diff options
author | Dave Burke <daveburke@google.com> | 2012-04-17 09:51:45 -0700 |
---|---|---|
committer | Dave Burke <daveburke@google.com> | 2012-04-17 23:04:43 -0700 |
commit | 9bf37cc9712506b2483650c82d3c41152337ef7e (patch) | |
tree | 77db44e2bae06e3d144b255628be2b7a55c581d3 /libFDK/src/fixpoint_math.cpp | |
parent | a37315fe10ee143d6d0b28c19d41a476a23e63ea (diff) | |
download | fdk-aac-dabplus-9bf37cc9712506b2483650c82d3c41152337ef7e.tar.gz fdk-aac-dabplus-9bf37cc9712506b2483650c82d3c41152337ef7e.tar.bz2 fdk-aac-dabplus-9bf37cc9712506b2483650c82d3c41152337ef7e.zip |
Fraunhofer AAC codec.
License boilerplate update to follow.
Change-Id: I2810460c11a58b6d148d84673cc031f3685e79b5
Diffstat (limited to 'libFDK/src/fixpoint_math.cpp')
-rw-r--r-- | libFDK/src/fixpoint_math.cpp | 1164 |
1 files changed, 1164 insertions, 0 deletions
diff --git a/libFDK/src/fixpoint_math.cpp b/libFDK/src/fixpoint_math.cpp new file mode 100644 index 0000000..45b3023 --- /dev/null +++ b/libFDK/src/fixpoint_math.cpp @@ -0,0 +1,1164 @@ +/*************************** Fraunhofer IIS FDK Tools ********************** + + (C) Copyright Fraunhofer IIS (1999) + All Rights Reserved + + Please be advised that this software and/or program delivery is + Confidential Information of Fraunhofer and subject to and covered by the + + Fraunhofer IIS Software Evaluation Agreement + between Google Inc. and Fraunhofer + effective and in full force since March 1, 2012. + + You may use this software and/or program only under the terms and + conditions described in the above mentioned Fraunhofer IIS Software + Evaluation Agreement. Any other and/or further use requires a separate agreement. + + + $Id$ + Author(s): M. Gayer + Description: Fixed point specific mathematical functions + + This software and/or program is protected by copyright law and international + treaties. Any reproduction or distribution of this software and/or program, + or any portion of it, may result in severe civil and criminal penalties, and + will be prosecuted to the maximum extent possible under law. + +******************************************************************************/ + +#include "fixpoint_math.h" + + +#define MAX_LD_PRECISION 10 +#define LD_PRECISION 10 + +/* Taylor series coeffcients for ln(1-x), centered at 0 (MacLaurin polinomial). */ +#ifndef LDCOEFF_16BIT +LNK_SECTION_CONSTDATA_L1 +static const FIXP_DBL ldCoeff[MAX_LD_PRECISION] = { + FL2FXCONST_DBL(-1.0), + FL2FXCONST_DBL(-1.0/2.0), + FL2FXCONST_DBL(-1.0/3.0), + FL2FXCONST_DBL(-1.0/4.0), + FL2FXCONST_DBL(-1.0/5.0), + FL2FXCONST_DBL(-1.0/6.0), + FL2FXCONST_DBL(-1.0/7.0), + FL2FXCONST_DBL(-1.0/8.0), + FL2FXCONST_DBL(-1.0/9.0), + FL2FXCONST_DBL(-1.0/10.0) +}; +#else +LNK_SECTION_CONSTDATA_L1 +static const FIXP_SGL ldCoeff[MAX_LD_PRECISION] = { + FL2FXCONST_SGL(-1.0), + FL2FXCONST_SGL(-1.0/2.0), + FL2FXCONST_SGL(-1.0/3.0), + FL2FXCONST_SGL(-1.0/4.0), + FL2FXCONST_SGL(-1.0/5.0), + FL2FXCONST_SGL(-1.0/6.0), + FL2FXCONST_SGL(-1.0/7.0), + FL2FXCONST_SGL(-1.0/8.0), + FL2FXCONST_SGL(-1.0/9.0), + FL2FXCONST_SGL(-1.0/10.0) +}; +#endif + +/***************************************************************************** + + functionname: CalcLdData + description: Delivers the Logarithm Dualis ld(op)/LD_DATA_SCALING with polynomial approximation. + input: Input op is assumed to be double precision fractional 0 < op < 1.0 + This function does not accept negative values. + output: For op == 0, the result is saturated to -1.0 + This function does not return positive values since input values are treated as fractional values. + It does not make sense to input an integer value into this function (and expect a positive output value) + since input values are treated as fractional values. + +*****************************************************************************/ + +LNK_SECTION_CODE_L1 +FIXP_DBL CalcLdData(FIXP_DBL op) +{ + return fLog2(op, 0); +} + + +/***************************************************************************** + functionname: LdDataVector +*****************************************************************************/ +LNK_SECTION_CODE_L1 +void LdDataVector( FIXP_DBL *srcVector, + FIXP_DBL *destVector, + INT n) +{ + INT i; + for ( i=0; i<n; i++) { + destVector[i] = CalcLdData(srcVector[i]); + } +} + + + +#define MAX_POW2_PRECISION 8 +#ifndef SINETABLE_16BIT + #define POW2_PRECISION MAX_POW2_PRECISION +#else + #define POW2_PRECISION 5 +#endif + +/* + Taylor series coefficients of the function x^2. The first coefficient is + ommited (equal to 1.0). + + pow2Coeff[i-1] = (1/i!) d^i(2^x)/dx^i, i=1..MAX_POW2_PRECISION + To evaluate the taylor series around x = 0, the coefficients are: 1/!i * ln(2)^i + */ +#ifndef POW2COEFF_16BIT +LNK_SECTION_CONSTDATA_L1 +static const FIXP_DBL pow2Coeff[MAX_POW2_PRECISION] = { + FL2FXCONST_DBL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */ + FL2FXCONST_DBL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */ + FL2FXCONST_DBL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */ + FL2FXCONST_DBL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */ + FL2FXCONST_DBL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */ + FL2FXCONST_DBL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */ + FL2FXCONST_DBL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */ + FL2FXCONST_DBL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */ +}; +#else +LNK_SECTION_CONSTDATA_L1 +static const FIXP_SGL pow2Coeff[MAX_POW2_PRECISION] = { + FL2FXCONST_SGL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */ + FL2FXCONST_SGL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */ + FL2FXCONST_SGL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */ + FL2FXCONST_SGL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */ + FL2FXCONST_SGL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */ + FL2FXCONST_SGL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */ + FL2FXCONST_SGL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */ + FL2FXCONST_SGL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */ +}; +#endif + + + +/***************************************************************************** + + functionname: mul_dbl_sgl_rnd + description: Multiply with round. +*****************************************************************************/ + +/* for rounding a dfract to fract */ +/* static LONG accu_r = (int64)((INT64(1)<<(DFRACT_BITS-1))>>FRACT_BITS); */ +//LNK_SECTION_CONSTDATA +//static const LONG accu_r = 0x00008000; +#define ACCU_R (LONG) 0x00008000 + +LNK_SECTION_CODE_L1 +FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1, const FIXP_SGL op2) +{ + FIXP_DBL prod; + LONG v = (LONG)(op1); + SHORT u = (SHORT)(op2); + + LONG low = u*(v&SGL_MASK); + low = (low+(ACCU_R>>1)) >> (FRACT_BITS-1); /* round */ + LONG high = u * ((v>>FRACT_BITS)<<1); + + prod = (LONG)(high+low); + + return((FIXP_DBL)prod); +} + + +/***************************************************************************** + + functionname: CalcInvLdData + description: Delivers the inverse of function CalcLdData(). + Delivers 2^(op*LD_DATA_SCALING) + input: Input op is assumed to be fractional -1.0 < op < 1.0 + output: For op == 0, the result is MAXVAL_DBL (almost 1.0). + For negative input values the output should be treated as a positive fractional value. + For positive input values the output should be treated as a positive integer value. + This function does not output negative values. + +*****************************************************************************/ +LNK_SECTION_CODE_L1 +FIXP_DBL CalcInvLdData(FIXP_DBL op) +{ + FIXP_DBL result_m; + + if ( op == FL2FXCONST_DBL(0.0f) ) { + result_m = (FIXP_DBL)MAXVAL_DBL; + } + else if ( op < FL2FXCONST_DBL(0.0f) ) { + result_m = f2Pow(op, LD_DATA_SHIFT); + } + else { + int result_e; + + result_m = f2Pow(op, LD_DATA_SHIFT, &result_e); + result_e = fixMin(fixMax(result_e+1-(DFRACT_BITS-1), -(DFRACT_BITS-1)), (DFRACT_BITS-1)); /* rounding and saturation */ + + if ( (result_e>0) && ( result_m > (((FIXP_DBL)MAXVAL_DBL)>>result_e) ) ) { + result_m = (FIXP_DBL)MAXVAL_DBL; /* saturate to max representable value */ + } + else { + result_m = (scaleValue(result_m, result_e)+(FIXP_DBL)1)>>1; /* descale result + rounding */ + } + } + return result_m; +} + + + + + +/***************************************************************************** + functionname: InitLdInt and CalcLdInt + description: Create and access table with integer LdData (0 to 193) +*****************************************************************************/ + + + LNK_SECTION_CONSTDATA_L1 + static const FIXP_DBL ldIntCoeff[] = { + 0x80000001, 0x00000000, 0x02000000, 0x032b8034, 0x04000000, 0x04a4d3c2, 0x052b8034, 0x059d5da0, + 0x06000000, 0x06570069, 0x06a4d3c2, 0x06eb3a9f, 0x072b8034, 0x0766a009, 0x079d5da0, 0x07d053f7, + 0x08000000, 0x082cc7ee, 0x08570069, 0x087ef05b, 0x08a4d3c2, 0x08c8ddd4, 0x08eb3a9f, 0x090c1050, + 0x092b8034, 0x0949a785, 0x0966a009, 0x0982809d, 0x099d5da0, 0x09b74949, 0x09d053f7, 0x09e88c6b, + 0x0a000000, 0x0a16bad3, 0x0a2cc7ee, 0x0a423162, 0x0a570069, 0x0a6b3d79, 0x0a7ef05b, 0x0a92203d, + 0x0aa4d3c2, 0x0ab7110e, 0x0ac8ddd4, 0x0ada3f60, 0x0aeb3a9f, 0x0afbd42b, 0x0b0c1050, 0x0b1bf312, + 0x0b2b8034, 0x0b3abb40, 0x0b49a785, 0x0b584822, 0x0b66a009, 0x0b74b1fd, 0x0b82809d, 0x0b900e61, + 0x0b9d5da0, 0x0baa708f, 0x0bb74949, 0x0bc3e9ca, 0x0bd053f7, 0x0bdc899b, 0x0be88c6b, 0x0bf45e09, + 0x0c000000, 0x0c0b73cb, 0x0c16bad3, 0x0c21d671, 0x0c2cc7ee, 0x0c379085, 0x0c423162, 0x0c4caba8, + 0x0c570069, 0x0c6130af, 0x0c6b3d79, 0x0c7527b9, 0x0c7ef05b, 0x0c88983f, 0x0c92203d, 0x0c9b8926, + 0x0ca4d3c2, 0x0cae00d2, 0x0cb7110e, 0x0cc0052b, 0x0cc8ddd4, 0x0cd19bb0, 0x0cda3f60, 0x0ce2c97d, + 0x0ceb3a9f, 0x0cf39355, 0x0cfbd42b, 0x0d03fda9, 0x0d0c1050, 0x0d140ca0, 0x0d1bf312, 0x0d23c41d, + 0x0d2b8034, 0x0d3327c7, 0x0d3abb40, 0x0d423b08, 0x0d49a785, 0x0d510118, 0x0d584822, 0x0d5f7cff, + 0x0d66a009, 0x0d6db197, 0x0d74b1fd, 0x0d7ba190, 0x0d82809d, 0x0d894f75, 0x0d900e61, 0x0d96bdad, + 0x0d9d5da0, 0x0da3ee7f, 0x0daa708f, 0x0db0e412, 0x0db74949, 0x0dbda072, 0x0dc3e9ca, 0x0dca258e, + 0x0dd053f7, 0x0dd6753e, 0x0ddc899b, 0x0de29143, 0x0de88c6b, 0x0dee7b47, 0x0df45e09, 0x0dfa34e1, + 0x0e000000, 0x0e05bf94, 0x0e0b73cb, 0x0e111cd2, 0x0e16bad3, 0x0e1c4dfb, 0x0e21d671, 0x0e275460, + 0x0e2cc7ee, 0x0e323143, 0x0e379085, 0x0e3ce5d8, 0x0e423162, 0x0e477346, 0x0e4caba8, 0x0e51daa8, + 0x0e570069, 0x0e5c1d0b, 0x0e6130af, 0x0e663b74, 0x0e6b3d79, 0x0e7036db, 0x0e7527b9, 0x0e7a1030, + 0x0e7ef05b, 0x0e83c857, 0x0e88983f, 0x0e8d602e, 0x0e92203d, 0x0e96d888, 0x0e9b8926, 0x0ea03232, + 0x0ea4d3c2, 0x0ea96df0, 0x0eae00d2, 0x0eb28c7f, 0x0eb7110e, 0x0ebb8e96, 0x0ec0052b, 0x0ec474e4, + 0x0ec8ddd4, 0x0ecd4012, 0x0ed19bb0, 0x0ed5f0c4, 0x0eda3f60, 0x0ede8797, 0x0ee2c97d, 0x0ee70525, + 0x0eeb3a9f, 0x0eef69ff, 0x0ef39355, 0x0ef7b6b4, 0x0efbd42b, 0x0effebcd, 0x0f03fda9, 0x0f0809cf, + 0x0f0c1050, 0x0f10113b, 0x0f140ca0, 0x0f18028d, 0x0f1bf312, 0x0f1fde3d, 0x0f23c41d, 0x0f27a4c0, + 0x0f2b8034 + }; + + + LNK_SECTION_INITCODE + void InitLdInt() + { + /* nothing to do! Use preinitialized logarithm table */ + } + + + +LNK_SECTION_CODE_L1 +FIXP_DBL CalcLdInt(INT i) +{ + /* calculates ld(op)/LD_DATA_SCALING */ + /* op is assumed to be an integer value between 1 and 193 */ + + FDK_ASSERT((193>0) && ((FIXP_DBL)ldIntCoeff[0]==(FIXP_DBL)0x80000001)); /* tab has to be initialized */ + + if ((i>0)&&(i<193)) + return ldIntCoeff[i]; + else + { + return (0); + } +} + + +/***************************************************************************** + + functionname: invSqrtNorm2 + description: delivers 1/sqrt(op) normalized to .5...1 and the shift value of the OUTPUT + +*****************************************************************************/ +#define SQRT_BITS 7 +#define SQRT_VALUES 128 +#define SQRT_BITS_MASK 0x7f + +LNK_SECTION_CONSTDATA_L1 +static const FIXP_DBL invSqrtTab[SQRT_VALUES] = { + 0x5a827999, 0x5a287e03, 0x59cf8cbb, 0x5977a0ab, 0x5920b4de, 0x58cac480, 0x5875cade, 0x5821c364, + 0x57cea99c, 0x577c792f, 0x572b2ddf, 0x56dac38d, 0x568b3631, 0x563c81df, 0x55eea2c3, 0x55a19521, + 0x55555555, 0x5509dfd0, 0x54bf311a, 0x547545d0, 0x542c1aa3, 0x53e3ac5a, 0x539bf7cc, 0x5354f9e6, + 0x530eafa4, 0x52c91617, 0x52842a5e, 0x523fe9ab, 0x51fc513f, 0x51b95e6b, 0x51770e8e, 0x51355f19, + 0x50f44d88, 0x50b3d768, 0x5073fa4f, 0x5034b3e6, 0x4ff601df, 0x4fb7e1f9, 0x4f7a5201, 0x4f3d4fce, + 0x4f00d943, 0x4ec4ec4e, 0x4e8986e9, 0x4e4ea718, 0x4e144ae8, 0x4dda7072, 0x4da115d9, 0x4d683948, + 0x4d2fd8f4, 0x4cf7f31b, 0x4cc08604, 0x4c898fff, 0x4c530f64, 0x4c1d0293, 0x4be767f5, 0x4bb23df9, + 0x4b7d8317, 0x4b4935ce, 0x4b1554a6, 0x4ae1de2a, 0x4aaed0f0, 0x4a7c2b92, 0x4a49ecb3, 0x4a1812fa, + 0x49e69d16, 0x49b589bb, 0x4984d7a4, 0x49548591, 0x49249249, 0x48f4fc96, 0x48c5c34a, 0x4896e53c, + 0x48686147, 0x483a364c, 0x480c6331, 0x47dee6e0, 0x47b1c049, 0x4784ee5f, 0x4758701c, 0x472c447c, + 0x47006a80, 0x46d4e130, 0x46a9a793, 0x467ebcb9, 0x46541fb3, 0x4629cf98, 0x45ffcb80, 0x45d61289, + 0x45aca3d5, 0x45837e88, 0x455aa1ca, 0x45320cc8, 0x4509beb0, 0x44e1b6b4, 0x44b9f40b, 0x449275ec, + 0x446b3b95, 0x44444444, 0x441d8f3b, 0x43f71bbe, 0x43d0e917, 0x43aaf68e, 0x43854373, 0x435fcf14, + 0x433a98c5, 0x43159fdb, 0x42f0e3ae, 0x42cc6397, 0x42a81ef5, 0x42841527, 0x4260458d, 0x423caf8c, + 0x4219528b, 0x41f62df1, 0x41d3412a, 0x41b08ba1, 0x418e0cc7, 0x416bc40d, 0x4149b0e4, 0x4127d2c3, + 0x41062920, 0x40e4b374, 0x40c3713a, 0x40a261ef, 0x40818511, 0x4060da21, 0x404060a1, 0x40201814 +}; + +LNK_SECTION_INITCODE +void InitInvSqrtTab() +{ + /* nothing to do ! + use preinitialized square root table + */ +} + + + +#if !defined(FUNCTION_invSqrtNorm2) +/***************************************************************************** + delivers 1/sqrt(op) normalized to .5...1 and the shift value of the OUTPUT, + i.e. the denormalized result is 1/sqrt(op) = invSqrtNorm(op) * 2^(shift) + uses Newton-iteration for approximation + Q(n+1) = Q(n) + Q(n) * (0.5 - 2 * V * Q(n)^2) + with Q = 0.5* V ^-0.5; 0.5 <= V < 1.0 +*****************************************************************************/ +FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift) +{ + + FIXP_DBL val = op ; + FIXP_DBL reg1, reg2, regtmp ; + + if (val == FL2FXCONST_DBL(0.0)) { + *shift = 1 ; + return((LONG)1); /* minimum positive value */ + } + + + /* normalize input, calculate shift value */ + FDK_ASSERT(val > FL2FXCONST_DBL(0.0)); + *shift = fNormz(val) - 1; /* CountLeadingBits() is not necessary here since test value is always > 0 */ + val <<=*shift ; /* normalized input V */ + *shift+=2 ; /* bias for exponent */ + + /* Newton iteration of 1/sqrt(V) */ + reg1 = invSqrtTab[ (INT)(val>>(DFRACT_BITS-1-(SQRT_BITS+1))) & SQRT_BITS_MASK ]; + reg2 = FL2FXCONST_DBL(0.0625f); /* 0.5 >> 3 */ + + regtmp= fPow2Div2(reg1); /* a = Q^2 */ + regtmp= reg2 - fMultDiv2(regtmp, val); /* b = 0.5 - 2 * V * Q^2 */ + reg1 += (fMultDiv2(regtmp, reg1)<<4); /* Q = Q + Q*b */ + + /* calculate the output exponent = input exp/2 */ + if (*shift & 0x00000001) { /* odd shift values ? */ + reg2 = FL2FXCONST_DBL(0.707106781186547524400844362104849f); /* 1/sqrt(2); */ + reg1 = fMultDiv2(reg1, reg2) << 2; + } + + *shift = *shift>>1; + + return(reg1); +} +#endif /* !defined(FUNCTION_invSqrtNorm2) */ + +/***************************************************************************** + + functionname: sqrtFixp + description: delivers sqrt(op) + +*****************************************************************************/ +FIXP_DBL sqrtFixp(FIXP_DBL op) +{ + INT tmp_exp = 0; + FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp); + + FDK_ASSERT(tmp_exp > 0) ; + return( (FIXP_DBL) ( fMultDiv2( (op<<(tmp_exp-1)), tmp_inv ) << 2 )); +} + + +#if !defined(FUNCTION_schur_div) +/***************************************************************************** + + functionname: schur_div + description: delivers op1/op2 with op3-bit accuracy + +*****************************************************************************/ + + +FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count) +{ + INT L_num = (LONG)num>>1; + INT L_denum = (LONG)denum>>1; + INT div = 0; + INT k = count; + + FDK_ASSERT (num>=(FIXP_DBL)0); + FDK_ASSERT (denum>(FIXP_DBL)0); + FDK_ASSERT (num <= denum); + + if (L_num != 0) + while (--k) + { + div <<= 1; + L_num <<= 1; + if (L_num >= L_denum) + { + L_num -= L_denum; + div++; + } + } + return (FIXP_DBL)(div << (DFRACT_BITS - count)); +} + + +#endif /* !defined(FUNCTION_schur_div) */ + + +#ifndef FUNCTION_fMultNorm +FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2, INT *result_e) +{ + INT product = 0; + INT norm_f1, norm_f2; + + if ( (f1 == (FIXP_DBL)0) || (f2 == (FIXP_DBL)0) ) { + *result_e = 0; + return (FIXP_DBL)0; + } + norm_f1 = CountLeadingBits(f1); + f1 = f1 << norm_f1; + norm_f2 = CountLeadingBits(f2); + f2 = f2 << norm_f2; + + product = fMult(f1, f2); + *result_e = - (norm_f1 + norm_f2); + + return (FIXP_DBL)product; +} +#endif + +#ifndef FUNCTION_fDivNorm +FIXP_DBL fDivNorm(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e) +{ + FIXP_DBL div; + INT norm_num, norm_den; + + FDK_ASSERT (L_num >= (FIXP_DBL)0); + FDK_ASSERT (L_denum > (FIXP_DBL)0); + + if(L_num == (FIXP_DBL)0) + { + *result_e = 0; + return ((FIXP_DBL)0); + } + + norm_num = CountLeadingBits(L_num); + L_num = L_num << norm_num; + L_num = L_num >> 1; + *result_e = - norm_num + 1; + + norm_den = CountLeadingBits(L_denum); + L_denum = L_denum << norm_den; + *result_e -= - norm_den; + + div = schur_div(L_num, L_denum, FRACT_BITS); + + return div; +} +#endif /* !FUNCTION_fDivNorm */ + +#ifndef FUNCTION_fDivNorm +FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom) +{ + INT e; + FIXP_DBL res; + + FDK_ASSERT (denom >= num); + + res = fDivNorm(num, denom, &e); + + /* Avoid overflow since we must output a value with exponent 0 + there is no other choice than saturating to almost 1.0f */ + if(res == (FIXP_DBL)(1<<(DFRACT_BITS-2)) && e == 1) + { + res = (FIXP_DBL)MAXVAL_DBL; + } + else + { + res = scaleValue(res, e); + } + + return res; +} +#endif /* !FUNCTION_fDivNorm */ + +#ifndef FUNCTION_fDivNormHighPrec +FIXP_DBL fDivNormHighPrec(FIXP_DBL num, FIXP_DBL denom, INT *result_e) +{ + FIXP_DBL div; + INT norm_num, norm_den; + + FDK_ASSERT (num >= (FIXP_DBL)0); + FDK_ASSERT (denom > (FIXP_DBL)0); + + if(num == (FIXP_DBL)0) + { + *result_e = 0; + return ((FIXP_DBL)0); + } + + norm_num = CountLeadingBits(num); + num = num << norm_num; + num = num >> 1; + *result_e = - norm_num + 1; + + norm_den = CountLeadingBits(denom); + denom = denom << norm_den; + *result_e -= - norm_den; + + div = schur_div(num, denom, 31); + return div; +} +#endif /* !FUNCTION_fDivNormHighPrec */ + + + +FIXP_DBL CalcLog2(FIXP_DBL base_m, INT base_e, INT *result_e) +{ + return fLog2(base_m, base_e, result_e); +} + +FIXP_DBL f2Pow( + const FIXP_DBL exp_m, const INT exp_e, + INT *result_e + ) +{ + FIXP_DBL frac_part, result_m; + INT int_part; + + if (exp_e > 0) + { + INT exp_bits = DFRACT_BITS-1 - exp_e; + int_part = exp_m >> exp_bits; + frac_part = exp_m - (FIXP_DBL)(int_part << exp_bits); + frac_part = frac_part << exp_e; + } + else + { + int_part = 0; + frac_part = exp_m >> -exp_e; + } + + /* Best accuracy is around 0, so try to get there with the fractional part. */ + if( frac_part > FL2FXCONST_DBL(0.5f) ) + { + int_part = int_part + 1; + frac_part = frac_part + FL2FXCONST_DBL(-1.0f); + } + if( frac_part < FL2FXCONST_DBL(-0.5f) ) + { + int_part = int_part - 1; + frac_part = -(FL2FXCONST_DBL(-1.0f) - frac_part); + } + + /* Evaluate taylor polynomial which approximates 2^x */ + { + FIXP_DBL p; + + /* result_m ~= 2^frac_part */ + p = frac_part; + /* First taylor series coefficient a_0 = 1.0, scaled by 0.5 due to fMultDiv2(). */ + result_m = FL2FXCONST_DBL(1.0f/2.0f); + for (INT i = 0; i < POW2_PRECISION; i++) { + /* next taylor series term: a_i * x^i, x=0 */ + result_m = fMultAddDiv2(result_m, pow2Coeff[i], p); + p = fMult(p, frac_part); + } + } + + /* "+ 1" compensates fMultAddDiv2() of the polynomial evaluation above. */ + *result_e = int_part + 1; + + return result_m; +} + +FIXP_DBL f2Pow( + const FIXP_DBL exp_m, const INT exp_e + ) +{ + FIXP_DBL result_m; + INT result_e; + + result_m = f2Pow(exp_m, exp_e, &result_e); + result_e = fixMin(DFRACT_BITS-1,fixMax(-(DFRACT_BITS-1),result_e)); + + return scaleValue(result_m, result_e); +} + +FIXP_DBL fPow( + FIXP_DBL base_m, INT base_e, + FIXP_DBL exp_m, INT exp_e, + INT *result_e + ) +{ + INT ans_lg2_e, baselg2_e; + FIXP_DBL base_lg2, ans_lg2, result; + + /* Calc log2 of base */ + base_lg2 = fLog2(base_m, base_e, &baselg2_e); + + /* Prepare exp */ + { + INT leadingBits; + + leadingBits = CountLeadingBits(fAbs(exp_m)); + exp_m = exp_m << leadingBits; + exp_e -= leadingBits; + } + + /* Calc base pow exp */ + ans_lg2 = fMult(base_lg2, exp_m); + ans_lg2_e = exp_e + baselg2_e; + + /* Calc antilog */ + result = f2Pow(ans_lg2, ans_lg2_e, result_e); + + return result; +} + +FIXP_DBL fLdPow( + FIXP_DBL baseLd_m, + INT baseLd_e, + FIXP_DBL exp_m, INT exp_e, + INT *result_e + ) +{ + INT ans_lg2_e; + FIXP_DBL ans_lg2, result; + + /* Prepare exp */ + { + INT leadingBits; + + leadingBits = CountLeadingBits(fAbs(exp_m)); + exp_m = exp_m << leadingBits; + exp_e -= leadingBits; + } + + /* Calc base pow exp */ + ans_lg2 = fMult(baseLd_m, exp_m); + ans_lg2_e = exp_e + baseLd_e; + + /* Calc antilog */ + result = f2Pow(ans_lg2, ans_lg2_e, result_e); + + return result; +} + +FIXP_DBL fLdPow( + FIXP_DBL baseLd_m, INT baseLd_e, + FIXP_DBL exp_m, INT exp_e + ) +{ + FIXP_DBL result_m; + int result_e; + + result_m = fLdPow(baseLd_m, baseLd_e, exp_m, exp_e, &result_e); + + return SATURATE_SHIFT(result_m, -result_e, DFRACT_BITS); +} + +FIXP_DBL fPowInt( + FIXP_DBL base_m, INT base_e, + INT exp, + INT *pResult_e + ) +{ + FIXP_DBL result; + + if (exp != 0) { + INT result_e = 0; + + if (base_m != (FIXP_DBL)0) { + { + INT leadingBits; + leadingBits = CountLeadingBits( base_m ); + base_m <<= leadingBits; + base_e -= leadingBits; + } + + result = base_m; + + { + int i; + for (i = 1; i < fAbs(exp); i++) { + result = fMult(result, base_m); + } + } + + if (exp < 0) { + /* 1.0 / ans */ + result = fDivNorm( FL2FXCONST_DBL(0.5f), result, &result_e ); + result_e++; + } else { + int ansScale = CountLeadingBits( result ); + result <<= ansScale; + result_e -= ansScale; + } + + result_e += exp * base_e; + + } else { + result = (FIXP_DBL)0; + } + *pResult_e = result_e; + } + else { + result = FL2FXCONST_DBL(0.5f); + *pResult_e = 1; + } + + return result; +} + +FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e) +{ + FIXP_DBL result_m; + + /* Short cut for zero and negative numbers. */ + if ( x_m <= FL2FXCONST_DBL(0.0f) ) { + *result_e = DFRACT_BITS-1; + return FL2FXCONST_DBL(-1.0f); + } + + /* Calculate log2() */ + { + FIXP_DBL px2_m, x2_m; + + /* Move input value x_m * 2^x_e toward 1.0, where the taylor approximation + of the function log(1-x) centered at 0 is most accurate. */ + { + INT b_norm; + + b_norm = fNormz(x_m)-1; + x2_m = x_m << b_norm; + x_e = x_e - b_norm; + } + + /* map x from log(x) domain to log(1-x) domain. */ + x2_m = - (x2_m + FL2FXCONST_DBL(-1.0) ); + + /* Taylor polinomial approximation of ln(1-x) */ + result_m = FL2FXCONST_DBL(0.0); + px2_m = x2_m; + for (int i=0; i<LD_PRECISION; i++) { + result_m = fMultAddDiv2(result_m, ldCoeff[i], px2_m); + px2_m = fMult(px2_m, x2_m); + } + /* Multiply result with 1/ln(2) = 1.0 + 0.442695040888 (get log2(x) from ln(x) result). */ + result_m = fMultAddDiv2(result_m, result_m, FL2FXCONST_DBL(2.0*0.4426950408889634073599246810019)); + + /* Add exponent part. log2(x_m * 2^x_e) = log2(x_m) + x_e */ + if (x_e != 0) + { + int enorm; + + enorm = DFRACT_BITS - fNorm((FIXP_DBL)x_e); + /* The -1 in the right shift of result_m compensates the fMultDiv2() above in the taylor polinomial evaluation loop.*/ + result_m = (result_m >> (enorm-1)) + ((FIXP_DBL)x_e << (DFRACT_BITS-1-enorm)); + + *result_e = enorm; + } else { + /* 1 compensates the fMultDiv2() above in the taylor polinomial evaluation loop.*/ + *result_e = 1; + } + } + + return result_m; +} + +FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e) +{ + if ( x_m <= FL2FXCONST_DBL(0.0f) ) { + x_m = FL2FXCONST_DBL(-1.0f); + } + else { + INT result_e; + x_m = fLog2(x_m, x_e, &result_e); + x_m = scaleValue(x_m, result_e-LD_DATA_SHIFT); + } + return x_m; +} + + + + +#if TEST_ROUNDING +#include <math.h> + +void writeToFile( FDKFILE *fh, float v) { + FDKfprintf(fh, "%22.16f\n", v ); +} +FDKFILE* openAppend(CHAR* filNam) +{ + FDKFILE* fh = NULL; + fh = FDKfopen(filNam, "a"); + if (!fh) { + FDKprintf("\nError at fio_open\n"); + return NULL; + } + return fh; +} + +// loop version, long duration, huge output data +void checkRound() +{ + #define IN_INT 0 // all four rounding modes are bitexact for 0 and for 1 + + float inp; + FIXP_DBL f_inp; + float r, rnd; + FIXP_DBL f_trc,f_rnd; + float step; + + //step=0.1f; + step=0.001f; + //step=0.0001f; + //step=0.00001f; + //step=0.0000001f; // BEWARE output data of test might get huge! + //step=0.00000000005f; // BEWARE output data of test might get huge! + + double d_floor,d_ceil; + FIXP_DBL f_floor,f_ceil; + INT i,j,floorInt,ceilInt,roundInt,truncInt; + + FDKFILE *fpF_a = NULL; FDKFILE *fpC_a = NULL; + FDKFILE *fpF_b = NULL; FDKFILE *fpC_b = NULL; + FDKFILE *fpF_c = NULL; FDKFILE *fpC_c = NULL; + FDKFILE *fpF_d = NULL; FDKFILE *fpC_d = NULL; + FDKFILE *fpF_e = NULL; FDKFILE *fpC_e = NULL; + + fpF_a = openAppend("_FLT_a.txt"); fpC_a = openAppend("_FDK_a.txt"); + fpF_b = openAppend("_FLT_b.txt"); fpC_b = openAppend("_FDK_b.txt"); + fpF_c = openAppend("_FLT_c.txt"); fpC_c = openAppend("_FDK_c.txt"); + fpF_d = openAppend("_FLT_d.txt"); fpC_d = openAppend("_FDK_d.txt"); + fpF_e = openAppend("_FLT_e.txt"); fpC_e = openAppend("_FDK_e.txt"); + + + + #define INPUT_SF 3 // BEWARE at SF 0 !!! over/under-flow + #define INPUT_SCALE (float)(1<<INPUT_SF) + + for (inp = -3.1f; inp < 2.1f; inp=inp+step) + //for (inp = -0.9f; inp < 0.9f; inp=inp+step) + //for (inp = -0.0000000001f; inp < 0.0000000001f; inp=inp+step) + //for (inp = -3.1f; inp < 2.1f; inp=inp+step) + { // # # + // --- write input + writeToFile(fpF_a,(float) inp); + f_inp = (FIXP_DBL)(inp / INPUT_SCALE); writeToFile(fpC_a,(float)f_inp * (float)FDKpow(2,INPUT_SF)); + + + // --- floor + d_floor = FDKfloor(inp); writeToFile(fpF_b,(float) d_floor); + // --- floor fixedpoint + floorInt = fixp_floorToInt(f_inp,INPUT_SF); + f_floor = fixp_floor (f_inp,INPUT_SF); + #if IN_INT + writeToFile(fpC_b,(float) floorInt); + #else + writeToFile(fpC_b,(float) f_floor * (float)FDKpow(2,INPUT_SF)); + #endif + + + // --- ceil + d_ceil = FDKceil(inp); writeToFile(fpF_c,(float) d_ceil ); + // --- ceil fixedpoint + ceilInt = fixp_ceilToInt(f_inp,INPUT_SF); + f_ceil = fixp_ceil (f_inp,INPUT_SF); + #if IN_INT + writeToFile(fpC_c,(float) ceilInt); + #else + writeToFile(fpC_c,(float) f_ceil * (float)FDKpow(2,INPUT_SF)); + #endif + + + // --- truncate + i = (INT)inp; writeToFile(fpF_d,(float) i); + // --- truncate fixedpoint + truncInt = fixp_truncateToInt(f_inp,INPUT_SF); + f_trc = fixp_truncate (f_inp,INPUT_SF); + #if IN_INT + writeToFile(fpC_d,(float) truncInt); + #else + writeToFile(fpC_d,(float) f_trc * (float)FDKpow(2,INPUT_SF)); + #endif + + + // --- round + r = 0.5f; + if (inp > 0) rnd = inp + r; + if (inp < 0) rnd = -(-inp + r); // avoid offset; you might get offset with 'rnd = inp - r' + j = (INT)(rnd); writeToFile(fpF_e,(float) j); + // --- round fixedpoint + roundInt = fixp_roundToInt(f_inp,INPUT_SF); + f_rnd = fixp_round (f_inp,INPUT_SF); + #if IN_INT + writeToFile(fpC_e,(float) roundInt); + #else + writeToFile(fpC_e,(float) f_rnd * (float)FDKpow(2,INPUT_SF)); + #endif + } + + if (fpF_a) FDKfclose(fpF_a); if (fpC_a) FDKfclose(fpC_a); + if (fpF_b) FDKfclose(fpF_b); if (fpC_b) FDKfclose(fpC_b); + if (fpF_c) FDKfclose(fpF_c); if (fpC_c) FDKfclose(fpC_c); + if (fpF_d) FDKfclose(fpF_d); if (fpC_d) FDKfclose(fpC_d); + if (fpF_e) FDKfclose(fpF_e); if (fpC_e) FDKfclose(fpC_e); +} + + +// round only a few selected values (faster) +void checkRound2() +{ + // set point + #define BLOD 24 // left bits (of dot): number of bits _left_ of decimal point ==> Q 24.8 format (incl. sign bit) + #define BROD 8 // right bits (of dot): number of bits _right_ of decimal point ==> Q 24.8 format + FDK_ASSERT((BROD+BLOD)==DFRACT_BITS); + + // scale factors + #define FL_SF BLOD + #define FL_SCALE (1<<FL_SF) + + #define FR_SF BROD + #define FR_SCALE (1<<FR_SF) + + #define INL_SF 7 // bits at INput Left of dot + #define INL_SCALE (float)(1<<INL_SF) + + #define INR_SF (DFRACT_BITS-1-INL_SF) // bits at INput Right of dot 32-1-7 = 24 + #define INR_SCALE (float)(1<<INR_SF) + + + // testdata + #define X_MIN -128.0000f // + #define X0 -127.0000f // + + #define X1 -5.0000f // +//#define X1 -4.4999f // round +//#define X1 4.4999f // round + + #define X2 -4.9999f // + #define X3 -4.5000f // + #define X4 -0.1234f // + #define X_NULL 0.0f // + #define X5 0.1234f // + #define X6 4.5000f // + #define X7 4.9999f // + #define X8 5.0000f // + // subtract one LSB from 128.0f [this is needed AFTER hex values have been dumped --> this is needed to get a valid float reference for floor and trunc ] + #define X_MAX ((-0.0000000004656613f) + 128.0000f) + + + FIXP_DBL f_reg0, f_reg1, f_reg2, f_reg3, f_reg4, f_reg5, f_reg6, f_reg7, f_reg8, f_reg_min, f_reg_max, f_reg_null; + INT res0, res1, res2, res3, res4, res5, res6, res7, res8; + FIXP_DBL f_res0, f_res1, f_res2, f_res3, f_res4, f_res5, f_res6, f_res7, f_res8; + + f_reg_min = (LONG)0x80000000 ; // data taken from above dump; cast to LONG needed because of + f_reg0 = (LONG)0x81000000 ; // fract-class needs a sign; 0x######## is of type unsigned int. + f_reg1 = (LONG)0xfb000000 ; + f_reg2 = (LONG)0xfb000690 ; + f_reg3 = (LONG)0xfb800000 ; + f_reg4 = (LONG)0xffe068dc ; + f_reg_null = (LONG)0x00000000 ; + f_reg5 = (LONG)0x001f9724 ; + f_reg6 = (LONG)0x04800000 ; + f_reg7 = (LONG)0x04fff970 ; + f_reg8 = (LONG)0x05000000 ; + f_reg_max = (LONG)0x7fffffff ; + + + FDKprintf("---- input values ----\n"); + FDKprintf("%f %f %f %f %f %f %f %f %f\n", X0 + , X1 + , X2 + , X3 + , X4 + , X5 + , X6 + , X7 + , X8 + ); + FDKprintf("%f %f %f %f %f %f %f %f %f\n", (float)f_reg0 * (float)FDKpow(2,INL_SF) + , (float)f_reg1 * (float)FDKpow(2,INL_SF) + , (float)f_reg2 * (float)FDKpow(2,INL_SF) + , (float)f_reg3 * (float)FDKpow(2,INL_SF) + , (float)f_reg4 * (float)FDKpow(2,INL_SF) + , (float)f_reg5 * (float)FDKpow(2,INL_SF) + , (float)f_reg6 * (float)FDKpow(2,INL_SF) + , (float)f_reg7 * (float)FDKpow(2,INL_SF) + , (float)f_reg8 * (float)FDKpow(2,INL_SF) + ); + FDKprintf("---- min/max input values ----\n"); + FDKprintf("%f %f %f\n", X_MIN + , X_NULL + , X_MAX + ); + FDKprintf("%f %f %f\n", (float)f_reg_min * (float)FDKpow(2,INL_SF) + , (float)f_reg_null * (float)FDKpow(2,INL_SF) + , (float)f_reg_max * (float)FDKpow(2,INL_SF) + ); + FDKprintf("\n"); + + FDKprintf("\n---- floor ----\n"); + res0 = fixp_floorToInt(f_reg0, INL_SF); f_res0 = fixp_floor(f_reg0, INL_SF); + res1 = fixp_floorToInt(f_reg1, INL_SF); f_res1 = fixp_floor(f_reg1, INL_SF); + res2 = fixp_floorToInt(f_reg2, INL_SF); f_res2 = fixp_floor(f_reg2, INL_SF); + res3 = fixp_floorToInt(f_reg3, INL_SF); f_res3 = fixp_floor(f_reg3, INL_SF); + res4 = fixp_floorToInt(f_reg4, INL_SF); f_res4 = fixp_floor(f_reg4, INL_SF); + res5 = fixp_floorToInt(f_reg5, INL_SF); f_res5 = fixp_floor(f_reg5, INL_SF); + res6 = fixp_floorToInt(f_reg6, INL_SF); f_res6 = fixp_floor(f_reg6, INL_SF); + res7 = fixp_floorToInt(f_reg7, INL_SF); f_res7 = fixp_floor(f_reg7, INL_SF); + res8 = fixp_floorToInt(f_reg8, INL_SF); f_res8 = fixp_floor(f_reg8, INL_SF); + FDKprintf("reference %i %i %i %i %i %i %i %i %i\n", (int)floor(X0), (int)floor(X1), (int)floor(X2), (int)floor(X3), (int)floor(X4), (int)floor(X5), (int)floor(X6), (int)floor(X7), (int)floor(X8)); + FDKprintf("fixp_floorToInt %i %i %i %i %i %i %i %i %i\n", res0, res1, res2, res3, res4, res5, res6, res7, res8); + FDKprintf("fixp_floor %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f\n", (float)f_res0*(float)FDKpow(2,INL_SF), + (float)f_res1*(float)FDKpow(2,INL_SF), + (float)f_res2*(float)FDKpow(2,INL_SF), + (float)f_res3*(float)FDKpow(2,INL_SF), + (float)f_res4*(float)FDKpow(2,INL_SF), + (float)f_res5*(float)FDKpow(2,INL_SF), + (float)f_res6*(float)FDKpow(2,INL_SF), + (float)f_res7*(float)FDKpow(2,INL_SF), + (float)f_res8*(float)FDKpow(2,INL_SF)); + + FDKprintf("\n---- min/max floor ----\n"); + res1 = fixp_floorToInt(f_reg_min, INL_SF); f_res1 = fixp_floor(f_reg_min, INL_SF); + res2 = fixp_floorToInt(f_reg_null, INL_SF); f_res2 = fixp_floor(f_reg_null, INL_SF); + res3 = fixp_floorToInt(f_reg_max, INL_SF); f_res3 = fixp_floor(f_reg_max, INL_SF); + FDKprintf("reference %i %i %i\n", (int)floor(X_MIN), (int)floor(X_NULL), (int)floor(X_MAX)); + FDKprintf("fixp_floorToInt %i %i %i\n", res1, res2, res3); + FDKprintf("fixp_floor %10.7f %10.7f %10.7f\n", (float)f_res1*(float)FDKpow(2,INL_SF), + (float)f_res2*(float)FDKpow(2,INL_SF), + (float)f_res3*(float)FDKpow(2,INL_SF)); + FDKprintf("\n\n\n"); + + + FDKprintf("---- ceil ----\n"); + res0 = fixp_ceilToInt(f_reg0, INL_SF); f_res0 = fixp_ceil(f_reg0, INL_SF); + res1 = fixp_ceilToInt(f_reg1, INL_SF); f_res1 = fixp_ceil(f_reg1, INL_SF); + res2 = fixp_ceilToInt(f_reg2, INL_SF); f_res2 = fixp_ceil(f_reg2, INL_SF); + res3 = fixp_ceilToInt(f_reg3, INL_SF); f_res3 = fixp_ceil(f_reg3, INL_SF); + res4 = fixp_ceilToInt(f_reg4, INL_SF); f_res4 = fixp_ceil(f_reg4, INL_SF); + res5 = fixp_ceilToInt(f_reg5, INL_SF); f_res5 = fixp_ceil(f_reg5, INL_SF); + res6 = fixp_ceilToInt(f_reg6, INL_SF); f_res6 = fixp_ceil(f_reg6, INL_SF); + res7 = fixp_ceilToInt(f_reg7, INL_SF); f_res7 = fixp_ceil(f_reg7, INL_SF); + res8 = fixp_ceilToInt(f_reg8, INL_SF); f_res8 = fixp_ceil(f_reg8, INL_SF); + FDKprintf("reference %i %i %i %i %i %i %i %i %i\n", (int)ceil(X0), (int)ceil(X1), (int)ceil(X2), (int)ceil(X3), (int)ceil(X4), (int)ceil(X5), (int)ceil(X6), (int)ceil(X7), (int)ceil(X8)); + FDKprintf("fixp_ceilToInt %i %i %i %i %i %i %i %i %i\n", res0, res1, res2, res3, res4, res5, res6, res7, res8); + FDKprintf("fixp_ceil %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f\n", (float)f_res0*(float)FDKpow(2,INL_SF), + (float)f_res1*(float)FDKpow(2,INL_SF), + (float)f_res2*(float)FDKpow(2,INL_SF), + (float)f_res3*(float)FDKpow(2,INL_SF), + (float)f_res4*(float)FDKpow(2,INL_SF), + (float)f_res5*(float)FDKpow(2,INL_SF), + (float)f_res6*(float)FDKpow(2,INL_SF), + (float)f_res7*(float)FDKpow(2,INL_SF), + (float)f_res8*(float)FDKpow(2,INL_SF)); + + FDKprintf("\n---- min/max ceil ----\n"); + res1 = fixp_ceilToInt(f_reg_min, INL_SF); + res2 = fixp_ceilToInt(f_reg_null, INL_SF); + res3 = fixp_ceilToInt(f_reg_max, INL_SF); + + f_res1 = fixp_ceil(f_reg_min, INL_SF); + f_res2 = fixp_ceil(f_reg_null, INL_SF); + f_res3 = fixp_ceil(f_reg_max, INL_SF); + + FDKprintf("reference %i %i %i\n", (int)ceil(X_MIN), (int)ceil(X_NULL), (int)ceil(X_MAX)); + FDKprintf("fixp_ceilToInt %i %i %i\n", res1, res2, res3); + FDKprintf("fixp_ceil %10.7f %10.7f %10.7f\n", (float)f_res1*(float)FDKpow(2,INL_SF), + (float)f_res2*(float)FDKpow(2,INL_SF), + (float)f_res3*(float)FDKpow(2,INL_SF)); + FDKprintf("\n\n\n"); + + + FDKprintf("---- trunc ----\n"); + res0 = fixp_truncateToInt(f_reg0, INL_SF); f_res0 = fixp_truncate(f_reg0, INL_SF); + res1 = fixp_truncateToInt(f_reg1, INL_SF); f_res1 = fixp_truncate(f_reg1, INL_SF); + res2 = fixp_truncateToInt(f_reg2, INL_SF); f_res2 = fixp_truncate(f_reg2, INL_SF); + res3 = fixp_truncateToInt(f_reg3, INL_SF); f_res3 = fixp_truncate(f_reg3, INL_SF); + res4 = fixp_truncateToInt(f_reg4, INL_SF); f_res4 = fixp_truncate(f_reg4, INL_SF); + res5 = fixp_truncateToInt(f_reg5, INL_SF); f_res5 = fixp_truncate(f_reg5, INL_SF); + res6 = fixp_truncateToInt(f_reg6, INL_SF); f_res6 = fixp_truncate(f_reg6, INL_SF); + res7 = fixp_truncateToInt(f_reg7, INL_SF); f_res7 = fixp_truncate(f_reg7, INL_SF); + res8 = fixp_truncateToInt(f_reg8, INL_SF); f_res8 = fixp_truncate(f_reg8, INL_SF); + FDKprintf("reference %i %i %i %i %i %i %i %i %i\n", (int)(X0), (int)(X1), (int)(X2), (int)(X3), (int)(X4), (int)(X5), (int)(X6), (int)(X7), (int)(X8)); + FDKprintf("fixp_truncateToInt %i %i %i %i %i %i %i %i %i\n", res0, res1, res2, res3, res4, res5, res6, res7, res8); + FDKprintf("fixp_truncate %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f\n", (float)f_res0*(float)FDKpow(2,INL_SF), + (float)f_res1*(float)FDKpow(2,INL_SF), + (float)f_res2*(float)FDKpow(2,INL_SF), + (float)f_res3*(float)FDKpow(2,INL_SF), + (float)f_res4*(float)FDKpow(2,INL_SF), + (float)f_res5*(float)FDKpow(2,INL_SF), + (float)f_res6*(float)FDKpow(2,INL_SF), + (float)f_res7*(float)FDKpow(2,INL_SF), + (float)f_res8*(float)FDKpow(2,INL_SF)); + + FDKprintf("\n---- min/max trunc ----\n"); + res1 = fixp_truncateToInt(f_reg_min, INL_SF); f_res1 = fixp_truncate(f_reg_min, INL_SF); + res2 = fixp_truncateToInt(f_reg_null,INL_SF); f_res2 = fixp_truncate(f_reg_null,INL_SF); + res3 = fixp_truncateToInt(f_reg_max, INL_SF); f_res3 = fixp_truncate(f_reg_max, INL_SF); + FDKprintf("reference %i %i %i\n", (int)(X_MIN), (int)(X_NULL), (int)(X_MAX)); + FDKprintf("fixp_truncateToInt %i %i %i\n", res1, res2, res3); + FDKprintf("fixp_truncate %10.7f %10.7f %10.7f\n", (float)f_res1*(float)FDKpow(2,INL_SF), + (float)f_res2*(float)FDKpow(2,INL_SF), + (float)f_res3*(float)FDKpow(2,INL_SF)); + FDKprintf("\n\n\n"); + + + FDKprintf("---- round ----\n"); + res0 = fixp_roundToInt(f_reg0, INL_SF); f_res0 = fixp_round(f_reg0, INL_SF); + res1 = fixp_roundToInt(f_reg1, INL_SF); f_res1 = fixp_round(f_reg1, INL_SF); + res2 = fixp_roundToInt(f_reg2, INL_SF); f_res2 = fixp_round(f_reg2, INL_SF); + res3 = fixp_roundToInt(f_reg3, INL_SF); f_res3 = fixp_round(f_reg3, INL_SF); + res4 = fixp_roundToInt(f_reg4, INL_SF); f_res4 = fixp_round(f_reg4, INL_SF); + res5 = fixp_roundToInt(f_reg5, INL_SF); f_res5 = fixp_round(f_reg5, INL_SF); + res6 = fixp_roundToInt(f_reg6, INL_SF); f_res6 = fixp_round(f_reg6, INL_SF); + res7 = fixp_roundToInt(f_reg7, INL_SF); f_res7 = fixp_round(f_reg7, INL_SF); + res8 = fixp_roundToInt(f_reg8, INL_SF); f_res8 = fixp_round(f_reg8, INL_SF); + FDKprintf("reference %i %i %i %i %i %i %i %i %i\n", roundRef(X0), + roundRef(X1), + roundRef(X2), + roundRef(X3), + roundRef(X4), + roundRef(X5), + roundRef(X6), + roundRef(X7), + roundRef(X8)); + FDKprintf("fixp_roundToInt %i %i %i %i %i %i %i %i %i\n", res0, res1, res2, res3, res4, res5, res6, res7, res8); + FDKprintf("fixp_round %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f %10.7f\n", (float)f_res0*(float)FDKpow(2,INL_SF), + (float)f_res1*(float)FDKpow(2,INL_SF), + (float)f_res2*(float)FDKpow(2,INL_SF), + (float)f_res3*(float)FDKpow(2,INL_SF), + (float)f_res4*(float)FDKpow(2,INL_SF), + (float)f_res5*(float)FDKpow(2,INL_SF), + (float)f_res6*(float)FDKpow(2,INL_SF), + (float)f_res7*(float)FDKpow(2,INL_SF), + (float)f_res8*(float)FDKpow(2,INL_SF)); + + FDKprintf("\n---- min/max round ----\n"); + res1 = fixp_roundToInt(f_reg_min, INL_SF); f_res1 = fixp_round(f_reg_min, INL_SF); + res2 = fixp_roundToInt(f_reg_null,INL_SF); f_res2 = fixp_round(f_reg_null,INL_SF); + res3 = fixp_roundToInt(f_reg_max, INL_SF); f_res3 = fixp_round(f_reg_max, INL_SF); + + FDKprintf("reference %i %i %i\n", roundRef(X_MIN), + roundRef(X_NULL), + roundRef(X_MAX)); + FDKprintf("fixp_roundToInt %i %i %i\n", res1, res2, res3); + FDKprintf("fixp_round %10.7f %10.7f %10.7f\n", (float)f_res1*(float)FDKpow(2,INL_SF), + (float)f_res2*(float)FDKpow(2,INL_SF), + (float)f_res3*(float)FDKpow(2,INL_SF)); + FDKprintf("\n\n\n"); + +} +#endif |