES_P34 (12) /* 0.75 * SCALE_NLINES */
-
- INT sfbGrp, sfb;
+static FIXP_DBL FDKaacEnc_calcChaosMeasure(
+ const PSY_OUT_CHANNEL *const psyOutChannel,
+ const FIXP_DBL *const sfbFormFactorLdData) {
+#define SCALE_FORM_FAC \
+ (4) /* (SCALE_FORM_FAC+FORM_FAC_SHIFT) >= ld(FRAME_LENGTH)*/
+#define SCALE_NRGS (8)
+#define SCALE_NLINES (16)
+#define SCALE_NRGS_SQRT4 (2) /* 0.25 * SCALE_NRGS */
+#define SCALE_NLINES_P34 (12) /* 0.75 * SCALE_NLINES */
+
+ INT sfbGrp, sfb;
FIXP_DBL chaosMeasure;
INT frameNLines = 0;
FIXP_DBL frameFormFactor = FL2FXCONST_DBL(0.f);
FIXP_DBL frameEnergy = FL2FXCONST_DBL(0.f);
- for (sfbGrp=0; sfbGrp<psyOutChannel->sfbCnt; sfbGrp+=psyOutChannel->sfbPerGroup) {
- for (sfb=0; sfb<psyOutChannel->maxSfbPerGroup; sfb++){
- if (psyOutChannel->sfbEnergyLdData[sfbGrp+sfb] > psyOutChannel->sfbThresholdLdData[sfbGrp+sfb]) {
- frameFormFactor += (CalcInvLdData(sfbFormFactorLdData[sfbGrp+sfb])>>SCALE_FORM_FAC);
- frameNLines += (psyOutChannel->sfbOffsets[sfbGrp+sfb+1] - psyOutChannel->sfbOffsets[sfbGrp+sfb]);
- frameEnergy += (psyOutChannel->sfbEnergy[sfbGrp+sfb]>>SCALE_NRGS);
+ for (sfbGrp = 0; sfbGrp < psyOutChannel->sfbCnt;
+ sfbGrp += psyOutChannel->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
+ if (psyOutChannel->sfbEnergyLdData[sfbGrp + sfb] >
+ psyOutChannel->sfbThresholdLdData[sfbGrp + sfb]) {
+ frameFormFactor += (CalcInvLdData(sfbFormFactorLdData[sfbGrp + sfb]) >>
+ SCALE_FORM_FAC);
+ frameNLines += (psyOutChannel->sfbOffsets[sfbGrp + sfb + 1] -
+ psyOutChannel->sfbOffsets[sfbGrp + sfb]);
+ frameEnergy += (psyOutChannel->sfbEnergy[sfbGrp + sfb] >> SCALE_NRGS);
}
}
}
- if(frameNLines > 0){
-
- /* frameNActiveLines = frameFormFactor*2^FORM_FAC_SHIFT * ((frameEnergy *2^SCALE_NRGS)/frameNLines)^-0.25
- chaosMeasure = frameNActiveLines / frameNLines */
- chaosMeasure =
- CalcInvLdData( (((CalcLdData(frameFormFactor)>>1) -
- (CalcLdData(frameEnergy)>>(2+1))) -
- (fMultDiv2(FL2FXCONST_DBL(0.75f),CalcLdData((FIXP_DBL)frameNLines<<(DFRACT_BITS-1-SCALE_NLINES))) -
- (((FIXP_DBL)(-((-SCALE_FORM_FAC+SCALE_NRGS_SQRT4-FORM_FAC_SHIFT+SCALE_NLINES_P34) << (DFRACT_BITS-1-LD_DATA_SHIFT))))>>1))
- )<<1 );
+ if (frameNLines > 0) {
+ /* frameNActiveLines = frameFormFactor*2^FORM_FAC_SHIFT * ((frameEnergy
+ *2^SCALE_NRGS)/frameNLines)^-0.25 chaosMeasure = frameNActiveLines /
+ frameNLines */
+ chaosMeasure = CalcInvLdData(
+ (((CalcLdData(frameFormFactor) >> 1) -
+ (CalcLdData(frameEnergy) >> (2 + 1))) -
+ (fMultDiv2(FL2FXCONST_DBL(0.75f),
+ CalcLdData((FIXP_DBL)frameNLines
+ << (DFRACT_BITS - 1 - SCALE_NLINES))) -
+ (((FIXP_DBL)(-((-SCALE_FORM_FAC + SCALE_NRGS_SQRT4 - FORM_FAC_SHIFT +
+ SCALE_NLINES_P34)
+ << (DFRACT_BITS - 1 - LD_DATA_SHIFT)))) >>
+ 1)))
+ << 1);
} else {
-
/* assuming total chaos, if no sfb is above thresholds */
chaosMeasure = FL2FXCONST_DBL(1.f);
}
@@ -970,47 +1107,46 @@ static FIXP_DBL FDKaacEnc_calcChaosMeasure(PSY_OUT_CHANNEL *psyOutChannel,
}
/* apply reduction formula for VBR-mode */
-static void FDKaacEnc_reduceThresholdsVBR(QC_OUT_CHANNEL* qcOutChannel[(2)],
- PSY_OUT_CHANNEL* psyOutChannel[(2)],
- UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
- FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB],
- const INT nChannels,
- const FIXP_DBL vbrQualFactor,
- FIXP_DBL* chaosMeasureOld)
-{
+static void FDKaacEnc_reduceThresholdsVBR(
+ QC_OUT_CHANNEL *const qcOutChannel[(2)],
+ const PSY_OUT_CHANNEL *const psyOutChannel[(2)],
+ UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
+ const FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB], const INT nChannels,
+ const FIXP_DBL vbrQualFactor, FIXP_DBL *const chaosMeasureOld) {
INT ch, sfbGrp, sfb;
- FIXP_DBL chGroupEnergy[TRANS_FAC][2];/*energy for each group and channel*/
+ FIXP_DBL chGroupEnergy[TRANS_FAC][2]; /*energy for each group and channel*/
FIXP_DBL chChaosMeasure[2];
FIXP_DBL frameEnergy = FL2FXCONST_DBL(1e-10f);
FIXP_DBL chaosMeasure = FL2FXCONST_DBL(0.f);
FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrExp;
FIXP_DBL sfbThrReducedLdData;
FIXP_DBL chaosMeasureAvg;
- INT groupCnt; /* loop counter */
- FIXP_DBL redVal[TRANS_FAC]; /* reduction values; in short-block case one redVal for each group */
- QC_OUT_CHANNEL *qcOutChan = NULL;
- PSY_OUT_CHANNEL *psyOutChan = NULL;
+ INT groupCnt; /* loop counter */
+ FIXP_DBL redVal[TRANS_FAC]; /* reduction values; in short-block case one
+ redVal for each group */
+ QC_OUT_CHANNEL *qcOutChan = NULL;
+ const PSY_OUT_CHANNEL *psyOutChan = NULL;
-#define SCALE_GROUP_ENERGY (8)
+#define SCALE_GROUP_ENERGY (8)
-#define CONST_CHAOS_MEAS_AVG_FAC_0 (FL2FXCONST_DBL(0.25f))
-#define CONST_CHAOS_MEAS_AVG_FAC_1 (FL2FXCONST_DBL(1.f-0.25f))
+#define CONST_CHAOS_MEAS_AVG_FAC_0 (FL2FXCONST_DBL(0.25f))
+#define CONST_CHAOS_MEAS_AVG_FAC_1 (FL2FXCONST_DBL(1.f - 0.25f))
-#define MIN_LDTHRESH (FL2FXCONST_DBL(-0.515625f))
+#define MIN_LDTHRESH (FL2FXCONST_DBL(-0.515625f))
-
- for(ch=0; ch<nChannels; ch++){
- qcOutChan = qcOutChannel[ch];
- psyOutChan = psyOutChannel[ch];
+ for (ch = 0; ch < nChannels; ch++) {
+ psyOutChan = psyOutChannel[ch];
/* adding up energy for each channel and each group separately */
FIXP_DBL chEnergy = FL2FXCONST_DBL(0.f);
- groupCnt=0;
+ groupCnt = 0;
- for (sfbGrp=0; sfbGrp<psyOutChan->sfbCnt; sfbGrp+=psyOutChan->sfbPerGroup, groupCnt++) {
+ for (sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt;
+ sfbGrp += psyOutChan->sfbPerGroup, groupCnt++) {
chGroupEnergy[groupCnt][ch] = FL2FXCONST_DBL(0.f);
- for (sfb=0; sfb<psyOutChan->maxSfbPerGroup; sfb++){
- chGroupEnergy[groupCnt][ch] += (psyOutChan->sfbEnergy[sfbGrp+sfb]>>SCALE_GROUP_ENERGY);
+ for (sfb = 0; sfb < psyOutChan->maxSfbPerGroup; sfb++) {
+ chGroupEnergy[groupCnt][ch] +=
+ (psyOutChan->sfbEnergy[sfbGrp + sfb] >> SCALE_GROUP_ENERGY);
}
chEnergy += chGroupEnergy[groupCnt][ch];
}
@@ -1018,110 +1154,133 @@ static void FDKaacEnc_reduceThresholdsVBR(QC_OUT_CHANNEL* qcOutChannel[(2)],
/* chaosMeasure */
if (psyOutChannel[0]->lastWindowSequence == SHORT_WINDOW) {
- chChaosMeasure[ch] = FL2FXCONST_DBL(0.5f); /* assume a constant chaos measure of 0.5f for short blocks */
+ chChaosMeasure[ch] = FL2FXCONST_DBL(
+ 0.5f); /* assume a constant chaos measure of 0.5f for short blocks */
} else {
- chChaosMeasure[ch] = FDKaacEnc_calcChaosMeasure(psyOutChannel[ch], qcOutChannel[ch]->sfbFormFactorLdData);
+ chChaosMeasure[ch] = FDKaacEnc_calcChaosMeasure(
+ psyOutChannel[ch], qcOutChannel[ch]->sfbFormFactorLdData);
}
chaosMeasure += fMult(chChaosMeasure[ch], chEnergy);
}
- if(frameEnergy > chaosMeasure) {
+ if (frameEnergy > chaosMeasure) {
INT scale = CntLeadingZeros(frameEnergy) - 1;
- FIXP_DBL num = chaosMeasure<<scale;
- FIXP_DBL denum = frameEnergy<<scale;
- chaosMeasure = schur_div(num,denum,16);
- }
- else {
+ FIXP_DBL num = chaosMeasure << scale;
+ FIXP_DBL denum = frameEnergy << scale;
+ chaosMeasure = schur_div(num, denum, 16);
+ } else {
chaosMeasure = FL2FXCONST_DBL(1.f);
}
chaosMeasureAvg = fMult(CONST_CHAOS_MEAS_AVG_FAC_0, chaosMeasure) +
- fMult(CONST_CHAOS_MEAS_AVG_FAC_1, *chaosMeasureOld); /* averaging chaos measure */
- *chaosMeasureOld = chaosMeasure = (fixMin(chaosMeasure, chaosMeasureAvg)); /* use min-value, safe for next frame */
+ fMult(CONST_CHAOS_MEAS_AVG_FAC_1,
+ *chaosMeasureOld); /* averaging chaos measure */
+ *chaosMeasureOld = chaosMeasure = (fixMin(
+ chaosMeasure, chaosMeasureAvg)); /* use min-value, safe for next frame */
/* characteristic curve
chaosMeasure = 0.2f + 0.7f/0.3f * (chaosMeasure - 0.2f);
chaosMeasure = fixMin(1.0f, fixMax(0.1f, chaosMeasure));
constants scaled by 4.f
*/
- chaosMeasure = ((FL2FXCONST_DBL(0.2f)>>2) + fMult(FL2FXCONST_DBL(0.7f/(4.f*0.3f)), (chaosMeasure - FL2FXCONST_DBL(0.2f))));
- chaosMeasure = (fixMin((FIXP_DBL)(FL2FXCONST_DBL(1.0f)>>2), fixMax((FIXP_DBL)(FL2FXCONST_DBL(0.1f)>>2), chaosMeasure)))<<2;
+ chaosMeasure = ((FL2FXCONST_DBL(0.2f) >> 2) +
+ fMult(FL2FXCONST_DBL(0.7f / (4.f * 0.3f)),
+ (chaosMeasure - FL2FXCONST_DBL(0.2f))));
+ chaosMeasure =
+ (fixMin((FIXP_DBL)(FL2FXCONST_DBL(1.0f) >> 2),
+ fixMax((FIXP_DBL)(FL2FXCONST_DBL(0.1f) >> 2), chaosMeasure)))
+ << 2;
/* calculation of reduction value */
- if (psyOutChannel[0]->lastWindowSequence == SHORT_WINDOW){ /* short-blocks */
- FDK_ASSERT(TRANS_FAC==8);
- #define WIN_TYPE_SCALE (3)
-
- INT sfbGrp, groupCnt=0;
- for (sfbGrp=0; sfbGrp<psyOutChan->sfbCnt; sfbGrp+=psyOutChan->sfbPerGroup,groupCnt++) {
+ if (psyOutChannel[0]->lastWindowSequence == SHORT_WINDOW) { /* short-blocks */
+ FDK_ASSERT(TRANS_FAC == 8);
+#define WIN_TYPE_SCALE (3)
+ groupCnt = 0;
+ for (sfbGrp = 0; sfbGrp < psyOutChannel[0]->sfbCnt;
+ sfbGrp += psyOutChannel[0]->sfbPerGroup, groupCnt++) {
FIXP_DBL groupEnergy = FL2FXCONST_DBL(0.f);
- for(ch=0;ch<nChannels;ch++){
- groupEnergy += chGroupEnergy[groupCnt][ch]; /* adding up the channels groupEnergy */
+ for (ch = 0; ch < nChannels; ch++) {
+ groupEnergy +=
+ chGroupEnergy[groupCnt]
+ [ch]; /* adding up the channels groupEnergy */
}
- FDK_ASSERT(psyOutChannel[0]->groupLen[groupCnt]<=INV_INT_TAB_SIZE);
- groupEnergy = fMult(groupEnergy,invInt[psyOutChannel[0]->groupLen[groupCnt]]); /* correction of group energy */
- groupEnergy = fixMin(groupEnergy, frameEnergy>>WIN_TYPE_SCALE); /* do not allow an higher redVal as calculated framewise */
-
- groupEnergy>>=2; /* 2*WIN_TYPE_SCALE = 6 => 6+2 = 8 ==> 8/4 = int number */
-
- redVal[groupCnt] = fMult(fMult(vbrQualFactor,chaosMeasure),
- CalcInvLdData(CalcLdData(groupEnergy)>>2) )
- << (int)( ( 2 + (2*WIN_TYPE_SCALE) + SCALE_GROUP_ENERGY )>>2 ) ;
-
+ FDK_ASSERT(psyOutChannel[0]->groupLen[groupCnt] <= INV_INT_TAB_SIZE);
+ groupEnergy = fMult(
+ groupEnergy,
+ invInt[psyOutChannel[0]->groupLen[groupCnt]]); /* correction of
+ group energy */
+ groupEnergy = fixMin(groupEnergy,
+ frameEnergy >> WIN_TYPE_SCALE); /* do not allow an
+ higher redVal as
+ calculated
+ framewise */
+
+ groupEnergy >>=
+ 2; /* 2*WIN_TYPE_SCALE = 6 => 6+2 = 8 ==> 8/4 = int number */
+
+ redVal[groupCnt] =
+ fMult(fMult(vbrQualFactor, chaosMeasure),
+ CalcInvLdData(CalcLdData(groupEnergy) >> 2))
+ << (int)((2 + (2 * WIN_TYPE_SCALE) + SCALE_GROUP_ENERGY) >> 2);
}
} else { /* long-block */
- redVal[0] = fMult( fMult(vbrQualFactor,chaosMeasure),
- CalcInvLdData(CalcLdData(frameEnergy)>>2) )
- << (int)( SCALE_GROUP_ENERGY>>2 ) ;
+ redVal[0] = fMult(fMult(vbrQualFactor, chaosMeasure),
+ CalcInvLdData(CalcLdData(frameEnergy) >> 2))
+ << (int)(SCALE_GROUP_ENERGY >> 2);
}
- for(ch=0; ch<nChannels; ch++) {
- qcOutChan = qcOutChannel[ch];
- psyOutChan = psyOutChannel[ch];
-
- for (sfbGrp=0; sfbGrp<psyOutChan->sfbCnt; sfbGrp+=psyOutChan->sfbPerGroup) {
- for (sfb=0; sfb<psyOutChan->maxSfbPerGroup; sfb++){
-
- sfbEnLdData = (qcOutChan->sfbWeightedEnergyLdData[sfbGrp+sfb]);
- sfbThrLdData = (qcOutChan->sfbThresholdLdData[sfbGrp+sfb]);
- sfbThrExp = thrExp[ch][sfbGrp+sfb];
+ for (ch = 0; ch < nChannels; ch++) {
+ qcOutChan = qcOutChannel[ch];
+ psyOutChan = psyOutChannel[ch];
- if ( (sfbThrLdData>=MIN_LDTHRESH) && (sfbEnLdData > sfbThrLdData) && (ahFlag[ch][sfbGrp+sfb] != AH_ACTIVE)) {
+ for (sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt;
+ sfbGrp += psyOutChan->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChan->maxSfbPerGroup; sfb++) {
+ sfbEnLdData = (qcOutChan->sfbWeightedEnergyLdData[sfbGrp + sfb]);
+ sfbThrLdData = (qcOutChan->sfbThresholdLdData[sfbGrp + sfb]);
+ sfbThrExp = thrExp[ch][sfbGrp + sfb];
+ if ((sfbThrLdData >= MIN_LDTHRESH) && (sfbEnLdData > sfbThrLdData) &&
+ (ahFlag[ch][sfbGrp + sfb] != AH_ACTIVE)) {
/* Short-Window */
if (psyOutChannel[ch]->lastWindowSequence == SHORT_WINDOW) {
- const int groupNumber = (int) sfb/psyOutChan->sfbPerGroup;
-
- FDK_ASSERT(INV_SQRT4_TAB_SIZE>psyOutChan->groupLen[groupNumber]);
-
- sfbThrExp = fMult(sfbThrExp, fMult( FL2FXCONST_DBL(2.82f/4.f), invSqrt4[psyOutChan->groupLen[groupNumber]]))<<2 ;
-
- if ( sfbThrExp <= (limitThrReducedLdData-redVal[groupNumber]) ) {
- sfbThrReducedLdData = FL2FXCONST_DBL(-1.0f);
- }
- else {
- if ((FIXP_DBL)redVal[groupNumber] >= FL2FXCONST_DBL(1.0f)-sfbThrExp)
- sfbThrReducedLdData = FL2FXCONST_DBL(0.0f);
- else {
- /* threshold reduction formula */
- sfbThrReducedLdData = CalcLdData(sfbThrExp + redVal[groupNumber]);
- sfbThrReducedLdData <<= 2;
- }
+ const int groupNumber = (int)sfb / psyOutChan->sfbPerGroup;
+
+ FDK_ASSERT(INV_SQRT4_TAB_SIZE > psyOutChan->groupLen[groupNumber]);
+
+ sfbThrExp =
+ fMult(sfbThrExp,
+ fMult(FL2FXCONST_DBL(2.82f / 4.f),
+ invSqrt4[psyOutChan->groupLen[groupNumber]]))
+ << 2;
+
+ if (sfbThrExp <= (limitThrReducedLdData - redVal[groupNumber])) {
+ sfbThrReducedLdData = FL2FXCONST_DBL(-1.0f);
+ } else {
+ if ((FIXP_DBL)redVal[groupNumber] >=
+ FL2FXCONST_DBL(1.0f) - sfbThrExp)
+ sfbThrReducedLdData = FL2FXCONST_DBL(0.0f);
+ else {
+ /* threshold reduction formula */
+ sfbThrReducedLdData =
+ CalcLdData(sfbThrExp + redVal[groupNumber]);
+ sfbThrReducedLdData <<= 2;
+ }
}
- sfbThrReducedLdData += ( CalcLdInt(psyOutChan->groupLen[groupNumber]) -
- ((FIXP_DBL)6<<(DFRACT_BITS-1-LD_DATA_SHIFT)) );
+ sfbThrReducedLdData +=
+ (CalcLdInt(psyOutChan->groupLen[groupNumber]) -
+ ((FIXP_DBL)6 << (DFRACT_BITS - 1 - LD_DATA_SHIFT)));
}
/* Long-Window */
else {
- if ((FIXP_DBL)redVal[0] >= FL2FXCONST_DBL(1.0f)-sfbThrExp) {
+ if ((FIXP_DBL)redVal[0] >= FL2FXCONST_DBL(1.0f) - sfbThrExp) {
sfbThrReducedLdData = FL2FXCONST_DBL(0.0f);
- }
- else {
+ } else {
/* threshold reduction formula */
sfbThrReducedLdData = CalcLdData(sfbThrExp + redVal[0]);
sfbThrReducedLdData <<= 2;
@@ -1129,27 +1288,33 @@ static void FDKaacEnc_reduceThresholdsVBR(QC_OUT_CHANNEL* qcOutChannel[(2)],
}
/* avoid holes */
- if ( ((sfbThrReducedLdData - sfbEnLdData) > qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] )
- && (ahFlag[ch][sfbGrp+sfb] != NO_AH) )
- {
- if (qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] > (FL2FXCONST_DBL(-1.0f) - sfbEnLdData) ){
- sfbThrReducedLdData = fixMax((qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] + sfbEnLdData), sfbThrLdData);
- }
- else sfbThrReducedLdData = sfbThrLdData;
- ahFlag[ch][sfbGrp+sfb] = AH_ACTIVE;
+ if (((sfbThrReducedLdData - sfbEnLdData) >
+ qcOutChan->sfbMinSnrLdData[sfbGrp + sfb]) &&
+ (ahFlag[ch][sfbGrp + sfb] != NO_AH)) {
+ if (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] >
+ (FL2FXCONST_DBL(-1.0f) - sfbEnLdData)) {
+ sfbThrReducedLdData = fixMax(
+ (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] + sfbEnLdData),
+ sfbThrLdData);
+ } else
+ sfbThrReducedLdData = sfbThrLdData;
+ ahFlag[ch][sfbGrp + sfb] = AH_ACTIVE;
}
- if (sfbThrReducedLdData<FL2FXCONST_DBL(-0.5f))
- sfbThrReducedLdData = FL2FXCONST_DBL(-1.f);
+ if (sfbThrReducedLdData < FL2FXCONST_DBL(-0.5f))
+ sfbThrReducedLdData = FL2FXCONST_DBL(-1.f);
/* minimum of 29 dB Ratio for Thresholds */
- if ((sfbEnLdData+FL2FXCONST_DBL(1.0f)) > FL2FXCONST_DBL(9.6336206/LD_DATA_SCALING)){
- sfbThrReducedLdData = fixMax(sfbThrReducedLdData, sfbEnLdData - FL2FXCONST_DBL(9.6336206/LD_DATA_SCALING));
+ if ((sfbEnLdData + FL2FXCONST_DBL(1.0f)) >
+ FL2FXCONST_DBL(9.6336206 / LD_DATA_SCALING)) {
+ sfbThrReducedLdData = fixMax(
+ sfbThrReducedLdData,
+ sfbEnLdData - FL2FXCONST_DBL(9.6336206 / LD_DATA_SCALING));
}
- sfbThrReducedLdData = fixMax(MIN_LDTHRESH,sfbThrReducedLdData);
+ sfbThrReducedLdData = fixMax(MIN_LDTHRESH, sfbThrReducedLdData);
- qcOutChan->sfbThresholdLdData[sfbGrp+sfb] = sfbThrReducedLdData;
+ qcOutChan->sfbThresholdLdData[sfbGrp + sfb] = sfbThrReducedLdData;
}
}
}
@@ -1158,174 +1323,197 @@ static void FDKaacEnc_reduceThresholdsVBR(QC_OUT_CHANNEL* qcOutChannel[(2)],
/*****************************************************************************
functionname: FDKaacEnc_correctThresh
-description: if pe difference deltaPe between desired pe and real pe is small enough,
-the difference can be distributed among the scale factor bands.
-New thresholds can be derived from this pe-difference
+description: if pe difference deltaPe between desired pe and real pe is small
+enough, the difference can be distributed among the scale factor bands. New
+thresholds can be derived from this pe-difference
*****************************************************************************/
-static void FDKaacEnc_correctThresh(CHANNEL_MAPPING* cm,
- QC_OUT_ELEMENT* qcElement[(8)],
- PSY_OUT_ELEMENT* psyOutElement[(8)],
- UCHAR ahFlag[(8)][(2)][MAX_GROUPED_SFB],
- FIXP_DBL thrExp[(8)][(2)][MAX_GROUPED_SFB],
- const FIXP_DBL redVal[(8)],
- const SCHAR redValScaling[(8)],
- const INT deltaPe,
- const INT processElements,
- const INT elementOffset)
-{
- INT ch, sfb, sfbGrp;
- QC_OUT_CHANNEL *qcOutChan;
- PSY_OUT_CHANNEL *psyOutChan;
- PE_CHANNEL_DATA *peChanData;
- FIXP_DBL thrFactorLdData;
- FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrReducedLdData;
- FIXP_DBL *sfbPeFactorsLdData[(8)][(2)];
- FIXP_DBL sfbNActiveLinesLdData[(8)][(2)][MAX_GROUPED_SFB];
- INT normFactorInt;
- FIXP_DBL normFactorLdData;
-
- INT nElements = elementOffset+processElements;
- INT elementId;
-
- /* scratch is empty; use temporal memory from quantSpec in QC_OUT_CHANNEL */
- for(elementId=elementOffset;elementId<nElements;elementId++) {
- for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
- SHORT* ptr = qcElement[elementId]->qcOutChannel[ch]->quantSpec;
- sfbPeFactorsLdData[elementId][ch] = (FIXP_DBL*)ptr;
- }
- }
-
- /* for each sfb calc relative factors for pe changes */
- normFactorInt = 0;
-
- for(elementId=elementOffset;elementId<nElements;elementId++) {
- if (cm->elInfo[elementId].elType != ID_DSE) {
-
- for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
-
- qcOutChan = qcElement[elementId]->qcOutChannel[ch];
- psyOutChan = psyOutElement[elementId]->psyOutChannel[ch];
- peChanData = &qcElement[elementId]->peData.peChannelData[ch];
-
- for(sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt; sfbGrp+= psyOutChan->sfbPerGroup){
- for (sfb=0; sfb<psyOutChan->maxSfbPerGroup; sfb++) {
-
- if ( peChanData->sfbNActiveLines[sfbGrp+sfb] == 0 ) {
- sfbNActiveLinesLdData[elementId][ch][sfbGrp+sfb] = FL2FXCONST_DBL(-1.0f);
- }
- else {
- /* Both CalcLdInt and CalcLdData can be used!
- * No offset has to be subtracted, because sfbNActiveLinesLdData
- * is shorted while thrFactor calculation */
- sfbNActiveLinesLdData[elementId][ch][sfbGrp+sfb] = CalcLdInt(peChanData->sfbNActiveLines[sfbGrp+sfb]);
- }
- if ( ((ahFlag[elementId][ch][sfbGrp+sfb] < AH_ACTIVE) || (deltaPe > 0)) &&
- peChanData->sfbNActiveLines[sfbGrp+sfb] != 0 )
- {
- if (thrExp[elementId][ch][sfbGrp+sfb] > -redVal[elementId]) {
-
- /* sfbPeFactors[ch][sfbGrp+sfb] = peChanData->sfbNActiveLines[sfbGrp+sfb] /
- (thrExp[elementId][ch][sfbGrp+sfb] + redVal[elementId]); */
-
- int minScale = fixMin(CountLeadingBits(thrExp[elementId][ch][sfbGrp+sfb]), CountLeadingBits(redVal[elementId]) - (DFRACT_BITS-1-redValScaling[elementId]) ) - 1;
-
- /* sumld = ld64( sfbThrExp + redVal ) */
- FIXP_DBL sumLd = CalcLdData(scaleValue(thrExp[elementId][ch][sfbGrp+sfb], minScale) + scaleValue(redVal[elementId], (DFRACT_BITS-1-redValScaling[elementId])+minScale))
- - (FIXP_DBL)(minScale<<(DFRACT_BITS-1-LD_DATA_SHIFT));
-
- if (sumLd < FL2FXCONST_DBL(0.f)) {
- sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] = sfbNActiveLinesLdData[elementId][ch][sfbGrp+sfb] - sumLd;
- }
- else {
- if ( sfbNActiveLinesLdData[elementId][ch][sfbGrp+sfb] > (FL2FXCONST_DBL(-1.f) + sumLd) ) {
- sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] = sfbNActiveLinesLdData[elementId][ch][sfbGrp+sfb] - sumLd;
- }
- else {
- sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] = sfbNActiveLinesLdData[elementId][ch][sfbGrp+sfb];
- }
- }
-
- normFactorInt += (INT)CalcInvLdData(sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb]);
- }
- else sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] = FL2FXCONST_DBL(1.0f);
- }
- else sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] = FL2FXCONST_DBL(-1.0f);
+static void FDKaacEnc_correctThresh(
+ const CHANNEL_MAPPING *const cm, QC_OUT_ELEMENT *const qcElement[((8))],
+ const PSY_OUT_ELEMENT *const psyOutElement[((8))],
+ UCHAR ahFlag[((8))][(2)][MAX_GROUPED_SFB],
+ const FIXP_DBL thrExp[((8))][(2)][MAX_GROUPED_SFB], const FIXP_DBL redVal_m,
+ const SCHAR redVal_e, const INT deltaPe, const INT processElements,
+ const INT elementOffset) {
+ INT ch, sfb, sfbGrp;
+ QC_OUT_CHANNEL *qcOutChan;
+ PSY_OUT_CHANNEL *psyOutChan;
+ PE_CHANNEL_DATA *peChanData;
+ FIXP_DBL thrFactorLdData;
+ FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrReducedLdData;
+ FIXP_DBL *sfbPeFactorsLdData[((8))][(2)];
+ FIXP_DBL(*sfbNActiveLinesLdData)[(2)][MAX_GROUPED_SFB];
+
+ INT normFactorInt;
+ FIXP_DBL normFactorLdData;
+
+ INT nElements = elementOffset + processElements;
+ INT elementId;
+
+ /* scratch is empty; use temporal memory from quantSpec in QC_OUT_CHANNEL */
+ for (elementId = elementOffset; elementId < nElements; elementId++) {
+ for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) {
+ /* The reinterpret_cast is used to suppress a compiler warning. We know
+ * that qcElement[elementId]->qcOutChannel[ch]->quantSpec is sufficiently
+ * aligned, so the cast is safe */
+ sfbPeFactorsLdData[elementId][ch] =
+ reinterpret_cast<FIXP_DBL *>(reinterpret_cast<void *>(
+ qcElement[elementId]->qcOutChannel[ch]->quantSpec));
+ }
+ }
+ /* The reinterpret_cast is used to suppress a compiler warning. We know that
+ * qcElement[0]->dynMem_SfbNActiveLinesLdData is sufficiently aligned, so the
+ * cast is safe */
+ sfbNActiveLinesLdData = reinterpret_cast<FIXP_DBL(*)[(2)][MAX_GROUPED_SFB]>(
+ reinterpret_cast<void *>(qcElement[0]->dynMem_SfbNActiveLinesLdData));
+
+ /* for each sfb calc relative factors for pe changes */
+ normFactorInt = 0;
+
+ for (elementId = elementOffset; elementId < nElements; elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+ for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) {
+ psyOutChan = psyOutElement[elementId]->psyOutChannel[ch];
+ peChanData = &qcElement[elementId]->peData.peChannelData[ch];
+
+ for (sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt;
+ sfbGrp += psyOutChan->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChan->maxSfbPerGroup; sfb++) {
+ if (peChanData->sfbNActiveLines[sfbGrp + sfb] == 0) {
+ sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] =
+ FL2FXCONST_DBL(-1.0f);
+ } else {
+ /* Both CalcLdInt and CalcLdData can be used!
+ * No offset has to be subtracted, because sfbNActiveLinesLdData
+ * is shorted while thrFactor calculation */
+ sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] =
+ CalcLdInt(peChanData->sfbNActiveLines[sfbGrp + sfb]);
}
+ if (((ahFlag[elementId][ch][sfbGrp + sfb] < AH_ACTIVE) ||
+ (deltaPe > 0)) &&
+ peChanData->sfbNActiveLines[sfbGrp + sfb] != 0) {
+ if (thrExp[elementId][ch][sfbGrp + sfb] > -redVal_m) {
+ /* sfbPeFactors[ch][sfbGrp+sfb] =
+ peChanData->sfbNActiveLines[sfbGrp+sfb] /
+ (thrExp[elementId][ch][sfbGrp+sfb] +
+ redVal[elementId]); */
+
+ int minScale =
+ fixMin(
+ CountLeadingBits(thrExp[elementId][ch][sfbGrp + sfb]),
+ CountLeadingBits(redVal_m) - redVal_e) -
+ 1;
+
+ /* sumld = ld64( sfbThrExp + redVal ) */
+ FIXP_DBL sumLd =
+ CalcLdData(scaleValue(thrExp[elementId][ch][sfbGrp + sfb],
+ minScale) +
+ scaleValue(redVal_m, redVal_e + minScale)) -
+ (FIXP_DBL)(minScale << (DFRACT_BITS - 1 - LD_DATA_SHIFT));
+
+ if (sumLd < FL2FXCONST_DBL(0.f)) {
+ sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] =
+ sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] -
+ sumLd;
+ } else {
+ if (sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] >
+ (FL2FXCONST_DBL(-1.f) + sumLd)) {
+ sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] =
+ sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] -
+ sumLd;
+ } else {
+ sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] =
+ sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb];
+ }
+ }
+
+ normFactorInt += (INT)CalcInvLdData(
+ sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb]);
+ } else
+ sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] =
+ FL2FXCONST_DBL(1.0f);
+ } else
+ sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] =
+ FL2FXCONST_DBL(-1.0f);
}
- }
- }
- }
-
- /* normFactorLdData = ld64(deltaPe/normFactorInt) */
- normFactorLdData = CalcLdData((FIXP_DBL)((deltaPe<0) ? (-deltaPe) : (deltaPe))) - CalcLdData((FIXP_DBL)normFactorInt);
-
- /* distribute the pe difference to the scalefactors
- and calculate the according thresholds */
- for(elementId=elementOffset;elementId<nElements;elementId++) {
- if (cm->elInfo[elementId].elType != ID_DSE) {
-
- for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
- qcOutChan = qcElement[elementId]->qcOutChannel[ch];
- psyOutChan = psyOutElement[elementId]->psyOutChannel[ch];
- peChanData = &qcElement[elementId]->peData.peChannelData[ch];
-
- for(sfbGrp = 0;sfbGrp < psyOutChan->sfbCnt;sfbGrp+= psyOutChan->sfbPerGroup){
- for (sfb=0; sfb<psyOutChan->maxSfbPerGroup; sfb++) {
-
- if (peChanData->sfbNActiveLines[sfbGrp+sfb] > 0) {
-
- /* pe difference for this sfb */
- if ( (sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb]==FL2FXCONST_DBL(-1.0f)) ||
- (deltaPe==0) )
- {
- thrFactorLdData = FL2FXCONST_DBL(0.f);
- }
- else {
- /* new threshold */
- FIXP_DBL tmp = CalcInvLdData(sfbPeFactorsLdData[elementId][ch][sfbGrp+sfb] + normFactorLdData - sfbNActiveLinesLdData[elementId][ch][sfbGrp+sfb] - FL2FXCONST_DBL((float)LD_DATA_SHIFT/LD_DATA_SCALING));
-
- /* limit thrFactor to 60dB */
- tmp = (deltaPe<0) ? tmp : (-tmp);
- thrFactorLdData = FDKmin(tmp, FL2FXCONST_DBL(20.f/LD_DATA_SCALING));
- }
-
- /* new threshold */
- sfbThrLdData = qcOutChan->sfbThresholdLdData[sfbGrp+sfb];
- sfbEnLdData = qcOutChan->sfbWeightedEnergyLdData[sfbGrp+sfb];
-
- if (thrFactorLdData < FL2FXCONST_DBL(0.f)) {
- if( sfbThrLdData > (FL2FXCONST_DBL(-1.f)-thrFactorLdData) ) {
- sfbThrReducedLdData = sfbThrLdData + thrFactorLdData;
- }
- else {
- sfbThrReducedLdData = FL2FXCONST_DBL(-1.f);
- }
- }
- else{
- sfbThrReducedLdData = sfbThrLdData + thrFactorLdData;
- }
-
- /* avoid hole */
- if ( (sfbThrReducedLdData - sfbEnLdData > qcOutChan->sfbMinSnrLdData[sfbGrp+sfb]) &&
- (ahFlag[elementId][ch][sfbGrp+sfb] == AH_INACTIVE) )
- {
- /* sfbThrReduced = max(psyOutChan[ch]->sfbMinSnr[i] * sfbEn, sfbThr); */
- if ( sfbEnLdData > (sfbThrLdData-qcOutChan->sfbMinSnrLdData[sfbGrp+sfb]) ) {
- sfbThrReducedLdData = qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] + sfbEnLdData;
- }
- else {
- sfbThrReducedLdData = sfbThrLdData;
- }
- ahFlag[elementId][ch][sfbGrp+sfb] = AH_ACTIVE;
- }
-
- qcOutChan->sfbThresholdLdData[sfbGrp+sfb] = sfbThrReducedLdData;
+ }
+ }
+ }
+ }
+
+ /* normFactorLdData = ld64(deltaPe/normFactorInt) */
+ normFactorLdData =
+ CalcLdData((FIXP_DBL)((deltaPe < 0) ? (-deltaPe) : (deltaPe))) -
+ CalcLdData((FIXP_DBL)normFactorInt);
+
+ /* distribute the pe difference to the scalefactors
+ and calculate the according thresholds */
+ for (elementId = elementOffset; elementId < nElements; elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+ for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) {
+ qcOutChan = qcElement[elementId]->qcOutChannel[ch];
+ psyOutChan = psyOutElement[elementId]->psyOutChannel[ch];
+ peChanData = &qcElement[elementId]->peData.peChannelData[ch];
+
+ for (sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt;
+ sfbGrp += psyOutChan->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChan->maxSfbPerGroup; sfb++) {
+ if (peChanData->sfbNActiveLines[sfbGrp + sfb] > 0) {
+ /* pe difference for this sfb */
+ if ((sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] ==
+ FL2FXCONST_DBL(-1.0f)) ||
+ (deltaPe == 0)) {
+ thrFactorLdData = FL2FXCONST_DBL(0.f);
+ } else {
+ /* new threshold */
+ FIXP_DBL tmp = CalcInvLdData(
+ sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] +
+ normFactorLdData -
+ sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] -
+ FL2FXCONST_DBL((float)LD_DATA_SHIFT / LD_DATA_SCALING));
+
+ /* limit thrFactor to 60dB */
+ tmp = (deltaPe < 0) ? tmp : (-tmp);
+ thrFactorLdData =
+ fMin(tmp, FL2FXCONST_DBL(20.f / LD_DATA_SCALING));
}
+
+ /* new threshold */
+ sfbThrLdData = qcOutChan->sfbThresholdLdData[sfbGrp + sfb];
+ sfbEnLdData = qcOutChan->sfbWeightedEnergyLdData[sfbGrp + sfb];
+
+ if (thrFactorLdData < FL2FXCONST_DBL(0.f)) {
+ if (sfbThrLdData > (FL2FXCONST_DBL(-1.f) - thrFactorLdData)) {
+ sfbThrReducedLdData = sfbThrLdData + thrFactorLdData;
+ } else {
+ sfbThrReducedLdData = FL2FXCONST_DBL(-1.f);
+ }
+ } else {
+ sfbThrReducedLdData = sfbThrLdData + thrFactorLdData;
+ }
+
+ /* avoid hole */
+ if ((sfbThrReducedLdData - sfbEnLdData >
+ qcOutChan->sfbMinSnrLdData[sfbGrp + sfb]) &&
+ (ahFlag[elementId][ch][sfbGrp + sfb] == AH_INACTIVE)) {
+ /* sfbThrReduced = max(psyOutChan[ch]->sfbMinSnr[i] * sfbEn,
+ * sfbThr); */
+ if (sfbEnLdData >
+ (sfbThrLdData - qcOutChan->sfbMinSnrLdData[sfbGrp + sfb])) {
+ sfbThrReducedLdData =
+ qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] + sfbEnLdData;
+ } else {
+ sfbThrReducedLdData = sfbThrLdData;
+ }
+ ahFlag[elementId][ch][sfbGrp + sfb] = AH_ACTIVE;
+ }
+
+ qcOutChan->sfbThresholdLdData[sfbGrp + sfb] = sfbThrReducedLdData;
}
}
- }
- }
- }
+ }
+ }
+ }
+ }
}
/*****************************************************************************
@@ -1333,628 +1521,688 @@ static void FDKaacEnc_correctThresh(CHANNEL_MAPPING* cm,
description: if the desired pe can not be reached, reduce pe by
reducing minSnr
*****************************************************************************/
-void FDKaacEnc_reduceMinSnr(CHANNEL_MAPPING* cm,
- QC_OUT_ELEMENT* qcElement[(8)],
- PSY_OUT_ELEMENT* psyOutElement[(8)],
- UCHAR ahFlag[(8)][(2)][MAX_GROUPED_SFB],
- const INT desiredPe,
- INT* redPeGlobal,
- const INT processElements,
- const INT elementOffset)
+static void FDKaacEnc_reduceMinSnr(
+ const CHANNEL_MAPPING *const cm, QC_OUT_ELEMENT *const qcElement[((8))],
+ const PSY_OUT_ELEMENT *const psyOutElement[((8))],
+ const UCHAR ahFlag[((8))][(2)][MAX_GROUPED_SFB], const INT desiredPe,
+ INT *const redPeGlobal, const INT processElements, const INT elementOffset)
{
- INT elementId;
- INT nElements = elementOffset+processElements;
-
- INT newGlobalPe = *redPeGlobal;
-
- for(elementId=elementOffset;elementId<nElements;elementId++) {
- if (cm->elInfo[elementId].elType != ID_DSE) {
- INT ch;
- INT maxSfbPerGroup[2];
- INT sfbCnt[2];
- INT sfbPerGroup[2];
-
- for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
- maxSfbPerGroup[ch] = psyOutElement[elementId]->psyOutChannel[ch]->maxSfbPerGroup-1;
- sfbCnt[ch] = psyOutElement[elementId]->psyOutChannel[ch]->sfbCnt;
- sfbPerGroup[ch] = psyOutElement[elementId]->psyOutChannel[ch]->sfbPerGroup;
- }
+ INT ch, elementId, globalMaxSfb = 0;
+ const INT nElements = elementOffset + processElements;
+ INT newGlobalPe = *redPeGlobal;
- PE_DATA *peData = &qcElement[elementId]->peData;
-
- do
- {
- for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
-
- INT sfb, sfbGrp;
- QC_OUT_CHANNEL *qcOutChan = qcElement[elementId]->qcOutChannel[ch];
- INT noReduction = 1;
-
- if (maxSfbPerGroup[ch]>=0) { /* sfb in next channel */
- INT deltaPe = 0;
- sfb = maxSfbPerGroup[ch]--;
- noReduction = 0;
-
- for (sfbGrp = 0; sfbGrp < sfbCnt[ch]; sfbGrp += sfbPerGroup[ch]) {
-
- if (ahFlag[elementId][ch][sfbGrp+sfb] != NO_AH &&
- qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] < SnrLdFac)
- {
- /* increase threshold to new minSnr of 1dB */
- qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] = SnrLdFac;
-
- /* sfbThrReduced = max(psyOutChan[ch]->sfbMinSnr[i] * sfbEn, sfbThr); */
- if ( qcOutChan->sfbWeightedEnergyLdData[sfbGrp+sfb] >= qcOutChan->sfbThresholdLdData[sfbGrp+sfb] - qcOutChan->sfbMinSnrLdData[sfbGrp+sfb] ) {
-
- qcOutChan->sfbThresholdLdData[sfbGrp+sfb] = qcOutChan->sfbWeightedEnergyLdData[sfbGrp+sfb] + qcOutChan->sfbMinSnrLdData[sfbGrp+sfb];
-
- /* calc new pe */
- /* C2 + C3*ld(1/0.8) = 1.5 */
- deltaPe -= (peData->peChannelData[ch].sfbPe[sfbGrp+sfb]>>PE_CONSTPART_SHIFT);
-
- /* sfbPe = 1.5 * sfbNLines */
- peData->peChannelData[ch].sfbPe[sfbGrp+sfb] = (3*peData->peChannelData[ch].sfbNLines[sfbGrp+sfb]) << (PE_CONSTPART_SHIFT-1);
- deltaPe += (peData->peChannelData[ch].sfbPe[sfbGrp+sfb]>>PE_CONSTPART_SHIFT);
- }
- }
-
- } /* sfbGrp loop */
+ if (newGlobalPe <= desiredPe) {
+ goto bail;
+ }
- peData->pe += deltaPe;
- peData->peChannelData[ch].pe += deltaPe;
- newGlobalPe += deltaPe;
+ /* global maximum of maxSfbPerGroup */
+ for (elementId = elementOffset; elementId < nElements; elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+ for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) {
+ globalMaxSfb =
+ fMax(globalMaxSfb,
+ psyOutElement[elementId]->psyOutChannel[ch]->maxSfbPerGroup);
+ }
+ }
+ }
- /* stop if enough has been saved */
- if (peData->pe <= desiredPe) {
- goto bail;
+ /* as long as globalPE is above desirePE reduce SNR to 1.0 dB, starting at
+ * highest SFB */
+ while ((newGlobalPe > desiredPe) && (--globalMaxSfb >= 0)) {
+ for (elementId = elementOffset; elementId < nElements; elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+ PE_DATA *peData = &qcElement[elementId]->peData;
+
+ for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) {
+ QC_OUT_CHANNEL *qcOutChan = qcElement[elementId]->qcOutChannel[ch];
+ PSY_OUT_CHANNEL *psyOutChan =
+ psyOutElement[elementId]->psyOutChannel[ch];
+
+ /* try to reduce SNR of channel's uppermost SFB(s) */
+ if (globalMaxSfb < psyOutChan->maxSfbPerGroup) {
+ INT sfb, deltaPe = 0;
+
+ for (sfb = globalMaxSfb; sfb < psyOutChan->sfbCnt;
+ sfb += psyOutChan->sfbPerGroup) {
+ if (ahFlag[elementId][ch][sfb] != NO_AH &&
+ qcOutChan->sfbMinSnrLdData[sfb] < SnrLdFac &&
+ (qcOutChan->sfbWeightedEnergyLdData[sfb] >
+ qcOutChan->sfbThresholdLdData[sfb] - SnrLdFac)) {
+ /* increase threshold to new minSnr of 1dB */
+ qcOutChan->sfbMinSnrLdData[sfb] = SnrLdFac;
+ qcOutChan->sfbThresholdLdData[sfb] =
+ qcOutChan->sfbWeightedEnergyLdData[sfb] + SnrLdFac;
+
+ /* calc new pe */
+ /* C2 + C3*ld(1/0.8) = 1.5 */
+ deltaPe -= peData->peChannelData[ch].sfbPe[sfb];
+
+ /* sfbPe = 1.5 * sfbNLines */
+ peData->peChannelData[ch].sfbPe[sfb] =
+ (3 * peData->peChannelData[ch].sfbNLines[sfb])
+ << (PE_CONSTPART_SHIFT - 1);
+ deltaPe += peData->peChannelData[ch].sfbPe[sfb];
}
- } /* sfb > 0 */
-
- if ( (ch==(cm->elInfo[elementId].nChannelsInEl-1)) && noReduction ) {
- goto bail;
- }
+ } /* sfb loop */
- } /* ch loop */
+ deltaPe >>= PE_CONSTPART_SHIFT;
+ peData->pe += deltaPe;
+ peData->peChannelData[ch].pe += deltaPe;
+ newGlobalPe += deltaPe;
- } while ( peData->pe > desiredPe);
+ } /* if globalMaxSfb < maxSfbPerGroup */
- } /* != ID_DSE */
- } /* element loop */
+ /* stop if enough has been saved */
+ if (newGlobalPe <= desiredPe) {
+ goto bail;
+ }
+ } /* ch loop */
+ } /* != ID_DSE */
+ } /* elementId loop */
+ } /* while ( newGlobalPe > desiredPe) && (--globalMaxSfb >= 0) ) */
bail:
- /* update global PE */
- *redPeGlobal = newGlobalPe;
+ /* update global PE */
+ *redPeGlobal = newGlobalPe;
}
-
/*****************************************************************************
functionname: FDKaacEnc_allowMoreHoles
description: if the desired pe can not be reached, some more scalefactor
bands have to be quantized to zero
*****************************************************************************/
-static void FDKaacEnc_allowMoreHoles(CHANNEL_MAPPING* cm,
- QC_OUT_ELEMENT* qcElement[(8)],
- PSY_OUT_ELEMENT* psyOutElement[(8)],
- ATS_ELEMENT* AdjThrStateElement[(8)],
- UCHAR ahFlag[(8)][(2)][MAX_GROUPED_SFB],
- const INT desiredPe,
- const INT currentPe,
- const int processElements,
- const int elementOffset)
-{
+static void FDKaacEnc_allowMoreHoles(
+ const CHANNEL_MAPPING *const cm, QC_OUT_ELEMENT *const qcElement[((8))],
+ const PSY_OUT_ELEMENT *const psyOutElement[((8))],
+ const ATS_ELEMENT *const AdjThrStateElement[((8))],
+ UCHAR ahFlag[((8))][(2)][MAX_GROUPED_SFB], const INT desiredPe,
+ const INT currentPe, const int processElements, const int elementOffset) {
INT elementId;
- INT nElements = elementOffset+processElements;
+ INT nElements = elementOffset + processElements;
INT actPe = currentPe;
if (actPe <= desiredPe) {
return; /* nothing to do */
}
- for (elementId = elementOffset;elementId<nElements;elementId++) {
+ for (elementId = elementOffset; elementId < nElements; elementId++) {
if (cm->elInfo[elementId].elType != ID_DSE) {
-
INT ch, sfb, sfbGrp;
PE_DATA *peData = &qcElement[elementId]->peData;
const INT nChannels = cm->elInfo[elementId].nChannelsInEl;
- QC_OUT_CHANNEL* qcOutChannel[(2)] = {NULL};
- PSY_OUT_CHANNEL* psyOutChannel[(2)] = {NULL};
-
- for (ch=0; ch<nChannels; ch++) {
+ QC_OUT_CHANNEL *qcOutChannel[(2)] = {NULL};
+ PSY_OUT_CHANNEL *psyOutChannel[(2)] = {NULL};
+ for (ch = 0; ch < nChannels; ch++) {
/* init pointers */
qcOutChannel[ch] = qcElement[elementId]->qcOutChannel[ch];
psyOutChannel[ch] = psyOutElement[elementId]->psyOutChannel[ch];
- for(sfbGrp=0; sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+= psyOutChannel[ch]->sfbPerGroup) {
- for (sfb=psyOutChannel[ch]->maxSfbPerGroup; sfb<psyOutChannel[ch]->sfbPerGroup; sfb++) {
- peData->peChannelData[ch].sfbPe[sfbGrp+sfb] = 0;
+ for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt;
+ sfbGrp += psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb = psyOutChannel[ch]->maxSfbPerGroup;
+ sfb < psyOutChannel[ch]->sfbPerGroup; sfb++) {
+ peData->peChannelData[ch].sfbPe[sfbGrp + sfb] = 0;
}
}
}
/* for MS allow hole in the channel with less energy */
- if ( nChannels==2 && psyOutChannel[0]->lastWindowSequence==psyOutChannel[1]->lastWindowSequence ) {
-
- for (sfb=0; sfb<psyOutChannel[0]->maxSfbPerGroup; sfb++) {
- for(sfbGrp=0; sfbGrp < psyOutChannel[0]->sfbCnt; sfbGrp+=psyOutChannel[0]->sfbPerGroup) {
- if (psyOutElement[elementId]->toolsInfo.msMask[sfbGrp+sfb]) {
- FIXP_DBL EnergyLd_L = qcOutChannel[0]->sfbWeightedEnergyLdData[sfbGrp+sfb];
- FIXP_DBL EnergyLd_R = qcOutChannel[1]->sfbWeightedEnergyLdData[sfbGrp+sfb];
+ if (nChannels == 2 && psyOutChannel[0]->lastWindowSequence ==
+ psyOutChannel[1]->lastWindowSequence) {
+ for (sfb = psyOutChannel[0]->maxSfbPerGroup - 1; sfb >= 0; sfb--) {
+ for (sfbGrp = 0; sfbGrp < psyOutChannel[0]->sfbCnt;
+ sfbGrp += psyOutChannel[0]->sfbPerGroup) {
+ if (psyOutElement[elementId]->toolsInfo.msMask[sfbGrp + sfb]) {
+ FIXP_DBL EnergyLd_L =
+ qcOutChannel[0]->sfbWeightedEnergyLdData[sfbGrp + sfb];
+ FIXP_DBL EnergyLd_R =
+ qcOutChannel[1]->sfbWeightedEnergyLdData[sfbGrp + sfb];
/* allow hole in side channel ? */
- if ( (ahFlag[elementId][1][sfbGrp+sfb] != NO_AH) &&
- (((FL2FXCONST_DBL(-0.02065512648f)>>1) + (qcOutChannel[0]->sfbMinSnrLdData[sfbGrp+sfb]>>1))
- > ((EnergyLd_R>>1) - (EnergyLd_L>>1))) )
- {
- ahFlag[elementId][1][sfbGrp+sfb] = NO_AH;
- qcOutChannel[1]->sfbThresholdLdData[sfbGrp+sfb] = FL2FXCONST_DBL(0.015625f) + EnergyLd_R;
- actPe -= peData->peChannelData[1].sfbPe[sfbGrp+sfb]>>PE_CONSTPART_SHIFT;
+ if ((ahFlag[elementId][1][sfbGrp + sfb] != NO_AH) &&
+ (((FL2FXCONST_DBL(-0.02065512648f) >> 1) +
+ (qcOutChannel[0]->sfbMinSnrLdData[sfbGrp + sfb] >> 1)) >
+ ((EnergyLd_R >> 1) - (EnergyLd_L >> 1)))) {
+ ahFlag[elementId][1][sfbGrp + sfb] = NO_AH;
+ qcOutChannel[1]->sfbThresholdLdData[sfbGrp + sfb] =
+ FL2FXCONST_DBL(0.015625f) + EnergyLd_R;
+ actPe -= peData->peChannelData[1].sfbPe[sfbGrp + sfb] >>
+ PE_CONSTPART_SHIFT;
}
/* allow hole in mid channel ? */
- else if ( (ahFlag[elementId][0][sfbGrp+sfb] != NO_AH) &&
- (((FL2FXCONST_DBL(-0.02065512648f)>>1) + (qcOutChannel[1]->sfbMinSnrLdData[sfbGrp+sfb]>>1))
- > ((EnergyLd_L>>1) - (EnergyLd_R>>1))) )
- {
- ahFlag[elementId][0][sfbGrp+sfb] = NO_AH;
- qcOutChannel[0]->sfbThresholdLdData[sfbGrp+sfb] = FL2FXCONST_DBL(0.015625f) + EnergyLd_L;
- actPe -= peData->peChannelData[0].sfbPe[sfbGrp+sfb]>>PE_CONSTPART_SHIFT;
+ else if ((ahFlag[elementId][0][sfbGrp + sfb] != NO_AH) &&
+ (((FL2FXCONST_DBL(-0.02065512648f) >> 1) +
+ (qcOutChannel[1]->sfbMinSnrLdData[sfbGrp + sfb] >>
+ 1)) > ((EnergyLd_L >> 1) - (EnergyLd_R >> 1)))) {
+ ahFlag[elementId][0][sfbGrp + sfb] = NO_AH;
+ qcOutChannel[0]->sfbThresholdLdData[sfbGrp + sfb] =
+ FL2FXCONST_DBL(0.015625f) + EnergyLd_L;
+ actPe -= peData->peChannelData[0].sfbPe[sfbGrp + sfb] >>
+ PE_CONSTPART_SHIFT;
} /* if (ahFlag) */
- } /* if MS */
- } /* sfbGrp */
+ } /* if MS */
+ } /* sfbGrp */
if (actPe <= desiredPe) {
return; /* stop if enough has been saved */
}
} /* sfb */
- } /* MS possible ? */
-
- /* more holes necessary? subsequently erase bands
- starting with low energies */
- INT startSfb[2];
- FIXP_DBL avgEnLD64,minEnLD64;
- INT ahCnt;
- FIXP_DBL ahCntLD64;
- INT enIdx;
- FIXP_DBL enLD64[4];
- FIXP_DBL avgEn;
-
- /* do not go below startSfb */
- for (ch=0; ch<nChannels; ch++) {
- if (psyOutChannel[ch]->lastWindowSequence != SHORT_WINDOW)
- startSfb[ch] = AdjThrStateElement[elementId]->ahParam.startSfbL;
- else
- startSfb[ch] = AdjThrStateElement[elementId]->ahParam.startSfbS;
- }
-
- /* calc avg and min energies of bands that avoid holes */
- avgEn = FL2FXCONST_DBL(0.0f);
- minEnLD64 = FL2FXCONST_DBL(0.0f);
- ahCnt = 0;
+ } /* MS possible ? */
- for (ch=0; ch<nChannels; ch++) {
-
- sfbGrp=0;
- sfb=startSfb[ch];
+ } /* EOF DSE-suppression */
+ } /* EOF for all elements... */
- do {
- for (; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
- if ((ahFlag[elementId][ch][sfbGrp+sfb]!=NO_AH) &&
- (qcOutChannel[ch]->sfbWeightedEnergyLdData[sfbGrp+sfb] > qcOutChannel[ch]->sfbThresholdLdData[sfbGrp+sfb])){
- minEnLD64 = fixMin(minEnLD64,qcOutChannel[ch]->sfbEnergyLdData[sfbGrp+sfb]);
- avgEn += qcOutChannel[ch]->sfbEnergy[sfbGrp+sfb] >> 6;
- ahCnt++;
- }
+ if (actPe > desiredPe) {
+ /* more holes necessary? subsequently erase bands starting with low energies
+ */
+ INT ch, sfb, sfbGrp;
+ INT minSfb, maxSfb;
+ INT enIdx, ahCnt, done;
+ INT startSfb[(8)];
+ INT sfbCnt[(8)];
+ INT sfbPerGroup[(8)];
+ INT maxSfbPerGroup[(8)];
+ FIXP_DBL avgEn;
+ FIXP_DBL minEnLD64;
+ FIXP_DBL avgEnLD64;
+ FIXP_DBL enLD64[NUM_NRG_LEVS];
+ INT avgEn_e;
+
+ /* get the scaling factor over all audio elements and channels */
+ maxSfb = 0;
+ for (elementId = elementOffset; elementId < nElements; elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+ for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) {
+ for (sfbGrp = 0;
+ sfbGrp < psyOutElement[elementId]->psyOutChannel[ch]->sfbCnt;
+ sfbGrp +=
+ psyOutElement[elementId]->psyOutChannel[ch]->sfbPerGroup) {
+ maxSfb +=
+ psyOutElement[elementId]->psyOutChannel[ch]->maxSfbPerGroup;
}
-
- sfbGrp += psyOutChannel[ch]->sfbPerGroup;
- sfb=0;
-
- } while (sfbGrp < psyOutChannel[ch]->sfbCnt);
- }
-
- if ( (avgEn == FL2FXCONST_DBL(0.0f)) || (ahCnt == 0) ) {
- avgEnLD64 = FL2FXCONST_DBL(0.0f);
- }
- else {
- avgEnLD64 = CalcLdData(avgEn);
- ahCntLD64 = CalcLdInt(ahCnt);
- avgEnLD64 = avgEnLD64 + FL2FXCONST_DBL(0.09375f) - ahCntLD64; /* compensate shift with 6 */
+ }
}
+ }
+ avgEn_e =
+ (DFRACT_BITS - fixnormz_D((LONG)fMax(0, maxSfb - 1))); /* ilog2() */
+
+ ahCnt = 0;
+ maxSfb = 0;
+ minSfb = MAX_SFB;
+ avgEn = FL2FXCONST_DBL(0.0f);
+ minEnLD64 = FL2FXCONST_DBL(0.0f);
+
+ for (elementId = elementOffset; elementId < nElements; elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+ for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) {
+ const INT chIdx = cm->elInfo[elementId].ChannelIndex[ch];
+ QC_OUT_CHANNEL *qcOutChannel = qcElement[elementId]->qcOutChannel[ch];
+ PSY_OUT_CHANNEL *psyOutChannel =
+ psyOutElement[elementId]->psyOutChannel[ch];
+
+ maxSfbPerGroup[chIdx] = psyOutChannel->maxSfbPerGroup;
+ sfbCnt[chIdx] = psyOutChannel->sfbCnt;
+ sfbPerGroup[chIdx] = psyOutChannel->sfbPerGroup;
+
+ maxSfb = fMax(maxSfb, psyOutChannel->maxSfbPerGroup);
+
+ if (psyOutChannel->lastWindowSequence != SHORT_WINDOW) {
+ startSfb[chIdx] = AdjThrStateElement[elementId]->ahParam.startSfbL;
+ } else {
+ startSfb[chIdx] = AdjThrStateElement[elementId]->ahParam.startSfbS;
+ }
- /* calc some energy borders between minEn and avgEn */
- /* for (enIdx=0; enIdx<4; enIdx++) */
- /* en[enIdx] = minEn * (float)FDKpow(avgEn/(minEn+FLT_MIN), (2*enIdx+1)/7.0f); */
- enLD64[0] = minEnLD64 + fMult((avgEnLD64-minEnLD64),FL2FXCONST_DBL(0.14285714285f));
- enLD64[1] = minEnLD64 + fMult((avgEnLD64-minEnLD64),FL2FXCONST_DBL(0.42857142857f));
- enLD64[2] = minEnLD64 + fMult((avgEnLD64-minEnLD64),FL2FXCONST_DBL(0.71428571428f));
- enLD64[3] = minEnLD64 + (avgEnLD64-minEnLD64);
-
- for (enIdx=0; enIdx<4; enIdx++) {
- INT noReduction = 1;
-
- INT maxSfbPerGroup[2];
- INT sfbCnt[2];
- INT sfbPerGroup[2];
-
- for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
- maxSfbPerGroup[ch] = psyOutElement[elementId]->psyOutChannel[ch]->maxSfbPerGroup-1;
- sfbCnt[ch] = psyOutElement[elementId]->psyOutChannel[ch]->sfbCnt;
- sfbPerGroup[ch] = psyOutElement[elementId]->psyOutChannel[ch]->sfbPerGroup;
- }
+ minSfb = fMin(minSfb, startSfb[chIdx]);
- do {
+ sfbGrp = 0;
+ sfb = startSfb[chIdx];
- noReduction = 1;
+ do {
+ for (; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
+ if ((ahFlag[elementId][ch][sfbGrp + sfb] != NO_AH) &&
+ (qcOutChannel->sfbWeightedEnergyLdData[sfbGrp + sfb] >
+ qcOutChannel->sfbThresholdLdData[sfbGrp + sfb])) {
+ minEnLD64 = fixMin(minEnLD64,
+ qcOutChannel->sfbEnergyLdData[sfbGrp + sfb]);
+ avgEn += qcOutChannel->sfbEnergy[sfbGrp + sfb] >> avgEn_e;
+ ahCnt++;
+ }
+ }
- for(ch=0; ch<cm->elInfo[elementId].nChannelsInEl; ch++) {
+ sfbGrp += psyOutChannel->sfbPerGroup;
+ sfb = startSfb[chIdx];
- INT sfb, sfbGrp;
+ } while (sfbGrp < psyOutChannel->sfbCnt);
+ }
+ } /* (cm->elInfo[elementId].elType != ID_DSE) */
+ } /* (elementId = elementOffset;elementId<nElements;elementId++) */
- /* start with lowest energy border at highest sfb */
- if (maxSfbPerGroup[ch]>=startSfb[ch]) { /* sfb in next channel */
- sfb = maxSfbPerGroup[ch]--;
- noReduction = 0;
+ if ((avgEn == FL2FXCONST_DBL(0.0f)) || (ahCnt == 0)) {
+ avgEnLD64 = FL2FXCONST_DBL(0.0f);
+ } else {
+ avgEnLD64 = CalcLdData(avgEn) +
+ (FIXP_DBL)(avgEn_e << (DFRACT_BITS - 1 - LD_DATA_SHIFT)) -
+ CalcLdInt(ahCnt);
+ }
- for (sfbGrp = 0; sfbGrp < sfbCnt[ch]; sfbGrp += sfbPerGroup[ch]) {
+ /* calc some energy borders between minEn and avgEn */
+
+ /* for (enIdx = 0; enIdx < NUM_NRG_LEVS; enIdx++) {
+ en[enIdx] = (2.0f*enIdx+1.0f)/(2.0f*NUM_NRG_LEVS-1.0f);
+ } */
+ enLD64[0] =
+ minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.06666667f));
+ enLD64[1] =
+ minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.20000000f));
+ enLD64[2] =
+ minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.33333334f));
+ enLD64[3] =
+ minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.46666667f));
+ enLD64[4] =
+ minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.60000002f));
+ enLD64[5] =
+ minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.73333335f));
+ enLD64[6] =
+ minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.86666667f));
+ enLD64[7] = minEnLD64 + (avgEnLD64 - minEnLD64);
+
+ done = 0;
+ enIdx = 0;
+ sfb = maxSfb - 1;
+
+ while (!done) {
+ for (elementId = elementOffset; elementId < nElements; elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+ PE_DATA *peData = &qcElement[elementId]->peData;
+ for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) {
+ const INT chIdx = cm->elInfo[elementId].ChannelIndex[ch];
+ QC_OUT_CHANNEL *qcOutChannel =
+ qcElement[elementId]->qcOutChannel[ch];
+ if (sfb >= startSfb[chIdx] && sfb < maxSfbPerGroup[chIdx]) {
+ for (sfbGrp = 0; sfbGrp < sfbCnt[chIdx];
+ sfbGrp += sfbPerGroup[chIdx]) {
/* sfb energy below border ? */
- if (ahFlag[elementId][ch][sfbGrp+sfb] != NO_AH && qcOutChannel[ch]->sfbEnergyLdData[sfbGrp+sfb] < enLD64[enIdx]) {
+ if (ahFlag[elementId][ch][sfbGrp + sfb] != NO_AH &&
+ qcOutChannel->sfbEnergyLdData[sfbGrp + sfb] <
+ enLD64[enIdx]) {
/* allow hole */
- ahFlag[elementId][ch][sfbGrp+sfb] = NO_AH;
- qcOutChannel[ch]->sfbThresholdLdData[sfbGrp+sfb] = FL2FXCONST_DBL(0.015625f) + qcOutChannel[ch]->sfbWeightedEnergyLdData[sfbGrp+sfb];
- actPe -= peData->peChannelData[ch].sfbPe[sfbGrp+sfb]>>PE_CONSTPART_SHIFT;
+ ahFlag[elementId][ch][sfbGrp + sfb] = NO_AH;
+ qcOutChannel->sfbThresholdLdData[sfbGrp + sfb] =
+ FL2FXCONST_DBL(0.015625f) +
+ qcOutChannel->sfbWeightedEnergyLdData[sfbGrp + sfb];
+ actPe -= peData->peChannelData[ch].sfbPe[sfbGrp + sfb] >>
+ PE_CONSTPART_SHIFT;
}
- } /* sfbGrp */
-
- if (actPe <= desiredPe) {
- return; /* stop if enough has been saved */
- }
- } /* sfb > 0 */
- } /* ch loop */
-
- } while( (noReduction == 0) && (actPe > desiredPe) );
-
- if (actPe <= desiredPe) {
- return; /* stop if enough has been saved */
+ if (actPe <= desiredPe) {
+ return; /* stop if enough has been saved */
+ }
+ } /* sfbGrp */
+ } /* sfb */
+ } /* nChannelsInEl */
+ } /* ID_DSE */
+ } /* elementID */
+
+ sfb--;
+ if (sfb < minSfb) {
+ /* restart with next energy border */
+ sfb = maxSfb;
+ enIdx++;
+ if (enIdx >= NUM_NRG_LEVS) {
+ done = 1;
}
-
- } /* enIdx loop */
-
- } /* EOF DSE-suppression */
- } /* EOF for all elements... */
-
+ }
+ } /* done */
+ } /* (actPe <= desiredPe) */
}
/* reset avoid hole flags from AH_ACTIVE to AH_INACTIVE */
-static void FDKaacEnc_resetAHFlags( UCHAR ahFlag[(2)][MAX_GROUPED_SFB],
- const int nChannels,
- PSY_OUT_CHANNEL *psyOutChannel[(2)])
-{
+static void FDKaacEnc_resetAHFlags(
+ UCHAR ahFlag[(2)][MAX_GROUPED_SFB], const INT nChannels,
+ const PSY_OUT_CHANNEL *const psyOutChannel[(2)]) {
int ch, sfb, sfbGrp;
- for(ch=0; ch<nChannels; ch++) {
- for (sfbGrp=0; sfbGrp < psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutChannel[ch]->sfbPerGroup) {
- for (sfb=0; sfb<psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
- if ( ahFlag[ch][sfbGrp+sfb] == AH_ACTIVE) {
- ahFlag[ch][sfbGrp+sfb] = AH_INACTIVE;
+ for (ch = 0; ch < nChannels; ch++) {
+ for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt;
+ sfbGrp += psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
+ if (ahFlag[ch][sfbGrp + sfb] == AH_ACTIVE) {
+ ahFlag[ch][sfbGrp + sfb] = AH_INACTIVE;
}
}
}
}
}
+static FIXP_DBL CalcRedValPower(FIXP_DBL num, FIXP_DBL denum, INT *scaling) {
+ FIXP_DBL value = FL2FXCONST_DBL(0.f);
-static FIXP_DBL CalcRedValPower(FIXP_DBL num,
- FIXP_DBL denum,
- INT* scaling )
-{
- FIXP_DBL value = FL2FXCONST_DBL(0.f);
-
- if (num>=FL2FXCONST_DBL(0.f)) {
- value = fDivNorm( num, denum, scaling);
- }
- else {
- value = -fDivNorm( -num, denum, scaling);
- }
- value = f2Pow(value, *scaling, scaling);
- *scaling = DFRACT_BITS-1-*scaling;
+ if (num >= FL2FXCONST_DBL(0.f)) {
+ value = fDivNorm(num, denum, scaling);
+ } else {
+ value = -fDivNorm(-num, denum, scaling);
+ }
+ value = f2Pow(value, *scaling, scaling);
- return value;
+ return value;
}
-
/*****************************************************************************
functionname: FDKaacEnc_adaptThresholdsToPe
-description: two guesses for the reduction value and one final correction of the thresholds
+description: two guesses for the reduction value and one final correction of
+the thresholds
*****************************************************************************/
-static void FDKaacEnc_adaptThresholdsToPe(CHANNEL_MAPPING* cm,
- ATS_ELEMENT* AdjThrStateElement[(8)],
- QC_OUT_ELEMENT* qcElement[(8)],
- PSY_OUT_ELEMENT* psyOutElement[(8)],
- const INT desiredPe,
- const INT maxIter2ndGuess,
- const INT processElements,
- const INT elementOffset)
-{
- FIXP_DBL redValue[(8)];
- SCHAR redValScaling[(8)];
- UCHAR pAhFlag[(8)][(2)][MAX_GROUPED_SFB];
- FIXP_DBL pThrExp[(8)][(2)][MAX_GROUPED_SFB];
- int iter;
-
- INT constPartGlobal, noRedPeGlobal, nActiveLinesGlobal, redPeGlobal;
- constPartGlobal = noRedPeGlobal = nActiveLinesGlobal = redPeGlobal = 0;
-
- int elementId;
+static void FDKaacEnc_adaptThresholdsToPe(
+ const CHANNEL_MAPPING *const cm,
+ ATS_ELEMENT *const AdjThrStateElement[((8))],
+ QC_OUT_ELEMENT *const qcElement[((8))],
+ const PSY_OUT_ELEMENT *const psyOutElement[((8))], const INT desiredPe,
+ const INT maxIter2ndGuess, const INT processElements,
+ const INT elementOffset) {
+ FIXP_DBL reductionValue_m;
+ SCHAR reductionValue_e;
+ UCHAR(*pAhFlag)[(2)][MAX_GROUPED_SFB];
+ FIXP_DBL(*pThrExp)[(2)][MAX_GROUPED_SFB];
+ int iter;
+
+ INT constPartGlobal, noRedPeGlobal, nActiveLinesGlobal, redPeGlobal;
+ constPartGlobal = noRedPeGlobal = nActiveLinesGlobal = redPeGlobal = 0;
+
+ int elementId;
+
+ int nElements = elementOffset + processElements;
+ if (nElements > cm->nElements) {
+ nElements = cm->nElements;
+ }
- int nElements = elementOffset+processElements;
- if(nElements > cm->nElements) {
- nElements = cm->nElements;
- }
+ /* The reinterpret_cast is used to suppress a compiler warning. We know that
+ * qcElement[0]->dynMem_Ah_Flag is sufficiently aligned, so the cast is safe
+ */
+ pAhFlag = reinterpret_cast<UCHAR(*)[(2)][MAX_GROUPED_SFB]>(
+ reinterpret_cast<void *>(qcElement[0]->dynMem_Ah_Flag));
+ /* The reinterpret_cast is used to suppress a compiler warning. We know that
+ * qcElement[0]->dynMem_Thr_Exp is sufficiently aligned, so the cast is safe
+ */
+ pThrExp = reinterpret_cast<FIXP_DBL(*)[(2)][MAX_GROUPED_SFB]>(
+ reinterpret_cast<void *>(qcElement[0]->dynMem_Thr_Exp));
- /* ------------------------------------------------------- */
- /* Part I: Initialize data structures and variables... */
- /* ------------------------------------------------------- */
- for (elementId = elementOffset;elementId<nElements;elementId++) {
- if (cm->elInfo[elementId].elType != ID_DSE) {
-
- INT nChannels = cm->elInfo[elementId].nChannelsInEl;
- PE_DATA *peData = &qcElement[elementId]->peData;
-
- /* thresholds to the power of redExp */
- FDKaacEnc_calcThreshExp(pThrExp[elementId], qcElement[elementId]->qcOutChannel, psyOutElement[elementId]->psyOutChannel, nChannels);
-
- /* lower the minSnr requirements for low energies compared to the average
- energy in this frame */
- FDKaacEnc_adaptMinSnr(qcElement[elementId]->qcOutChannel, psyOutElement[elementId]->psyOutChannel, &AdjThrStateElement[elementId]->minSnrAdaptParam, nChannels);
-
- /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */
- FDKaacEnc_initAvoidHoleFlag(qcElement[elementId]->qcOutChannel, psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId], &psyOutElement[elementId]->toolsInfo, nChannels, peData, &AdjThrStateElement[elementId]->ahParam);
+ /* ------------------------------------------------------- */
+ /* Part I: Initialize data structures and variables... */
+ /* ------------------------------------------------------- */
+ for (elementId = elementOffset; elementId < nElements; elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+ INT nChannels = cm->elInfo[elementId].nChannelsInEl;
+ PE_DATA *peData = &qcElement[elementId]->peData;
- /* sum up */
- constPartGlobal += peData->constPart;
- noRedPeGlobal += peData->pe;
- nActiveLinesGlobal += fixMax((INT)peData->nActiveLines, 1);
+ /* thresholds to the power of redExp */
+ FDKaacEnc_calcThreshExp(
+ pThrExp[elementId], qcElement[elementId]->qcOutChannel,
+ psyOutElement[elementId]->psyOutChannel, nChannels);
+
+ /* lower the minSnr requirements for low energies compared to the average
+ energy in this frame */
+ FDKaacEnc_adaptMinSnr(qcElement[elementId]->qcOutChannel,
+ psyOutElement[elementId]->psyOutChannel,
+ &AdjThrStateElement[elementId]->minSnrAdaptParam,
+ nChannels);
+
+ /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */
+ FDKaacEnc_initAvoidHoleFlag(
+ qcElement[elementId]->qcOutChannel,
+ psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId],
+ &psyOutElement[elementId]->toolsInfo, nChannels,
+ &AdjThrStateElement[elementId]->ahParam);
+
+ /* sum up */
+ constPartGlobal += peData->constPart;
+ noRedPeGlobal += peData->pe;
+ nActiveLinesGlobal += fixMax((INT)peData->nActiveLines, 1);
- } /* EOF DSE-suppression */
- } /* EOF for all elements... */
+ } /* EOF DSE-suppression */
+ } /* EOF for all elements... */
+
+ /*
+ First guess of reduction value:
+ avgThrExp = (float)pow(2.0f, (constPartGlobal - noRedPeGlobal)/(4.0f *
+ nActiveLinesGlobal)); redVal = (float)pow(2.0f, (constPartGlobal -
+ desiredPe)/(4.0f * nActiveLinesGlobal)) - avgThrExp; redVal = max(0.f,
+ redVal);
+ */
+ int redVal_e, avgThrExp_e, result_e;
+ FIXP_DBL redVal_m, avgThrExp_m;
+
+ redVal_m = CalcRedValPower(constPartGlobal - desiredPe,
+ 4 * nActiveLinesGlobal, &redVal_e);
+ avgThrExp_m = CalcRedValPower(constPartGlobal - noRedPeGlobal,
+ 4 * nActiveLinesGlobal, &avgThrExp_e);
+ result_e = fMax(redVal_e, avgThrExp_e) + 1;
+
+ reductionValue_m = fMax(FL2FXCONST_DBL(0.f),
+ scaleValue(redVal_m, redVal_e - result_e) -
+ scaleValue(avgThrExp_m, avgThrExp_e - result_e));
+ reductionValue_e = result_e;
+
+ /* ----------------------------------------------------------------------- */
+ /* Part II: Calculate bit consumption of initial bit constraints setup */
+ /* ----------------------------------------------------------------------- */
+ for (elementId = elementOffset; elementId < nElements; elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+ INT nChannels = cm->elInfo[elementId].nChannelsInEl;
+ PE_DATA *peData = &qcElement[elementId]->peData;
- /* ----------------------------------------------------------------------- */
- /* Part II: Calculate bit consumption of initial bit constraints setup */
- /* ----------------------------------------------------------------------- */
- for (elementId = elementOffset;elementId<nElements;elementId++) {
- if (cm->elInfo[elementId].elType != ID_DSE) {
- /*
- redVal = ( 2 ^ ( (constPartGlobal-desiredPe) / (invRedExp*nActiveLinesGlobal) )
- - 2 ^ ( (constPartGlobal-noRedPeGlobal) / (invRedExp*nActiveLinesGlobal) ) )
- */
-
-
- INT nChannels = cm->elInfo[elementId].nChannelsInEl;
- PE_DATA *peData = &qcElement[elementId]->peData;
-
- /* first guess of reduction value */
- int scale0=0, scale1=0;
- FIXP_DBL tmp0 = CalcRedValPower( constPartGlobal-desiredPe, 4*nActiveLinesGlobal, &scale0 );
- FIXP_DBL tmp1 = CalcRedValPower( constPartGlobal-noRedPeGlobal, 4*nActiveLinesGlobal, &scale1 );
-
- int scalMin = FDKmin(scale0, scale1)-1;
-
- redValue[elementId] = scaleValue(tmp0,(scalMin-scale0)) - scaleValue(tmp1,(scalMin-scale1));
- redValScaling[elementId] = scalMin;
-
- /* reduce thresholds */
- FDKaacEnc_reduceThresholdsCBR(qcElement[elementId]->qcOutChannel, psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId], pThrExp[elementId], nChannels, redValue[elementId], redValScaling[elementId]);
-
- /* pe after first guess */
- FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel, qcElement[elementId]->qcOutChannel, peData, nChannels);
-
- redPeGlobal += peData->pe;
- } /* EOF DSE-suppression */
- } /* EOF for all elements... */
-
- /* -------------------------------------------------- */
- /* Part III: Iterate until bit constraints are met */
- /* -------------------------------------------------- */
- iter = 0;
- while ((fixp_abs(redPeGlobal - desiredPe) > fMultI(FL2FXCONST_DBL(0.05f),desiredPe)) && (iter < maxIter2ndGuess)) {
+ /* reduce thresholds */
+ FDKaacEnc_reduceThresholdsCBR(
+ qcElement[elementId]->qcOutChannel,
+ psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId],
+ pThrExp[elementId], nChannels, reductionValue_m, reductionValue_e);
- INT desiredPeNoAHGlobal;
- INT redPeNoAHGlobal = 0;
- INT constPartNoAHGlobal = 0;
- INT nActiveLinesNoAHGlobal = 0;
+ /* pe after first guess */
+ FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel,
+ qcElement[elementId]->qcOutChannel, peData, nChannels);
- for (elementId = elementOffset;elementId<nElements;elementId++) {
- if (cm->elInfo[elementId].elType != ID_DSE) {
+ redPeGlobal += peData->pe;
+ } /* EOF DSE-suppression */
+ } /* EOF for all elements... */
+
+ /* -------------------------------------------------- */
+ /* Part III: Iterate until bit constraints are met */
+ /* -------------------------------------------------- */
+ iter = 0;
+ while ((fixp_abs(redPeGlobal - desiredPe) >
+ fMultI(FL2FXCONST_DBL(0.05f), desiredPe)) &&
+ (iter < maxIter2ndGuess)) {
+ INT desiredPeNoAHGlobal;
+ INT redPeNoAHGlobal = 0;
+ INT constPartNoAHGlobal = 0;
+ INT nActiveLinesNoAHGlobal = 0;
+
+ for (elementId = elementOffset; elementId < nElements; elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+ INT redPeNoAH, constPartNoAH, nActiveLinesNoAH;
+ INT nChannels = cm->elInfo[elementId].nChannelsInEl;
+ PE_DATA *peData = &qcElement[elementId]->peData;
+
+ /* pe for bands where avoid hole is inactive */
+ FDKaacEnc_FDKaacEnc_calcPeNoAH(
+ &redPeNoAH, &constPartNoAH, &nActiveLinesNoAH, peData,
+ pAhFlag[elementId], psyOutElement[elementId]->psyOutChannel,
+ nChannels);
+
+ redPeNoAHGlobal += redPeNoAH;
+ constPartNoAHGlobal += constPartNoAH;
+ nActiveLinesNoAHGlobal += nActiveLinesNoAH;
+ } /* EOF DSE-suppression */
+ } /* EOF for all elements... */
+
+ /* Calculate new redVal ... */
+ if (desiredPe < redPeGlobal) {
+ /* new desired pe without bands where avoid hole is active */
+ desiredPeNoAHGlobal = desiredPe - (redPeGlobal - redPeNoAHGlobal);
+
+ /* limit desiredPeNoAH to positive values, as the PE can not become
+ * negative */
+ desiredPeNoAHGlobal = fMax(0, desiredPeNoAHGlobal);
+
+ /* second guess (only if there are bands left where avoid hole is
+ * inactive)*/
+ if (nActiveLinesNoAHGlobal > 0) {
+ /*
+ avgThrExp = (float)pow(2.0f, (constPartNoAHGlobal - redPeNoAHGlobal) /
+ (4.0f * nActiveLinesNoAHGlobal)); redVal += (float)pow(2.0f,
+ (constPartNoAHGlobal - desiredPeNoAHGlobal) / (4.0f *
+ nActiveLinesNoAHGlobal)) - avgThrExp; redVal = max(0.0f, redVal);
+ */
+
+ redVal_m = CalcRedValPower(constPartNoAHGlobal - desiredPeNoAHGlobal,
+ 4 * nActiveLinesNoAHGlobal, &redVal_e);
+ avgThrExp_m = CalcRedValPower(constPartNoAHGlobal - redPeNoAHGlobal,
+ 4 * nActiveLinesNoAHGlobal, &avgThrExp_e);
+ result_e = fMax(reductionValue_e, fMax(redVal_e, avgThrExp_e) + 1) + 1;
+
+ reductionValue_m =
+ fMax(FL2FXCONST_DBL(0.f),
+ scaleValue(reductionValue_m, reductionValue_e - result_e) +
+ scaleValue(redVal_m, redVal_e - result_e) -
+ scaleValue(avgThrExp_m, avgThrExp_e - result_e));
+ reductionValue_e = result_e;
+
+ } /* nActiveLinesNoAHGlobal > 0 */
+ } else {
+ /* redVal *= redPeGlobal/desiredPe; */
+ int sc0, sc1;
+ reductionValue_m = fMultNorm(
+ reductionValue_m,
+ fDivNorm((FIXP_DBL)redPeGlobal, (FIXP_DBL)desiredPe, &sc0), &sc1);
+ reductionValue_e += sc0 + sc1;
+
+ for (elementId = elementOffset; elementId < nElements; elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+ FDKaacEnc_resetAHFlags(pAhFlag[elementId],
+ cm->elInfo[elementId].nChannelsInEl,
+ psyOutElement[elementId]->psyOutChannel);
+ } /* EOF DSE-suppression */
+ } /* EOF for all elements... */
+ }
- INT redPeNoAH, constPartNoAH, nActiveLinesNoAH;
- INT nChannels = cm->elInfo[elementId].nChannelsInEl;
- PE_DATA *peData = &qcElement[elementId]->peData;
-
- /* pe for bands where avoid hole is inactive */
- FDKaacEnc_FDKaacEnc_calcPeNoAH(&redPeNoAH, &constPartNoAH, &nActiveLinesNoAH,
- peData, pAhFlag[elementId], psyOutElement[elementId]->psyOutChannel, nChannels);
-
- redPeNoAHGlobal += redPeNoAH;
- constPartNoAHGlobal += constPartNoAH;
- nActiveLinesNoAHGlobal += nActiveLinesNoAH;
- } /* EOF DSE-suppression */
- } /* EOF for all elements... */
-
- /* Calculate new redVal ... */
- if(desiredPe < redPeGlobal) {
-
- /* new desired pe without bands where avoid hole is active */
- desiredPeNoAHGlobal = desiredPe - (redPeGlobal - redPeNoAHGlobal);
-
- /* limit desiredPeNoAH to positive values, as the PE can not become negative */
- desiredPeNoAHGlobal = FDKmax(0,desiredPeNoAHGlobal);
-
- /* second guess (only if there are bands left where avoid hole is inactive)*/
- if (nActiveLinesNoAHGlobal > 0) {
- for (elementId = elementOffset;elementId<nElements;elementId++) {
- if (cm->elInfo[elementId].elType != ID_DSE) {
- /*
- redVal += ( 2 ^ ( (constPartNoAHGlobal-desiredPeNoAHGlobal) / (invRedExp*nActiveLinesNoAHGlobal) )
- - 2 ^ ( (constPartNoAHGlobal-redPeNoAHGlobal) / (invRedExp*nActiveLinesNoAHGlobal) ) )
- */
- int scale0 = 0;
- int scale1 = 0;
-
- FIXP_DBL tmp0 = CalcRedValPower( constPartNoAHGlobal-desiredPeNoAHGlobal, 4*nActiveLinesNoAHGlobal, &scale0 );
- FIXP_DBL tmp1 = CalcRedValPower( constPartNoAHGlobal-redPeNoAHGlobal, 4*nActiveLinesNoAHGlobal, &scale1 );
-
- int scalMin = FDKmin(scale0, scale1)-1;
-
- tmp0 = scaleValue(tmp0,(scalMin-scale0)) - scaleValue(tmp1,(scalMin-scale1));
- scale0 = scalMin;
-
- /* old reduction value */
- tmp1 = redValue[elementId];
- scale1 = redValScaling[elementId];
-
- scalMin = fixMin(scale0,scale1)-1;
-
- /* sum up old and new reduction value */
- redValue[elementId] = scaleValue(tmp0,(scalMin-scale0)) + scaleValue(tmp1,(scalMin-scale1));
- redValScaling[elementId] = scalMin;
-
- } /* EOF DSE-suppression */
- } /* EOF for all elements... */
- } /* nActiveLinesNoAHGlobal > 0 */
- }
- else {
- /* desiredPe >= redPeGlobal */
- for (elementId = elementOffset;elementId<nElements;elementId++) {
- if (cm->elInfo[elementId].elType != ID_DSE) {
-
- INT redVal_scale = 0;
- FIXP_DBL tmp = fDivNorm((FIXP_DBL)redPeGlobal, (FIXP_DBL)desiredPe, &redVal_scale);
-
- /* redVal *= redPeGlobal/desiredPe; */
- redValue[elementId] = fMult(redValue[elementId], tmp);
- redValScaling[elementId] -= redVal_scale;
-
- FDKaacEnc_resetAHFlags(pAhFlag[elementId], cm->elInfo[elementId].nChannelsInEl, psyOutElement[elementId]->psyOutChannel);
- } /* EOF DSE-suppression */
- } /* EOF for all elements... */
- }
-
- redPeGlobal = 0;
- /* Calculate new redVal's PE... */
- for (elementId = elementOffset;elementId<nElements;elementId++) {
- if (cm->elInfo[elementId].elType != ID_DSE) {
-
- INT nChannels = cm->elInfo[elementId].nChannelsInEl;
- PE_DATA *peData = &qcElement[elementId]->peData;
-
- /* reduce thresholds */
- FDKaacEnc_reduceThresholdsCBR(qcElement[elementId]->qcOutChannel, psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId], pThrExp[elementId], nChannels, redValue[elementId], redValScaling[elementId]);
-
- /* pe after second guess */
- FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel, qcElement[elementId]->qcOutChannel, peData, nChannels);
- redPeGlobal += peData->pe;
-
- } /* EOF DSE-suppression */
- } /* EOF for all elements... */
-
- iter++;
- } /* EOF while */
-
-
- /* ------------------------------------------------------- */
- /* Part IV: if still required, further reduce constraints */
- /* ------------------------------------------------------- */
- /* 1.0* 1.15* 1.20*
- * desiredPe desiredPe desiredPe
- * | | |
- * ...XXXXXXXXXXXXXXXXXXXXXXXXXXX| |
- * | | |XXXXXXXXXXX...
- * | |XXXXXXXXXXX|
- * --- A --- | --- B --- | --- C ---
- *
- * (X): redPeGlobal
- * (A): FDKaacEnc_correctThresh()
- * (B): FDKaacEnc_allowMoreHoles()
- * (C): FDKaacEnc_reduceMinSnr()
+ redPeGlobal = 0;
+ /* Calculate new redVal's PE... */
+ for (elementId = elementOffset; elementId < nElements; elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+ INT nChannels = cm->elInfo[elementId].nChannelsInEl;
+ PE_DATA *peData = &qcElement[elementId]->peData;
+
+ /* reduce thresholds */
+ FDKaacEnc_reduceThresholdsCBR(
+ qcElement[elementId]->qcOutChannel,
+ psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId],
+ pThrExp[elementId], nChannels, reductionValue_m, reductionValue_e);
+
+ /* pe after second guess */
+ FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel,
+ qcElement[elementId]->qcOutChannel, peData, nChannels);
+ redPeGlobal += peData->pe;
+
+ } /* EOF DSE-suppression */
+ } /* EOF for all elements... */
+
+ iter++;
+ } /* EOF while */
+
+ /* ------------------------------------------------------- */
+ /* Part IV: if still required, further reduce constraints */
+ /* ------------------------------------------------------- */
+ /* 1.0* 1.15* 1.20*
+ * desiredPe desiredPe desiredPe
+ * | | |
+ * ...XXXXXXXXXXXXXXXXXXXXXXXXXXX| |
+ * | | |XXXXXXXXXXX...
+ * | |XXXXXXXXXXX|
+ * --- A --- | --- B --- | --- C ---
+ *
+ * (X): redPeGlobal
+ * (A): FDKaacEnc_correctThresh()
+ * (B): FDKaacEnc_allowMoreHoles()
+ * (C): FDKaacEnc_reduceMinSnr()
*/
- /* correct thresholds to get closer to the desired pe */
- if ( redPeGlobal > desiredPe ) {
- FDKaacEnc_correctThresh(cm, qcElement, psyOutElement, pAhFlag, pThrExp, redValue, redValScaling,
- desiredPe - redPeGlobal, processElements, elementOffset);
-
- /* update PE */
- redPeGlobal = 0;
- for(elementId=elementOffset;elementId<nElements;elementId++) {
- if (cm->elInfo[elementId].elType != ID_DSE) {
-
- INT nChannels = cm->elInfo[elementId].nChannelsInEl;
- PE_DATA *peData = &qcElement[elementId]->peData;
-
- /* pe after correctThresh */
- FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel, qcElement[elementId]->qcOutChannel, peData, nChannels);
- redPeGlobal += peData->pe;
-
- } /* EOF DSE-suppression */
- } /* EOF for all elements... */
- }
-
- if ( redPeGlobal > desiredPe ) {
- /* reduce pe by reducing minSnr requirements */
- FDKaacEnc_reduceMinSnr(cm, qcElement, psyOutElement, pAhFlag,
- (fMultI(FL2FXCONST_DBL(0.15f),desiredPe) + desiredPe),
- &redPeGlobal, processElements, elementOffset);
-
- /* reduce pe by allowing additional spectral holes */
- FDKaacEnc_allowMoreHoles(cm, qcElement, psyOutElement, AdjThrStateElement, pAhFlag,
- desiredPe, redPeGlobal, processElements, elementOffset);
- }
+ /* correct thresholds to get closer to the desired pe */
+ if (redPeGlobal > desiredPe) {
+ FDKaacEnc_correctThresh(cm, qcElement, psyOutElement, pAhFlag, pThrExp,
+ reductionValue_m, reductionValue_e,
+ desiredPe - redPeGlobal, processElements,
+ elementOffset);
+
+ /* update PE */
+ redPeGlobal = 0;
+ for (elementId = elementOffset; elementId < nElements; elementId++) {
+ if (cm->elInfo[elementId].elType != ID_DSE) {
+ INT nChannels = cm->elInfo[elementId].nChannelsInEl;
+ PE_DATA *peData = &qcElement[elementId]->peData;
+
+ /* pe after correctThresh */
+ FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel,
+ qcElement[elementId]->qcOutChannel, peData, nChannels);
+ redPeGlobal += peData->pe;
+
+ } /* EOF DSE-suppression */
+ } /* EOF for all elements... */
+ }
+ if (redPeGlobal > desiredPe) {
+ /* reduce pe by reducing minSnr requirements */
+ FDKaacEnc_reduceMinSnr(
+ cm, qcElement, psyOutElement, pAhFlag,
+ (fMultI(FL2FXCONST_DBL(0.15f), desiredPe) + desiredPe), &redPeGlobal,
+ processElements, elementOffset);
+
+ /* reduce pe by allowing additional spectral holes */
+ FDKaacEnc_allowMoreHoles(cm, qcElement, psyOutElement, AdjThrStateElement,
+ pAhFlag, desiredPe, redPeGlobal, processElements,
+ elementOffset);
+ }
}
/* similar to FDKaacEnc_adaptThresholdsToPe(), for VBR-mode */
-void FDKaacEnc_AdaptThresholdsVBR(QC_OUT_CHANNEL* qcOutChannel[(2)],
- PSY_OUT_CHANNEL* psyOutChannel[(2)],
- ATS_ELEMENT* AdjThrStateElement,
- struct TOOLSINFO *toolsInfo,
- PE_DATA *peData,
- const INT nChannels)
-{
- UCHAR (*pAhFlag)[MAX_GROUPED_SFB];
- FIXP_DBL (*pThrExp)[MAX_GROUPED_SFB];
-
- /* allocate scratch memory */
- C_ALLOC_SCRATCH_START(_pAhFlag, UCHAR, (2)*MAX_GROUPED_SFB)
- C_ALLOC_SCRATCH_START(_pThrExp, FIXP_DBL, (2)*MAX_GROUPED_SFB)
- pAhFlag = (UCHAR(*)[MAX_GROUPED_SFB])_pAhFlag;
- pThrExp = (FIXP_DBL(*)[MAX_GROUPED_SFB])_pThrExp;
-
- /* thresholds to the power of redExp */
- FDKaacEnc_calcThreshExp(pThrExp, qcOutChannel, psyOutChannel, nChannels);
-
- /* lower the minSnr requirements for low energies compared to the average
- energy in this frame */
- FDKaacEnc_adaptMinSnr(qcOutChannel, psyOutChannel, &AdjThrStateElement->minSnrAdaptParam, nChannels);
-
- /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */
- FDKaacEnc_initAvoidHoleFlag(qcOutChannel, psyOutChannel, pAhFlag, toolsInfo,
- nChannels, peData, &AdjThrStateElement->ahParam);
-
- /* reduce thresholds */
- FDKaacEnc_reduceThresholdsVBR(qcOutChannel, psyOutChannel, pAhFlag, pThrExp, nChannels,
- AdjThrStateElement->vbrQualFactor,
- &AdjThrStateElement->chaosMeasureOld);
-
- /* free scratch memory */
- C_ALLOC_SCRATCH_END(_pThrExp, FIXP_DBL, (2)*MAX_GROUPED_SFB)
- C_ALLOC_SCRATCH_END(_pAhFlag, UCHAR, (2)*MAX_GROUPED_SFB)
+static void FDKaacEnc_AdaptThresholdsVBR(
+ QC_OUT_CHANNEL *const qcOutChannel[(2)],
+ const PSY_OUT_CHANNEL *const psyOutChannel[(2)],
+ ATS_ELEMENT *const AdjThrStateElement,
+ const struct TOOLSINFO *const toolsInfo, const INT nChannels) {
+ UCHAR(*pAhFlag)[MAX_GROUPED_SFB];
+ FIXP_DBL(*pThrExp)[MAX_GROUPED_SFB];
+
+ /* allocate scratch memory */
+ C_ALLOC_SCRATCH_START(_pAhFlag, UCHAR, (2) * MAX_GROUPED_SFB)
+ C_ALLOC_SCRATCH_START(_pThrExp, FIXP_DBL, (2) * MAX_GROUPED_SFB)
+ pAhFlag = (UCHAR(*)[MAX_GROUPED_SFB])_pAhFlag;
+ pThrExp = (FIXP_DBL(*)[MAX_GROUPED_SFB])_pThrExp;
+
+ /* thresholds to the power of redExp */
+ FDKaacEnc_calcThreshExp(pThrExp, qcOutChannel, psyOutChannel, nChannels);
+
+ /* lower the minSnr requirements for low energies compared to the average
+ energy in this frame */
+ FDKaacEnc_adaptMinSnr(qcOutChannel, psyOutChannel,
+ &AdjThrStateElement->minSnrAdaptParam, nChannels);
+
+ /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */
+ FDKaacEnc_initAvoidHoleFlag(qcOutChannel, psyOutChannel, pAhFlag, toolsInfo,
+ nChannels, &AdjThrStateElement->ahParam);
+
+ /* reduce thresholds */
+ FDKaacEnc_reduceThresholdsVBR(qcOutChannel, psyOutChannel, pAhFlag, pThrExp,
+ nChannels, AdjThrStateElement->vbrQualFactor,
+ &AdjThrStateElement->chaosMeasureOld);
+
+ /* free scratch memory */
+ C_ALLOC_SCRATCH_END(_pThrExp, FIXP_DBL, (2) * MAX_GROUPED_SFB)
+ C_ALLOC_SCRATCH_END(_pAhFlag, UCHAR, (2) * MAX_GROUPED_SFB)
}
-
/*****************************************************************************
functionname: FDKaacEnc_calcBitSave
@@ -1978,20 +2226,19 @@ void FDKaacEnc_AdaptThresholdsVBR(QC_OUT_CHANNEL* qcOutChannel[(2)],
clipHigh maxBitres
*/
static FIXP_DBL FDKaacEnc_calcBitSave(FIXP_DBL fillLevel,
- const FIXP_DBL clipLow,
- const FIXP_DBL clipHigh,
- const FIXP_DBL minBitSave,
- const FIXP_DBL maxBitSave,
- const FIXP_DBL bitsave_slope)
-{
- FIXP_DBL bitsave;
+ const FIXP_DBL clipLow,
+ const FIXP_DBL clipHigh,
+ const FIXP_DBL minBitSave,
+ const FIXP_DBL maxBitSave,
+ const FIXP_DBL bitsave_slope) {
+ FIXP_DBL bitsave;
- fillLevel = fixMax(fillLevel, clipLow);
- fillLevel = fixMin(fillLevel, clipHigh);
+ fillLevel = fixMax(fillLevel, clipLow);
+ fillLevel = fixMin(fillLevel, clipHigh);
- bitsave = maxBitSave - fMult((fillLevel-clipLow), bitsave_slope);
+ bitsave = maxBitSave - fMult((fillLevel - clipLow), bitsave_slope);
- return (bitsave);
+ return (bitsave);
}
/*****************************************************************************
@@ -2017,23 +2264,21 @@ static FIXP_DBL FDKaacEnc_calcBitSave(FIXP_DBL fillLevel,
clipLow
*/
static FIXP_DBL FDKaacEnc_calcBitSpend(FIXP_DBL fillLevel,
- const FIXP_DBL clipLow,
- const FIXP_DBL clipHigh,
- const FIXP_DBL minBitSpend,
- const FIXP_DBL maxBitSpend,
- const FIXP_DBL bitspend_slope)
-{
- FIXP_DBL bitspend;
+ const FIXP_DBL clipLow,
+ const FIXP_DBL clipHigh,
+ const FIXP_DBL minBitSpend,
+ const FIXP_DBL maxBitSpend,
+ const FIXP_DBL bitspend_slope) {
+ FIXP_DBL bitspend;
- fillLevel = fixMax(fillLevel, clipLow);
- fillLevel = fixMin(fillLevel, clipHigh);
+ fillLevel = fixMax(fillLevel, clipLow);
+ fillLevel = fixMin(fillLevel, clipHigh);
- bitspend = minBitSpend + fMult(fillLevel-clipLow, bitspend_slope);
+ bitspend = minBitSpend + fMult(fillLevel - clipLow, bitspend_slope);
- return (bitspend);
+ return (bitspend);
}
-
/*****************************************************************************
functionname: FDKaacEnc_adjustPeMinMax()
@@ -2043,52 +2288,46 @@ static FIXP_DBL FDKaacEnc_calcBitSpend(FIXP_DBL fillLevel,
output: adjusted peMin/peMax
*****************************************************************************/
-static void FDKaacEnc_adjustPeMinMax(const INT currPe,
- INT *peMin,
- INT *peMax)
-{
- FIXP_DBL minFacHi = FL2FXCONST_DBL(0.3f), maxFacHi = (FIXP_DBL)MAXVAL_DBL, minFacLo = FL2FXCONST_DBL(0.14f), maxFacLo = FL2FXCONST_DBL(0.07f);
- INT diff;
-
- INT minDiff_fix = fMultI(FL2FXCONST_DBL(0.1666666667f), currPe);
-
- if (currPe > *peMax)
- {
- diff = (currPe-*peMax) ;
- *peMin += fMultI(minFacHi,diff);
- *peMax += fMultI(maxFacHi,diff);
- }
- else if (currPe < *peMin)
- {
- diff = (*peMin-currPe) ;
- *peMin -= fMultI(minFacLo,diff);
- *peMax -= fMultI(maxFacLo,diff);
- }
- else
- {
- *peMin += fMultI(minFacHi, (currPe - *peMin));
- *peMax -= fMultI(maxFacLo, (*peMax - currPe));
- }
+static void FDKaacEnc_adjustPeMinMax(const INT currPe, INT *peMin, INT *peMax) {
+ FIXP_DBL minFacHi = FL2FXCONST_DBL(0.3f), maxFacHi = (FIXP_DBL)MAXVAL_DBL,
+ minFacLo = FL2FXCONST_DBL(0.14f), maxFacLo = FL2FXCONST_DBL(0.07f);
+ INT diff;
+
+ INT minDiff_fix = fMultI(FL2FXCONST_DBL(0.1666666667f), currPe);
+
+ if (currPe > *peMax) {
+ diff = (currPe - *peMax);
+ *peMin += fMultI(minFacHi, diff);
+ *peMax += fMultI(maxFacHi, diff);
+ } else if (currPe < *peMin) {
+ diff = (*peMin - currPe);
+ *peMin -= fMultI(minFacLo, diff);
+ *peMax -= fMultI(maxFacLo, diff);
+ } else {
+ *peMin += fMultI(minFacHi, (currPe - *peMin));
+ *peMax -= fMultI(maxFacLo, (*peMax - currPe));
+ }
- if ((*peMax - *peMin) < minDiff_fix)
- {
- INT peMax_fix = *peMax, peMin_fix = *peMin;
- FIXP_DBL partLo_fix, partHi_fix;
+ if ((*peMax - *peMin) < minDiff_fix) {
+ INT peMax_fix = *peMax, peMin_fix = *peMin;
+ FIXP_DBL partLo_fix, partHi_fix;
- partLo_fix = (FIXP_DBL)fixMax(0, currPe - peMin_fix);
- partHi_fix = (FIXP_DBL)fixMax(0, peMax_fix - currPe);
+ partLo_fix = (FIXP_DBL)fixMax(0, currPe - peMin_fix);
+ partHi_fix = (FIXP_DBL)fixMax(0, peMax_fix - currPe);
- peMax_fix = (INT)(currPe + fMultI(fDivNorm(partHi_fix, (partLo_fix+partHi_fix)), minDiff_fix));
- peMin_fix = (INT)(currPe - fMultI(fDivNorm(partLo_fix, (partLo_fix+partHi_fix)), minDiff_fix));
- peMin_fix = fixMax(0, peMin_fix);
+ peMax_fix =
+ (INT)(currPe + fMultI(fDivNorm(partHi_fix, (partLo_fix + partHi_fix)),
+ minDiff_fix));
+ peMin_fix =
+ (INT)(currPe - fMultI(fDivNorm(partLo_fix, (partLo_fix + partHi_fix)),
+ minDiff_fix));
+ peMin_fix = fixMax(0, peMin_fix);
- *peMax = peMax_fix;
- *peMin = peMin_fix;
- }
+ *peMax = peMax_fix;
+ *peMin = peMin_fix;
+ }
}
-
-
/*****************************************************************************
functionname: BitresCalcBitFac
@@ -2115,206 +2354,223 @@ static void FDKaacEnc_adjustPeMinMax(const INT currPe,
pemin
*/
-static FIXP_DBL FDKaacEnc_bitresCalcBitFac(const INT bitresBits,
- const INT maxBitresBits,
- const INT pe,
- const INT lastWindowSequence,
- const INT avgBits,
- const FIXP_DBL maxBitFac,
- ADJ_THR_STATE *AdjThr,
- ATS_ELEMENT *adjThrChan)
-{
- BRES_PARAM *bresParam;
- INT pex;
+void FDKaacEnc_bitresCalcBitFac(const INT bitresBits, const INT maxBitresBits,
+ const INT pe, const INT lastWindowSequence,
+ const INT avgBits, const FIXP_DBL maxBitFac,
+ const ADJ_THR_STATE *const AdjThr,
+ ATS_ELEMENT *const adjThrChan,
+ FIXP_DBL *const pBitresFac,
+ INT *const pBitresFac_e) {
+ const BRES_PARAM *bresParam;
+ INT pex;
+ FIXP_DBL fillLevel;
+ INT fillLevel_e = 0;
+
+ FIXP_DBL bitresFac;
+ INT bitresFac_e;
+
+ FIXP_DBL bitSave, bitSpend;
+ FIXP_DBL bitsave_slope, bitspend_slope;
+ FIXP_DBL fillLevel_fix = MAXVAL_DBL;
+
+ FIXP_DBL slope = MAXVAL_DBL;
+
+ if (lastWindowSequence != SHORT_WINDOW) {
+ bresParam = &(AdjThr->bresParamLong);
+ bitsave_slope = FL2FXCONST_DBL(0.466666666);
+ bitspend_slope = FL2FXCONST_DBL(0.666666666);
+ } else {
+ bresParam = &(AdjThr->bresParamShort);
+ bitsave_slope = (FIXP_DBL)0x2E8BA2E9;
+ bitspend_slope = (FIXP_DBL)0x7fffffff;
+ }
+
+ // fillLevel = (float)(bitresBits+avgBits) / (float)(maxBitresBits + avgBits);
+ if (bitresBits < maxBitresBits) {
+ fillLevel_fix = fDivNorm(bitresBits, maxBitresBits);
+ }
- INT qmin, qbr, qbres, qmbr;
- FIXP_DBL bitSave, bitSpend;
+ pex = fMax(pe, adjThrChan->peMin);
+ pex = fMin(pex, adjThrChan->peMax);
- FIXP_DBL bitresFac_fix, tmp_cst, tmp_fix;
- FIXP_DBL pe_pers, bits_ratio, maxBrVal;
- FIXP_DBL bitsave_slope, bitspend_slope, maxBitFac_tmp;
- FIXP_DBL fillLevel_fix = (FIXP_DBL)0x7fffffff;
- FIXP_DBL UNITY = (FIXP_DBL)0x7fffffff;
- FIXP_DBL POINT7 = (FIXP_DBL)0x5999999A;
+ bitSave = FDKaacEnc_calcBitSave(
+ fillLevel_fix, bresParam->clipSaveLow, bresParam->clipSaveHigh,
+ bresParam->minBitSave, bresParam->maxBitSave, bitsave_slope);
- if (maxBitresBits > bitresBits) {
- fillLevel_fix = fDivNorm(bitresBits, maxBitresBits);
- }
+ bitSpend = FDKaacEnc_calcBitSpend(
+ fillLevel_fix, bresParam->clipSpendLow, bresParam->clipSpendHigh,
+ bresParam->minBitSpend, bresParam->maxBitSpend, bitspend_slope);
- if (lastWindowSequence != SHORT_WINDOW)
- {
- bresParam = &(AdjThr->bresParamLong);
- bitsave_slope = (FIXP_DBL)0x3BBBBBBC;
- bitspend_slope = (FIXP_DBL)0x55555555;
- }
- else
- {
- bresParam = &(AdjThr->bresParamShort);
- bitsave_slope = (FIXP_DBL)0x2E8BA2E9;
- bitspend_slope = (FIXP_DBL)0x7fffffff;
- }
+ slope = schur_div((pex - adjThrChan->peMin),
+ (adjThrChan->peMax - adjThrChan->peMin), 31);
- pex = fixMax(pe, adjThrChan->peMin);
- pex = fixMin(pex, adjThrChan->peMax);
-
- bitSave = FDKaacEnc_calcBitSave(fillLevel_fix,
- bresParam->clipSaveLow, bresParam->clipSaveHigh,
- bresParam->minBitSave, bresParam->maxBitSave, bitsave_slope);
-
- bitSpend = FDKaacEnc_calcBitSpend(fillLevel_fix,
- bresParam->clipSpendLow, bresParam->clipSpendHigh,
- bresParam->minBitSpend, bresParam->maxBitSpend, bitspend_slope);
-
- pe_pers = (pex > adjThrChan->peMin) ? fDivNorm(pex - adjThrChan->peMin, adjThrChan->peMax - adjThrChan->peMin) : 0;
- tmp_fix = fMult(((FIXP_DBL)bitSpend + (FIXP_DBL)bitSave), pe_pers);
- bitresFac_fix = (UNITY>>1) - ((FIXP_DBL)bitSave>>1) + (tmp_fix>>1); qbres = (DFRACT_BITS-2);
-
- /* (float)bitresBits/(float)avgBits */
- bits_ratio = fDivNorm(bitresBits, avgBits, &qbr);
- qbr = DFRACT_BITS-1-qbr;
-
- /* Add 0.7 in q31 to bits_ratio in qbr */
- /* 0.7f + (float)bitresBits/(float)avgBits */
- qmin = fixMin(qbr, (DFRACT_BITS-1));
- bits_ratio = bits_ratio >> (qbr - qmin);
- tmp_cst = POINT7 >> ((DFRACT_BITS-1) - qmin);
- maxBrVal = (bits_ratio>>1) + (tmp_cst>>1); qmbr = qmin - 1;
-
- /* bitresFac_fix = fixMin(bitresFac_fix, 0.7 + bitresBits/avgBits); */
- bitresFac_fix = bitresFac_fix >> (qbres - qmbr); qbres = qmbr;
- bitresFac_fix = fixMin(bitresFac_fix, maxBrVal);
-
- /* Compare with maxBitFac */
- qmin = fixMin(Q_BITFAC, qbres);
- bitresFac_fix = bitresFac_fix >> (qbres - qmin);
- maxBitFac_tmp = maxBitFac >> (Q_BITFAC - qmin);
- if(maxBitFac_tmp < bitresFac_fix)
- {
- bitresFac_fix = maxBitFac;
- }
- else
- {
- if(qmin < Q_BITFAC)
- {
- bitresFac_fix = bitresFac_fix << (Q_BITFAC-qmin);
- }
- else
- {
- bitresFac_fix = bitresFac_fix >> (qmin-Q_BITFAC);
- }
- }
+ /* scale down by 1 bit because the result of the following addition can be
+ * bigger than 1 (though smaller than 2) */
+ bitresFac = ((FIXP_DBL)(MAXVAL_DBL >> 1) - (bitSave >> 1));
+ bitresFac_e = 1; /* exp=1 */
+ bitresFac = fMultAddDiv2(bitresFac, slope, bitSpend + bitSave); /* exp=1 */
- FDKaacEnc_adjustPeMinMax(pe, &adjThrChan->peMin, &adjThrChan->peMax);
+ /*** limit bitresFac for small bitreservoir ***/
+ fillLevel = fDivNorm(bitresBits, avgBits, &fillLevel_e);
+ if (fillLevel_e < 0) {
+ fillLevel = scaleValue(fillLevel, fillLevel_e);
+ fillLevel_e = 0;
+ }
+ /* shift down value by 1 because of summation, ... */
+ fillLevel >>= 1;
+ fillLevel_e += 1;
+ /* ..., this summation: */
+ fillLevel += scaleValue(FL2FXCONST_DBL(0.7f), -fillLevel_e);
+ /* set bitresfactor to same exponent as fillLevel */
+ if (scaleValue(bitresFac, -fillLevel_e + 1) > fillLevel) {
+ bitresFac = fillLevel;
+ bitresFac_e = fillLevel_e;
+ }
- return bitresFac_fix;
-}
+ /* limit bitresFac for high bitrates */
+ if (scaleValue(bitresFac, bitresFac_e - (DFRACT_BITS - 1 - 24)) > maxBitFac) {
+ bitresFac = maxBitFac;
+ bitresFac_e = (DFRACT_BITS - 1 - 24);
+ }
+ FDKaacEnc_adjustPeMinMax(pe, &adjThrChan->peMin, &adjThrChan->peMax);
+
+ /* output values */
+ *pBitresFac = bitresFac;
+ *pBitresFac_e = bitresFac_e;
+}
/*****************************************************************************
functionname: FDKaacEnc_AdjThrNew
description: allocate ADJ_THR_STATE
*****************************************************************************/
-INT FDKaacEnc_AdjThrNew(ADJ_THR_STATE** phAdjThr,
- INT nElements)
-{
- INT err = 0;
- INT i;
- ADJ_THR_STATE* hAdjThr = GetRam_aacEnc_AdjustThreshold();
- if (hAdjThr==NULL) {
- err = 1;
- goto bail;
- }
+INT FDKaacEnc_AdjThrNew(ADJ_THR_STATE **phAdjThr, INT nElements) {
+ INT err = 0;
+ INT i;
+ ADJ_THR_STATE *hAdjThr = GetRam_aacEnc_AdjustThreshold();
+ if (hAdjThr == NULL) {
+ err = 1;
+ goto bail;
+ }
- for (i=0; i<nElements; i++) {
- hAdjThr->adjThrStateElem[i] = GetRam_aacEnc_AdjThrStateElement(i);
- if (hAdjThr->adjThrStateElem[i]==NULL) {
- err = 1;
- goto bail;
- }
+ for (i = 0; i < nElements; i++) {
+ hAdjThr->adjThrStateElem[i] = GetRam_aacEnc_AdjThrStateElement(i);
+ if (hAdjThr->adjThrStateElem[i] == NULL) {
+ err = 1;
+ goto bail;
}
+ }
bail:
- *phAdjThr = hAdjThr;
- return err;
+ *phAdjThr = hAdjThr;
+ return err;
}
-
/*****************************************************************************
functionname: FDKaacEnc_AdjThrInit
description: initialize ADJ_THR_STATE
*****************************************************************************/
void FDKaacEnc_AdjThrInit(
- ADJ_THR_STATE *hAdjThr,
- const INT meanPe,
- ELEMENT_BITS *elBits[(8)],
- INT invQuant,
- INT nElements,
- INT nChannelsEff,
- INT sampleRate,
- INT advancedBitsToPe,
- FIXP_DBL vbrQualFactor,
- const INT dZoneQuantEnable
- )
-{
+ ADJ_THR_STATE *const hAdjThr, const INT meanPe, const INT invQuant,
+ const CHANNEL_MAPPING *const channelMapping, const INT sampleRate,
+ const INT totalBitrate, const INT isLowDelay,
+ const AACENC_BITRES_MODE bitResMode, const INT dZoneQuantEnable,
+ const INT bitDistributionMode, const FIXP_DBL vbrQualFactor) {
INT i;
FIXP_DBL POINT8 = FL2FXCONST_DBL(0.8f);
FIXP_DBL POINT6 = FL2FXCONST_DBL(0.6f);
- /* Max number of iterations in second guess is 3 for lowdelay aot and for configurations with
- multiple audio elements in general, otherwise iteration value is always 1. */
- hAdjThr->maxIter2ndGuess = (advancedBitsToPe!=0 || nElements>1) ? 3 : 1;
+ if (bitDistributionMode == 1) {
+ hAdjThr->bitDistributionMode = AACENC_BD_MODE_INTRA_ELEMENT;
+ } else {
+ hAdjThr->bitDistributionMode = AACENC_BD_MODE_INTER_ELEMENT;
+ }
+
+ /* Max number of iterations in second guess is 3 for lowdelay aot and for
+ configurations with multiple audio elements in general, otherwise iteration
+ value is always 1. */
+ hAdjThr->maxIter2ndGuess =
+ (isLowDelay != 0 || channelMapping->nElements > 1) ? 3 : 1;
/* common for all elements: */
/* parameters for bitres control */
- hAdjThr->bresParamLong.clipSaveLow = (FIXP_DBL)0x1999999a; /* FL2FXCONST_DBL(0.2f); */
- hAdjThr->bresParamLong.clipSaveHigh = (FIXP_DBL)0x7999999a; /* FL2FXCONST_DBL(0.95f); */
- hAdjThr->bresParamLong.minBitSave = (FIXP_DBL)0xf999999a; /* FL2FXCONST_DBL(-0.05f); */
- hAdjThr->bresParamLong.maxBitSave = (FIXP_DBL)0x26666666; /* FL2FXCONST_DBL(0.3f); */
- hAdjThr->bresParamLong.clipSpendLow = (FIXP_DBL)0x1999999a; /* FL2FXCONST_DBL(0.2f); */
- hAdjThr->bresParamLong.clipSpendHigh = (FIXP_DBL)0x7999999a; /* FL2FXCONST_DBL(0.95f); */
- hAdjThr->bresParamLong.minBitSpend = (FIXP_DBL)0xf3333333; /* FL2FXCONST_DBL(-0.10f); */
- hAdjThr->bresParamLong.maxBitSpend = (FIXP_DBL)0x33333333; /* FL2FXCONST_DBL(0.4f); */
-
- hAdjThr->bresParamShort.clipSaveLow = (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */
- hAdjThr->bresParamShort.clipSaveHigh = (FIXP_DBL)0x5fffffff; /* FL2FXCONST_DBL(0.75f); */
- hAdjThr->bresParamShort.minBitSave = (FIXP_DBL)0x00000000; /* FL2FXCONST_DBL(0.0f); */
- hAdjThr->bresParamShort.maxBitSave = (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */
- hAdjThr->bresParamShort.clipSpendLow = (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */
- hAdjThr->bresParamShort.clipSpendHigh = (FIXP_DBL)0x5fffffff; /* FL2FXCONST_DBL(0.75f); */
- hAdjThr->bresParamShort.minBitSpend = (FIXP_DBL)0xf9999998; /* FL2FXCONST_DBL(-0.05f); */
- hAdjThr->bresParamShort.maxBitSpend = (FIXP_DBL)0x40000000; /* FL2FXCONST_DBL(0.5f); */
+ hAdjThr->bresParamLong.clipSaveLow =
+ (FIXP_DBL)0x1999999a; /* FL2FXCONST_DBL(0.2f); */
+ hAdjThr->bresParamLong.clipSaveHigh =
+ (FIXP_DBL)0x7999999a; /* FL2FXCONST_DBL(0.95f); */
+ hAdjThr->bresParamLong.minBitSave =
+ (FIXP_DBL)0xf999999a; /* FL2FXCONST_DBL(-0.05f); */
+ hAdjThr->bresParamLong.maxBitSave =
+ (FIXP_DBL)0x26666666; /* FL2FXCONST_DBL(0.3f); */
+ hAdjThr->bresParamLong.clipSpendLow =
+ (FIXP_DBL)0x1999999a; /* FL2FXCONST_DBL(0.2f); */
+ hAdjThr->bresParamLong.clipSpendHigh =
+ (FIXP_DBL)0x7999999a; /* FL2FXCONST_DBL(0.95f); */
+ hAdjThr->bresParamLong.minBitSpend =
+ (FIXP_DBL)0xf3333333; /* FL2FXCONST_DBL(-0.10f); */
+ hAdjThr->bresParamLong.maxBitSpend =
+ (FIXP_DBL)0x33333333; /* FL2FXCONST_DBL(0.4f); */
+
+ hAdjThr->bresParamShort.clipSaveLow =
+ (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */
+ hAdjThr->bresParamShort.clipSaveHigh =
+ (FIXP_DBL)0x5fffffff; /* FL2FXCONST_DBL(0.75f); */
+ hAdjThr->bresParamShort.minBitSave =
+ (FIXP_DBL)0x00000000; /* FL2FXCONST_DBL(0.0f); */
+ hAdjThr->bresParamShort.maxBitSave =
+ (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */
+ hAdjThr->bresParamShort.clipSpendLow =
+ (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */
+ hAdjThr->bresParamShort.clipSpendHigh =
+ (FIXP_DBL)0x5fffffff; /* FL2FXCONST_DBL(0.75f); */
+ hAdjThr->bresParamShort.minBitSpend =
+ (FIXP_DBL)0xf9999998; /* FL2FXCONST_DBL(-0.05f); */
+ hAdjThr->bresParamShort.maxBitSpend =
+ (FIXP_DBL)0x40000000; /* FL2FXCONST_DBL(0.5f); */
/* specific for each element: */
- for (i=0; i<nElements; i++) {
- ATS_ELEMENT* atsElem = hAdjThr->adjThrStateElem[i];
+ for (i = 0; i < channelMapping->nElements; i++) {
+ const FIXP_DBL relativeBits = channelMapping->elInfo[i].relativeBits;
+ const INT nChannelsInElement = channelMapping->elInfo[i].nChannelsInEl;
+ const INT bitrateInElement =
+ (relativeBits != (FIXP_DBL)MAXVAL_DBL)
+ ? (INT)fMultNorm(relativeBits, (FIXP_DBL)totalBitrate)
+ : totalBitrate;
+ const INT chBitrate = bitrateInElement >> (nChannelsInElement == 1 ? 0 : 1);
+
+ ATS_ELEMENT *atsElem = hAdjThr->adjThrStateElem[i];
MINSNR_ADAPT_PARAM *msaParam = &atsElem->minSnrAdaptParam;
- INT chBitrate = elBits[i]->chBitrateEl;
/* parameters for bitres control */
- atsElem->peMin = fMultI(POINT8, meanPe) >> 1;
- atsElem->peMax = fMultI(POINT6, meanPe);
+ if (isLowDelay) {
+ atsElem->peMin = fMultI(POINT8, meanPe);
+ atsElem->peMax = fMultI(POINT6, meanPe) << 1;
+ } else {
+ atsElem->peMin = fMultI(POINT8, meanPe) >> 1;
+ atsElem->peMax = fMultI(POINT6, meanPe);
+ }
/* for use in FDKaacEnc_reduceThresholdsVBR */
atsElem->chaosMeasureOld = FL2FXCONST_DBL(0.3f);
/* additional pe offset to correct pe2bits for low bitrates */
+ /* ---- no longer necessary, set by table ----- */
atsElem->peOffset = 0;
/* vbr initialisation */
atsElem->vbrQualFactor = vbrQualFactor;
- if (chBitrate < 32000)
- {
- atsElem->peOffset = fixMax(50, 100-fMultI((FIXP_DBL)0x666667, chBitrate));
+ if (chBitrate < 32000) {
+ atsElem->peOffset =
+ fixMax(50, 100 - fMultI((FIXP_DBL)0x666667, chBitrate));
}
/* avoid hole parameters */
- if (chBitrate > 20000) {
+ if (chBitrate >= 20000) {
atsElem->ahParam.modifyMinSnr = TRUE;
atsElem->ahParam.startSfbL = 15;
atsElem->ahParam.startSfbS = 3;
- }
- else {
+ } else {
atsElem->ahParam.modifyMinSnr = FALSE;
atsElem->ahParam.startSfbL = 0;
atsElem->ahParam.startSfbS = 0;
@@ -2327,9 +2583,11 @@ void FDKaacEnc_AdjThrInit(
/* maximum minSnr reduction to minSnr^maxRed is reached for
avgEn/sfbEn >= maxRatio */
/* msaParam->maxRatio = 1000.0f; */
- /*msaParam->redRatioFac = ((float)1.0f - msaParam->maxRed) / ((float)10.0f*log10(msaParam->startRatio/msaParam->maxRatio)/log10(2.0f)*(float)0.3010299956f);*/
+ /*msaParam->redRatioFac = ((float)1.0f - msaParam->maxRed) /
+ * ((float)10.0f*log10(msaParam->startRatio/msaParam->maxRatio)/log10(2.0f)*(float)0.3010299956f);*/
msaParam->redRatioFac = FL2FXCONST_DBL(-0.375f); /* -0.0375f * 10.0f */
- /*msaParam->redOffs = (float)1.0f - msaParam->redRatioFac * (float)10.0f * log10(msaParam->startRatio)/log10(2.0f) * (float)0.3010299956f;*/
+ /*msaParam->redOffs = (float)1.0f - msaParam->redRatioFac * (float)10.0f *
+ * log10(msaParam->startRatio)/log10(2.0f) * (float)0.3010299956f;*/
msaParam->redOffs = FL2FXCONST_DBL(0.021484375); /* 1.375f/64.0f */
/* init pe correction */
@@ -2343,324 +2601,324 @@ void FDKaacEnc_AdjThrInit(
/* init bits2PeFactor */
FDKaacEnc_InitBits2PeFactor(
- &atsElem->bits2PeFactor_m,
- &atsElem->bits2PeFactor_e,
- chBitrate*nChannelsEff, /* overall bitrate */
- nChannelsEff, /* number of channels */
- sampleRate,
- advancedBitsToPe,
- dZoneQuantEnable,
- invQuant
- );
+ &atsElem->bits2PeFactor_m, &atsElem->bits2PeFactor_e, bitrateInElement,
+ nChannelsInElement, sampleRate, isLowDelay, dZoneQuantEnable, invQuant);
} /* for nElements */
-
}
-
/*****************************************************************************
functionname: FDKaacEnc_FDKaacEnc_calcPeCorrection
description: calc desired pe
*****************************************************************************/
static void FDKaacEnc_FDKaacEnc_calcPeCorrection(
- FIXP_DBL *const correctionFac_m,
- INT *const correctionFac_e,
- const INT peAct,
- const INT peLast,
- const INT bitsLast,
- const FIXP_DBL bits2PeFactor_m,
- const INT bits2PeFactor_e
- )
-{
- if ( (bitsLast > 0) && (peAct < 1.5f*peLast) && (peAct > 0.7f*peLast) &&
- (FDKaacEnc_bits2pe2(bitsLast, fMult(FL2FXCONST_DBL(1.2f/2.f), bits2PeFactor_m), bits2PeFactor_e+1) > peLast) &&
- (FDKaacEnc_bits2pe2(bitsLast, fMult(FL2FXCONST_DBL(0.65f), bits2PeFactor_m), bits2PeFactor_e ) < peLast) )
- {
+ FIXP_DBL *const correctionFac_m, INT *const correctionFac_e,
+ const INT peAct, const INT peLast, const INT bitsLast,
+ const FIXP_DBL bits2PeFactor_m, const INT bits2PeFactor_e) {
+ if ((bitsLast > 0) && (peAct < 1.5f * peLast) && (peAct > 0.7f * peLast) &&
+ (FDKaacEnc_bits2pe2(bitsLast,
+ fMult(FL2FXCONST_DBL(1.2f / 2.f), bits2PeFactor_m),
+ bits2PeFactor_e + 1) > peLast) &&
+ (FDKaacEnc_bits2pe2(bitsLast,
+ fMult(FL2FXCONST_DBL(0.65f), bits2PeFactor_m),
+ bits2PeFactor_e) < peLast)) {
FIXP_DBL corrFac = *correctionFac_m;
int scaling = 0;
- FIXP_DBL denum = (FIXP_DBL)FDKaacEnc_bits2pe2(bitsLast, bits2PeFactor_m, bits2PeFactor_e);
+ FIXP_DBL denum = (FIXP_DBL)FDKaacEnc_bits2pe2(bitsLast, bits2PeFactor_m,
+ bits2PeFactor_e);
FIXP_DBL newFac = fDivNorm((FIXP_DBL)peLast, denum, &scaling);
/* dead zone, newFac and corrFac are scaled by 0.5 */
if ((FIXP_DBL)peLast <= denum) { /* ratio <= 1.f */
- newFac = fixMax(scaleValue(fixMin( fMult(FL2FXCONST_DBL(1.1f/2.f), newFac), scaleValue(FL2FXCONST_DBL( 1.f/2.f), -scaling)), scaling), FL2FXCONST_DBL(0.85f/2.f) );
- }
- else { /* ratio < 1.f */
- newFac = fixMax( fixMin( scaleValue(fMult(FL2FXCONST_DBL(0.9f/2.f), newFac), scaling), FL2FXCONST_DBL(1.15f/2.f) ), FL2FXCONST_DBL( 1.f/2.f) );
+ newFac = fixMax(
+ scaleValue(fixMin(fMult(FL2FXCONST_DBL(1.1f / 2.f), newFac),
+ scaleValue(FL2FXCONST_DBL(1.f / 2.f), -scaling)),
+ scaling),
+ FL2FXCONST_DBL(0.85f / 2.f));
+ } else { /* ratio < 1.f */
+ newFac = fixMax(
+ fixMin(scaleValue(fMult(FL2FXCONST_DBL(0.9f / 2.f), newFac), scaling),
+ FL2FXCONST_DBL(1.15f / 2.f)),
+ FL2FXCONST_DBL(1.f / 2.f));
}
- if ( ((newFac > FL2FXCONST_DBL(1.f/2.f)) && (corrFac < FL2FXCONST_DBL(1.f/2.f)))
- || ((newFac < FL2FXCONST_DBL(1.f/2.f)) && (corrFac > FL2FXCONST_DBL(1.f/2.f))))
- {
- corrFac = FL2FXCONST_DBL(1.f/2.f);
+ if (((newFac > FL2FXCONST_DBL(1.f / 2.f)) &&
+ (corrFac < FL2FXCONST_DBL(1.f / 2.f))) ||
+ ((newFac < FL2FXCONST_DBL(1.f / 2.f)) &&
+ (corrFac > FL2FXCONST_DBL(1.f / 2.f)))) {
+ corrFac = FL2FXCONST_DBL(1.f / 2.f);
}
/* faster adaptation towards 1.0, slower in the other direction */
- if ( (corrFac < FL2FXCONST_DBL(1.f/2.f) && newFac < corrFac)
- || (corrFac > FL2FXCONST_DBL(1.f/2.f) && newFac > corrFac) )
- {
- corrFac = fMult(FL2FXCONST_DBL(0.85f), corrFac) + fMult(FL2FXCONST_DBL(0.15f), newFac);
- }
- else {
- corrFac = fMult(FL2FXCONST_DBL(0.7f), corrFac) + fMult(FL2FXCONST_DBL(0.3f), newFac);
+ if ((corrFac < FL2FXCONST_DBL(1.f / 2.f) && newFac < corrFac) ||
+ (corrFac > FL2FXCONST_DBL(1.f / 2.f) && newFac > corrFac)) {
+ corrFac = fMult(FL2FXCONST_DBL(0.85f), corrFac) +
+ fMult(FL2FXCONST_DBL(0.15f), newFac);
+ } else {
+ corrFac = fMult(FL2FXCONST_DBL(0.7f), corrFac) +
+ fMult(FL2FXCONST_DBL(0.3f), newFac);
}
- corrFac = fixMax( fixMin( corrFac, FL2FXCONST_DBL(1.15f/2.f) ), FL2FXCONST_DBL(0.85/2.f) );
+ corrFac = fixMax(fixMin(corrFac, FL2FXCONST_DBL(1.15f / 2.f)),
+ FL2FXCONST_DBL(0.85 / 2.f));
*correctionFac_m = corrFac;
*correctionFac_e = 1;
- }
- else {
- *correctionFac_m = FL2FXCONST_DBL(1.f/2.f);
+ } else {
+ *correctionFac_m = FL2FXCONST_DBL(1.f / 2.f);
*correctionFac_e = 1;
}
}
-
static void FDKaacEnc_calcPeCorrectionLowBitRes(
- FIXP_DBL *const correctionFac_m,
- INT *const correctionFac_e,
- const INT peLast,
- const INT bitsLast,
- const INT bitresLevel,
- const INT nChannels,
- const FIXP_DBL bits2PeFactor_m,
- const INT bits2PeFactor_e
- )
-{
+ FIXP_DBL *const correctionFac_m, INT *const correctionFac_e,
+ const INT peLast, const INT bitsLast, const INT bitresLevel,
+ const INT nChannels, const FIXP_DBL bits2PeFactor_m,
+ const INT bits2PeFactor_e) {
/* tuning params */
- const FIXP_DBL amp = FL2FXCONST_DBL(0.005);
+ const FIXP_DBL amp = FL2FXCONST_DBL(0.005);
const FIXP_DBL maxDiff = FL2FXCONST_DBL(0.25f);
if (bitsLast > 0) {
-
- /* Estimate deviation of granted and used dynamic bits in previous frame, in PE units */
- const int bitsBalLast = peLast - FDKaacEnc_bits2pe2(
- bitsLast,
- bits2PeFactor_m,
- bits2PeFactor_e);
+ /* Estimate deviation of granted and used dynamic bits in previous frame, in
+ * PE units */
+ const int bitsBalLast =
+ peLast - FDKaacEnc_bits2pe2(bitsLast, bits2PeFactor_m, bits2PeFactor_e);
/* reserve n bits per channel */
- int headroom = (bitresLevel>=50*nChannels) ? 0 : (100*nChannels);
+ int headroom = (bitresLevel >= 50 * nChannels) ? 0 : (100 * nChannels);
/* in PE units */
- headroom = FDKaacEnc_bits2pe2(
- headroom,
- bits2PeFactor_m,
- bits2PeFactor_e);
+ headroom = FDKaacEnc_bits2pe2(headroom, bits2PeFactor_m, bits2PeFactor_e);
/*
* diff = amp * ((bitsBalLast - headroom) / (bitresLevel + headroom)
* diff = max ( min ( diff, maxDiff, -maxDiff)) / 2
*/
- FIXP_DBL denominator = (FIXP_DBL)FDKaacEnc_bits2pe2(bitresLevel, bits2PeFactor_m, bits2PeFactor_e) + (FIXP_DBL)headroom;
+ FIXP_DBL denominator = (FIXP_DBL)FDKaacEnc_bits2pe2(
+ bitresLevel, bits2PeFactor_m, bits2PeFactor_e) +
+ (FIXP_DBL)headroom;
int scaling = 0;
- FIXP_DBL diff = (bitsBalLast>=headroom)
- ? fMult(amp, fDivNorm( (FIXP_DBL)(bitsBalLast - headroom), denominator, &scaling))
- : -fMult(amp, fDivNorm(-(FIXP_DBL)(bitsBalLast - headroom), denominator, &scaling)) ;
+ FIXP_DBL diff =
+ (bitsBalLast >= headroom)
+ ? fMult(amp, fDivNorm((FIXP_DBL)(bitsBalLast - headroom),
+ denominator, &scaling))
+ : -fMult(amp, fDivNorm(-(FIXP_DBL)(bitsBalLast - headroom),
+ denominator, &scaling));
scaling -= 1; /* divide by 2 */
- diff = (scaling<=0) ? FDKmax( FDKmin (diff>>(-scaling), maxDiff>>1), -maxDiff>>1)
- : FDKmax( FDKmin (diff, maxDiff>>(1+scaling)), -maxDiff>>(1+scaling)) << scaling;
+ diff = (scaling <= 0)
+ ? fMax(fMin(diff >> (-scaling), maxDiff >> 1), -maxDiff >> 1)
+ : fMax(fMin(diff, maxDiff >> (1 + scaling)),
+ -maxDiff >> (1 + scaling))
+ << scaling;
/*
* corrFac += diff
* corrFac = max ( min ( corrFac/2.f, 1.f/2.f, 0.75f/2.f ) )
*/
- *correctionFac_m = FDKmax(FDKmin((*correctionFac_m)+diff, FL2FXCONST_DBL(1.0f/2.f)), FL2FXCONST_DBL(0.75f/2.f)) ;
+ *correctionFac_m =
+ fMax(fMin((*correctionFac_m) + diff, FL2FXCONST_DBL(1.0f / 2.f)),
+ FL2FXCONST_DBL(0.75f / 2.f));
*correctionFac_e = 1;
- }
- else {
- *correctionFac_m = FL2FXCONST_DBL(0.75/2.f);
+ } else {
+ *correctionFac_m = FL2FXCONST_DBL(0.75 / 2.f);
*correctionFac_e = 1;
}
}
-void FDKaacEnc_DistributeBits(ADJ_THR_STATE *adjThrState,
- ATS_ELEMENT *AdjThrStateElement,
- PSY_OUT_CHANNEL *psyOutChannel[(2)],
- PE_DATA *peData,
- INT *grantedPe,
- INT *grantedPeCorr,
- const INT nChannels,
- const INT commonWindow,
- const INT grantedDynBits,
- const INT bitresBits,
- const INT maxBitresBits,
- const FIXP_DBL maxBitFac,
- const INT bitDistributionMode)
-{
+void FDKaacEnc_DistributeBits(
+ ADJ_THR_STATE *adjThrState, ATS_ELEMENT *AdjThrStateElement,
+ PSY_OUT_CHANNEL *psyOutChannel[(2)], PE_DATA *peData, INT *grantedPe,
+ INT *grantedPeCorr, const INT nChannels, const INT commonWindow,
+ const INT grantedDynBits, const INT bitresBits, const INT maxBitresBits,
+ const FIXP_DBL maxBitFac, const AACENC_BITRES_MODE bitResMode) {
FIXP_DBL bitFactor;
+ INT bitFactor_e;
INT noRedPe = peData->pe;
/* prefer short windows for calculation of bitFactor */
INT curWindowSequence = LONG_WINDOW;
- if (nChannels==2) {
+ if (nChannels == 2) {
if ((psyOutChannel[0]->lastWindowSequence == SHORT_WINDOW) ||
(psyOutChannel[1]->lastWindowSequence == SHORT_WINDOW)) {
- curWindowSequence = SHORT_WINDOW;
+ curWindowSequence = SHORT_WINDOW;
}
- }
- else {
+ } else {
curWindowSequence = psyOutChannel[0]->lastWindowSequence;
}
if (grantedDynBits >= 1) {
- if (bitDistributionMode!=0) {
- *grantedPe = FDKaacEnc_bits2pe2(grantedDynBits, AdjThrStateElement->bits2PeFactor_m, AdjThrStateElement->bits2PeFactor_e);
- }
- else
- {
- /* factor dependend on current fill level and pe */
- bitFactor = FDKaacEnc_bitresCalcBitFac(bitresBits, maxBitresBits, noRedPe,
- curWindowSequence, grantedDynBits, maxBitFac,
- adjThrState,
- AdjThrStateElement
- );
-
- /* desired pe for actual frame */
- /* Worst case max of grantedDynBits is = 1024 * 5.27 * 2 */
- *grantedPe = FDKaacEnc_bits2pe2(grantedDynBits,
- fMult(bitFactor, AdjThrStateElement->bits2PeFactor_m), AdjThrStateElement->bits2PeFactor_e+(DFRACT_BITS-1-Q_BITFAC)
- );
+ if (bitResMode != AACENC_BR_MODE_FULL) {
+ /* small or disabled bitreservoir */
+ *grantedPe = FDKaacEnc_bits2pe2(grantedDynBits,
+ AdjThrStateElement->bits2PeFactor_m,
+ AdjThrStateElement->bits2PeFactor_e);
+ } else {
+ /* factor dependend on current fill level and pe */
+ FDKaacEnc_bitresCalcBitFac(
+ bitresBits, maxBitresBits, noRedPe, curWindowSequence, grantedDynBits,
+ maxBitFac, adjThrState, AdjThrStateElement, &bitFactor, &bitFactor_e);
+
+ /* desired pe for actual frame */
+ /* Worst case max of grantedDynBits is = 1024 * 5.27 * 2 */
+ *grantedPe = FDKaacEnc_bits2pe2(
+ grantedDynBits, fMult(bitFactor, AdjThrStateElement->bits2PeFactor_m),
+ AdjThrStateElement->bits2PeFactor_e + bitFactor_e);
}
- }
- else {
+ } else {
*grantedPe = 0; /* prevent divsion by 0 */
}
/* correction of pe value */
- switch (bitDistributionMode) {
- case 2:
- case 1:
- FDKaacEnc_calcPeCorrectionLowBitRes(
- &AdjThrStateElement->peCorrectionFactor_m,
- &AdjThrStateElement->peCorrectionFactor_e,
- AdjThrStateElement->peLast,
- AdjThrStateElement->dynBitsLast,
- bitresBits,
- nChannels,
- AdjThrStateElement->bits2PeFactor_m,
- AdjThrStateElement->bits2PeFactor_e
- );
- break;
- case 0:
- default:
+ switch (bitResMode) {
+ case AACENC_BR_MODE_DISABLED:
+ case AACENC_BR_MODE_REDUCED:
+ /* correction of pe value for low bitres */
+ FDKaacEnc_calcPeCorrectionLowBitRes(
+ &AdjThrStateElement->peCorrectionFactor_m,
+ &AdjThrStateElement->peCorrectionFactor_e, AdjThrStateElement->peLast,
+ AdjThrStateElement->dynBitsLast, bitresBits, nChannels,
+ AdjThrStateElement->bits2PeFactor_m,
+ AdjThrStateElement->bits2PeFactor_e);
+ break;
+ case AACENC_BR_MODE_FULL:
+ default:
+ /* correction of pe value for high bitres */
FDKaacEnc_FDKaacEnc_calcPeCorrection(
- &AdjThrStateElement->peCorrectionFactor_m,
- &AdjThrStateElement->peCorrectionFactor_e,
- fixMin(*grantedPe, noRedPe),
- AdjThrStateElement->peLast,
- AdjThrStateElement->dynBitsLast,
- AdjThrStateElement->bits2PeFactor_m,
- AdjThrStateElement->bits2PeFactor_e
- );
- break;
+ &AdjThrStateElement->peCorrectionFactor_m,
+ &AdjThrStateElement->peCorrectionFactor_e,
+ fixMin(*grantedPe, noRedPe), AdjThrStateElement->peLast,
+ AdjThrStateElement->dynBitsLast, AdjThrStateElement->bits2PeFactor_m,
+ AdjThrStateElement->bits2PeFactor_e);
+ break;
}
- *grantedPeCorr = (INT)(fMult((FIXP_DBL)(*grantedPe<<Q_AVGBITS), AdjThrStateElement->peCorrectionFactor_m) >> (Q_AVGBITS-AdjThrStateElement->peCorrectionFactor_e));
+ *grantedPeCorr =
+ (INT)(fMult((FIXP_DBL)(*grantedPe << Q_AVGBITS),
+ AdjThrStateElement->peCorrectionFactor_m) >>
+ (Q_AVGBITS - AdjThrStateElement->peCorrectionFactor_e));
/* update last pe */
AdjThrStateElement->peLast = *grantedPe;
AdjThrStateElement->dynBitsLast = -1;
-
}
/*****************************************************************************
functionname: FDKaacEnc_AdjustThresholds
description: adjust thresholds
*****************************************************************************/
-void FDKaacEnc_AdjustThresholds(ATS_ELEMENT* AdjThrStateElement[(8)],
- QC_OUT_ELEMENT* qcElement[(8)],
- QC_OUT* qcOut,
- PSY_OUT_ELEMENT* psyOutElement[(8)],
- INT CBRbitrateMode,
- INT maxIter2ndGuess,
- CHANNEL_MAPPING* cm)
-{
- int i;
- if (CBRbitrateMode)
- {
- /* In case, no bits must be shifted between different elements, */
- /* an element-wise execution of the pe-dependent threshold- */
- /* adaption becomes necessary... */
- for (i=0; i<cm->nElements; i++)
- {
- ELEMENT_INFO elInfo = cm->elInfo[i];
-
- if ((elInfo.elType == ID_SCE) || (elInfo.elType == ID_CPE) ||
- (elInfo.elType == ID_LFE))
- {
- /* qcElement[i]->grantedPe = 2000; */ /* Use this only for debugging */
- //if (totalGrantedPeCorr < totalNoRedPe) {
- if (qcElement[i]->grantedPe < qcElement[i]->peData.pe)
- {
- /* calc threshold necessary for desired pe */
- FDKaacEnc_adaptThresholdsToPe(cm,
- AdjThrStateElement,
- qcElement,
- psyOutElement,
- qcElement[i]->grantedPeCorr,
- maxIter2ndGuess,
- 1, /* Process only 1 element */
- i); /* Process exactly THIS element */
-
- }
-
- } /* -end- if(ID_SCE || ID_CPE || ID_LFE) */
-
- } /* -end- element loop */
- }
- else {
- for (i=0; i<cm->nElements; i++)
- {
- ELEMENT_INFO elInfo = cm->elInfo[i];
-
- if ((elInfo.elType == ID_SCE) || (elInfo.elType == ID_CPE) ||
- (elInfo.elType == ID_LFE))
- {
- /* for VBR-mode */
- FDKaacEnc_AdaptThresholdsVBR(qcElement[i]->qcOutChannel,
- psyOutElement[i]->psyOutChannel,
- AdjThrStateElement[i],
- &psyOutElement[i]->toolsInfo,
- &qcElement[i]->peData,
- cm->elInfo[i].nChannelsInEl);
- } /* -end- if(ID_SCE || ID_CPE || ID_LFE) */
-
- } /* -end- element loop */
-
- }
- for (i=0; i<cm->nElements; i++) {
- int ch,sfb,sfbGrp;
- /* no weighting of threholds and energies for mlout */
- /* weight energies and thresholds */
- for (ch=0; ch<cm->elInfo[i].nChannelsInEl; ch++) {
- QC_OUT_CHANNEL* pQcOutCh = qcElement[i]->qcOutChannel[ch];
- for (sfbGrp = 0;sfbGrp < psyOutElement[i]->psyOutChannel[ch]->sfbCnt; sfbGrp+=psyOutElement[i]->psyOutChannel[ch]->sfbPerGroup) {
- for (sfb=0; sfb<psyOutElement[i]->psyOutChannel[ch]->maxSfbPerGroup; sfb++) {
- pQcOutCh->sfbThresholdLdData[sfb+sfbGrp] += pQcOutCh->sfbEnFacLd[sfb+sfbGrp];
- }
+void FDKaacEnc_AdjustThresholds(
+ ADJ_THR_STATE *const hAdjThr, QC_OUT_ELEMENT *const qcElement[((8))],
+ QC_OUT *const qcOut, const PSY_OUT_ELEMENT *const psyOutElement[((8))],
+ const INT CBRbitrateMode, const CHANNEL_MAPPING *const cm) {
+ int i;
+
+ if (CBRbitrateMode) {
+ /* In case, no bits must be shifted between different elements, */
+ /* an element-wise execution of the pe-dependent threshold- */
+ /* adaption becomes necessary... */
+ if (hAdjThr->bitDistributionMode == AACENC_BD_MODE_INTRA_ELEMENT) {
+ for (i = 0; i < cm->nElements; i++) {
+ ELEMENT_INFO elInfo = cm->elInfo[i];
+
+ if ((elInfo.elType == ID_SCE) || (elInfo.elType == ID_CPE) ||
+ (elInfo.elType == ID_LFE)) {
+ /* qcElement[i]->grantedPe = 2000; */ /* Use this only for debugging
+ */
+ // if (totalGrantedPeCorr < totalNoRedPe) {
+ if (qcElement[i]->grantedPeCorr < qcElement[i]->peData.pe) {
+ /* calc threshold necessary for desired pe */
+ FDKaacEnc_adaptThresholdsToPe(
+ cm, hAdjThr->adjThrStateElem, qcElement, psyOutElement,
+ qcElement[i]->grantedPeCorr, hAdjThr->maxIter2ndGuess,
+ 1, /* Process only 1 element */
+ i /* Process exactly THIS element */
+ );
+ }
+ } /* -end- if(ID_SCE || ID_CPE || ID_LFE) */
+ } /* -end- element loop */
+ } /* AACENC_BD_MODE_INTRA_ELEMENT */
+ else if (hAdjThr->bitDistributionMode == AACENC_BD_MODE_INTER_ELEMENT) {
+ /* Use global Pe to obtain the thresholds? */
+ if (qcOut->totalGrantedPeCorr < qcOut->totalNoRedPe) {
+ /* add equal loadness quantization noise to match the */
+ /* desired pe calc threshold necessary for desired pe */
+ /* Now carried out globally to cover all(!) channels. */
+ FDKaacEnc_adaptThresholdsToPe(cm, hAdjThr->adjThrStateElem, qcElement,
+ psyOutElement, qcOut->totalGrantedPeCorr,
+ hAdjThr->maxIter2ndGuess,
+ cm->nElements, /* Process all elements */
+ 0); /* Process exactly THIS element */
+ } else {
+ /* In case global pe doesn't need to be reduced check each element to
+ hold estimated bitrate below maximum element bitrate. */
+ for (i = 0; i < cm->nElements; i++) {
+ if ((cm->elInfo[i].elType == ID_SCE) ||
+ (cm->elInfo[i].elType == ID_CPE) ||
+ (cm->elInfo[i].elType == ID_LFE)) {
+ /* Element pe applies to dynamic bits of maximum element bitrate. */
+ const int maxElementPe = FDKaacEnc_bits2pe2(
+ (cm->elInfo[i].nChannelsInEl * MIN_BUFSIZE_PER_EFF_CHAN) -
+ qcElement[i]->staticBitsUsed - qcElement[i]->extBitsUsed,
+ hAdjThr->adjThrStateElem[i]->bits2PeFactor_m,
+ hAdjThr->adjThrStateElem[i]->bits2PeFactor_e);
+
+ if (maxElementPe < qcElement[i]->peData.pe) {
+ FDKaacEnc_adaptThresholdsToPe(
+ cm, hAdjThr->adjThrStateElem, qcElement, psyOutElement,
+ maxElementPe, hAdjThr->maxIter2ndGuess, 1, i);
}
+ } /* -end- if(ID_SCE || ID_CPE || ID_LFE) */
+ } /* -end- element loop */
+ } /* (qcOut->totalGrantedPeCorr < qcOut->totalNoRedPe) */
+ } /* AACENC_BD_MODE_INTER_ELEMENT */
+ } else {
+ for (i = 0; i < cm->nElements; i++) {
+ ELEMENT_INFO elInfo = cm->elInfo[i];
+
+ if ((elInfo.elType == ID_SCE) || (elInfo.elType == ID_CPE) ||
+ (elInfo.elType == ID_LFE)) {
+ /* for VBR-mode */
+ FDKaacEnc_AdaptThresholdsVBR(
+ qcElement[i]->qcOutChannel, psyOutElement[i]->psyOutChannel,
+ hAdjThr->adjThrStateElem[i], &psyOutElement[i]->toolsInfo,
+ cm->elInfo[i].nChannelsInEl);
+ } /* -end- if(ID_SCE || ID_CPE || ID_LFE) */
+
+ } /* -end- element loop */
+ }
+ for (i = 0; i < cm->nElements; i++) {
+ int ch, sfb, sfbGrp;
+ /* no weighting of threholds and energies for mlout */
+ /* weight energies and thresholds */
+ for (ch = 0; ch < cm->elInfo[i].nChannelsInEl; ch++) {
+ QC_OUT_CHANNEL *pQcOutCh = qcElement[i]->qcOutChannel[ch];
+ for (sfbGrp = 0; sfbGrp < psyOutElement[i]->psyOutChannel[ch]->sfbCnt;
+ sfbGrp += psyOutElement[i]->psyOutChannel[ch]->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutElement[i]->psyOutChannel[ch]->maxSfbPerGroup;
+ sfb++) {
+ pQcOutCh->sfbThresholdLdData[sfb + sfbGrp] +=
+ pQcOutCh->sfbEnFacLd[sfb + sfbGrp];
}
+ }
}
+ }
}
-void FDKaacEnc_AdjThrClose(ADJ_THR_STATE** phAdjThr)
-{
- INT i;
- ADJ_THR_STATE* hAdjThr = *phAdjThr;
+void FDKaacEnc_AdjThrClose(ADJ_THR_STATE **phAdjThr) {
+ INT i;
+ ADJ_THR_STATE *hAdjThr = *phAdjThr;
- if (hAdjThr!=NULL) {
- for (i=0; i<(8); i++) {
- if (hAdjThr->adjThrStateElem[i]!=NULL) {
- FreeRam_aacEnc_AdjThrStateElement(&hAdjThr->adjThrStateElem[i]);
- }
+ if (hAdjThr != NULL) {
+ for (i = 0; i < ((8)); i++) {
+ if (hAdjThr->adjThrStateElem[i] != NULL) {
+ FreeRam_aacEnc_AdjThrStateElement(&hAdjThr->adjThrStateElem[i]);
}
- FreeRam_aacEnc_AdjustThreshold(phAdjThr);
}
+ FreeRam_aacEnc_AdjustThreshold(phAdjThr);
+ }
}
-