1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
/*
Copyright (C) 2020
Matthias P. Braendli, matthias.braendli@mpb.li
http://www.opendigitalradio.org
EDI output,
UDP and TCP transports and their configuration
*/
/*
This file is part of the ODR-mmbTools.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Transport.h"
#include <iterator>
#include <cmath>
#include <thread>
using namespace std;
namespace edi {
void configuration_t::print() const
{
etiLog.level(info) << "EDI Output";
etiLog.level(info) << " verbose " << verbose;
for (auto edi_dest : destinations) {
if (auto udp_dest = dynamic_pointer_cast<edi::udp_destination_t>(edi_dest)) {
etiLog.level(info) << " UDP to " << udp_dest->dest_addr << ":" << udp_dest->dest_port;
if (not udp_dest->source_addr.empty()) {
etiLog.level(info) << " source " << udp_dest->source_addr;
etiLog.level(info) << " ttl " << udp_dest->ttl;
}
etiLog.level(info) << " source port " << udp_dest->source_port;
}
else if (auto tcp_dest = dynamic_pointer_cast<edi::tcp_server_t>(edi_dest)) {
etiLog.level(info) << " TCP listening on port " << tcp_dest->listen_port;
etiLog.level(info) << " max frames queued " << tcp_dest->max_frames_queued;
}
else if (auto tcp_dest = dynamic_pointer_cast<edi::tcp_client_t>(edi_dest)) {
etiLog.level(info) << " TCP client connecting to " << tcp_dest->dest_addr << ":" << tcp_dest->dest_port;
etiLog.level(info) << " max frames queued " << tcp_dest->max_frames_queued;
}
else {
throw logic_error("EDI destination not implemented");
}
}
}
Sender::Sender(const configuration_t& conf) :
m_conf(conf),
edi_pft(m_conf)
{
if (m_conf.verbose) {
etiLog.log(info, "Setup EDI Output");
}
for (const auto& edi_dest : m_conf.destinations) {
if (const auto udp_dest = dynamic_pointer_cast<edi::udp_destination_t>(edi_dest)) {
auto udp_socket = std::make_shared<Socket::UDPSocket>(udp_dest->source_port);
if (not udp_dest->source_addr.empty()) {
udp_socket->setMulticastSource(udp_dest->source_addr.c_str());
udp_socket->setMulticastTTL(udp_dest->ttl);
}
udp_sockets.emplace(udp_dest.get(), udp_socket);
}
else if (auto tcp_dest = dynamic_pointer_cast<edi::tcp_server_t>(edi_dest)) {
auto dispatcher = make_shared<Socket::TCPDataDispatcher>(tcp_dest->max_frames_queued);
dispatcher->start(tcp_dest->listen_port, "0.0.0.0");
tcp_dispatchers.emplace(tcp_dest.get(), dispatcher);
}
else if (auto tcp_dest = dynamic_pointer_cast<edi::tcp_client_t>(edi_dest)) {
auto tcp_send_client = make_shared<Socket::TCPSendClient>(tcp_dest->dest_addr, tcp_dest->dest_port);
tcp_senders.emplace(tcp_dest.get(), tcp_send_client);
}
else {
throw logic_error("EDI destination not implemented");
}
}
if (m_conf.dump) {
edi_debug_file.open("./edi.debug");
}
if (m_conf.enable_pft) {
unique_lock<mutex> lock(m_mutex);
m_running = true;
m_thread = thread(&Sender::run, this);
}
if (m_conf.verbose) {
etiLog.log(info, "EDI output set up");
}
}
Sender::~Sender()
{
{
unique_lock<mutex> lock(m_mutex);
m_running = false;
}
if (m_thread.joinable()) {
m_thread.join();
}
}
void Sender::write(const TagPacket& tagpacket)
{
// Assemble into one AF Packet
edi::AFPacket af_packet = edi_afPacketiser.Assemble(tagpacket);
if (m_conf.enable_pft) {
// Apply PFT layer to AF Packet (Reed Solomon FEC and Fragmentation)
vector<edi::PFTFragment> edi_fragments = edi_pft.Assemble(af_packet);
if (m_conf.verbose) {
fprintf(stderr, "EDI Output: Number of PFT fragments %zu\n",
edi_fragments.size());
}
/* Spread out the transmission of all fragments over 25% of the 24ms AF packet duration
* to reduce the risk of losing a burst of fragments because of congestion. */
using namespace std::chrono;
auto inter_fragment_wait_time = microseconds(0);
if (edi_fragments.size() > 1) {
inter_fragment_wait_time = microseconds(
llrint(m_conf.fragment_spreading_factor * 24000.0 / edi_fragments.size())
);
}
/* Separate insertion into map and transmission so as to make spreading possible */
const auto now = steady_clock::now();
{
auto tp = now;
unique_lock<mutex> lock(m_mutex);
for (auto& edi_frag : edi_fragments) {
m_pending_frames[tp] = move(edi_frag);
tp += inter_fragment_wait_time;
}
}
// Transmission done in run() function
}
else /* PFT disabled */ {
// Send over ethernet
if (m_conf.dump) {
ostream_iterator<uint8_t> debug_iterator(edi_debug_file);
copy(af_packet.begin(), af_packet.end(), debug_iterator);
}
for (auto& dest : m_conf.destinations) {
if (const auto& udp_dest = dynamic_pointer_cast<edi::udp_destination_t>(dest)) {
Socket::InetAddress addr;
addr.resolveUdpDestination(udp_dest->dest_addr, udp_dest->dest_port);
if (af_packet.size() > 1400 and not m_udp_fragmentation_warning_printed) {
fprintf(stderr, "EDI Output: AF packet larger than 1400,"
" consider using PFT to avoid UP fragmentation.\n");
m_udp_fragmentation_warning_printed = true;
}
udp_sockets.at(udp_dest.get())->send(af_packet, addr);
}
else if (auto tcp_dest = dynamic_pointer_cast<edi::tcp_server_t>(dest)) {
tcp_dispatchers.at(tcp_dest.get())->write(af_packet);
}
else if (auto tcp_dest = dynamic_pointer_cast<edi::tcp_client_t>(dest)) {
tcp_senders.at(tcp_dest.get())->sendall(af_packet);
}
else {
throw logic_error("EDI destination not implemented");
}
}
}
}
void Sender::run()
{
while (m_running) {
unique_lock<mutex> lock(m_mutex);
const auto now = chrono::steady_clock::now();
// Send over ethernet
for (auto it = m_pending_frames.begin(); it != m_pending_frames.end(); ) {
const auto& edi_frag = it->second;
if (it->first <= now) {
if (m_conf.dump) {
ostream_iterator<uint8_t> debug_iterator(edi_debug_file);
copy(edi_frag.begin(), edi_frag.end(), debug_iterator);
}
for (auto& dest : m_conf.destinations) {
if (const auto& udp_dest = dynamic_pointer_cast<edi::udp_destination_t>(dest)) {
Socket::InetAddress addr;
addr.resolveUdpDestination(udp_dest->dest_addr, udp_dest->dest_port);
udp_sockets.at(udp_dest.get())->send(edi_frag, addr);
}
else if (auto tcp_dest = dynamic_pointer_cast<edi::tcp_server_t>(dest)) {
tcp_dispatchers.at(tcp_dest.get())->write(edi_frag);
}
else if (auto tcp_dest = dynamic_pointer_cast<edi::tcp_client_t>(dest)) {
tcp_senders.at(tcp_dest.get())->sendall(edi_frag);
}
else {
throw logic_error("EDI destination not implemented");
}
}
it = m_pending_frames.erase(it);
}
else {
++it;
}
}
lock.unlock();
this_thread::sleep_for(chrono::microseconds(500));
}
}
}
|