1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
/*
Copyright (C) 2019
Matthias P. Braendli, matthias.braendli@mpb.li
http://opendigitalradio.org
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "common.hpp"
#include "buffer_unpack.hpp"
#include "Log.h"
#include "crc.h"
#include <sstream>
#include <cassert>
#include <cmath>
#include <cstdio>
namespace EdiDecoder {
using namespace std;
bool frame_timestamp_t::valid() const
{
return tsta != 0xFFFFFF;
}
string frame_timestamp_t::to_string() const
{
const time_t seconds_in_unix_epoch = to_unix_epoch();
stringstream ss;
if (valid()) {
ss << "Timestamp: ";
}
else {
ss << "Timestamp not valid: ";
}
char timestr[100];
if (std::strftime(timestr, sizeof(timestr), "%Y-%m-%dZ%H:%M:%S", std::gmtime(&seconds_in_unix_epoch))) {
ss << timestr << " + " << ((double)tsta / 16384000.0);
}
else {
ss << "unknown";
}
return ss.str();
}
time_t frame_timestamp_t::to_unix_epoch() const
{
// EDI epoch: 2000-01-01T00:00:00Z
// Convert using
// TZ=UTC python -c 'import datetime; print(datetime.datetime(2000,1,1,0,0,0,0).strftime("%s"))'
return 946684800 + seconds - utco;
}
double frame_timestamp_t::diff_ms(const frame_timestamp_t& other) const
{
const double lhs = (double)seconds + (tsta / 16384000.0);
const double rhs = (double)other.seconds + (other.tsta / 16384000.0);
return lhs - rhs;
}
frame_timestamp_t& frame_timestamp_t::operator+=(const std::chrono::milliseconds& ms)
{
tsta += (ms.count() % 1000) << 14; // Shift ms by 14 to Timestamp level 2
if (tsta > 0xf9FFff) {
tsta -= 0xfa0000; // Substract 16384000, corresponding to one second
seconds += 1;
}
seconds += (ms.count() / 1000);
return *this;
}
frame_timestamp_t frame_timestamp_t::from_unix_epoch(std::time_t time, uint32_t tai_utc_offset, uint32_t tsta)
{
frame_timestamp_t ts;
const std::time_t posix_timestamp_1_jan_2000 = 946684800;
ts.utco = tai_utc_offset - 32;
ts.seconds = time - posix_timestamp_1_jan_2000 + ts.utco;
ts.tsta = tsta;
return ts;
}
std::chrono::system_clock::time_point frame_timestamp_t::to_system_clock() const
{
auto ts = chrono::system_clock::from_time_t(to_unix_epoch());
// PPS offset in seconds = tsta / 16384000
ts += chrono::nanoseconds(std::lrint(tsta / 0.016384));
return ts;
}
TagDispatcher::TagDispatcher(
std::function<void()>&& af_packet_completed, bool verbose) :
m_af_packet_completed(move(af_packet_completed))
{
m_pft.setVerbose(verbose);
}
void TagDispatcher::push_bytes(const vector<uint8_t> &buf)
{
copy(buf.begin(), buf.end(), back_inserter(m_input_data));
while (m_input_data.size() > 2) {
if (m_input_data[0] == 'A' and m_input_data[1] == 'F') {
const decode_state_t st = decode_afpacket(m_input_data);
if (st.num_bytes_consumed == 0 and not st.complete) {
// We need to refill our buffer
break;
}
if (st.num_bytes_consumed) {
vector<uint8_t> remaining_data;
copy(m_input_data.begin() + st.num_bytes_consumed,
m_input_data.end(),
back_inserter(remaining_data));
m_input_data = remaining_data;
}
if (st.complete) {
m_af_packet_completed();
}
}
else if (m_input_data[0] == 'P' and m_input_data[1] == 'F') {
PFT::Fragment fragment;
const size_t fragment_bytes = fragment.loadData(m_input_data);
if (fragment_bytes == 0) {
// We need to refill our buffer
break;
}
vector<uint8_t> remaining_data;
copy(m_input_data.begin() + fragment_bytes,
m_input_data.end(),
back_inserter(remaining_data));
m_input_data = remaining_data;
if (fragment.isValid()) {
m_pft.pushPFTFrag(fragment);
}
auto af = m_pft.getNextAFPacket();
if (not af.empty()) {
decode_state_t st = decode_afpacket(af);
if (st.complete) {
m_af_packet_completed();
}
}
}
else {
etiLog.log(warn,"Unknown %c!", *m_input_data.data());
m_input_data.erase(m_input_data.begin());
}
}
}
void TagDispatcher::push_packet(const vector<uint8_t> &buf)
{
if (buf.size() < 2) {
throw std::invalid_argument("Not enough bytes to read EDI packet header");
}
if (buf[0] == 'A' and buf[1] == 'F') {
const decode_state_t st = decode_afpacket(buf);
if (st.complete) {
m_af_packet_completed();
}
}
else if (buf[0] == 'P' and buf[1] == 'F') {
PFT::Fragment fragment;
fragment.loadData(buf);
if (fragment.isValid()) {
m_pft.pushPFTFrag(fragment);
}
auto af = m_pft.getNextAFPacket();
if (not af.empty()) {
const decode_state_t st = decode_afpacket(af);
if (st.complete) {
m_af_packet_completed();
}
}
}
else {
const char packettype[3] = {(char)buf[0], (char)buf[1], '\0'};
std::stringstream ss;
ss << "Unknown EDI packet ";
ss << packettype;
throw std::invalid_argument(ss.str());
}
}
void TagDispatcher::setMaxDelay(int num_af_packets)
{
m_pft.setMaxDelay(num_af_packets);
}
#define AFPACKET_HEADER_LEN 10 // includes SYNC
decode_state_t TagDispatcher::decode_afpacket(
const std::vector<uint8_t> &input_data)
{
if (input_data.size() < AFPACKET_HEADER_LEN) {
return {false, 0};
}
// read length from packet
uint32_t taglength = read_32b(input_data.begin() + 2);
uint16_t seq = read_16b(input_data.begin() + 6);
const size_t crclength = 2;
if (input_data.size() < AFPACKET_HEADER_LEN + taglength + crclength) {
return {false, 0};
}
if (m_last_seq + (uint16_t)1 != seq) {
etiLog.level(warn) << "EDI AF Packet sequence error, " << seq;
}
m_last_seq = seq;
bool has_crc = (input_data[8] & 0x80) ? true : false;
uint8_t major_revision = (input_data[8] & 0x70) >> 4;
uint8_t minor_revision = input_data[8] & 0x0F;
if (major_revision != 1 or minor_revision != 0) {
throw invalid_argument("EDI AF Packet has wrong revision " +
to_string(major_revision) + "." + to_string(minor_revision));
}
uint8_t pt = input_data[9];
if (pt != 'T') {
// only support Tag
return {false, 0};
}
if (not has_crc) {
throw invalid_argument("AF packet not supported, has no CRC");
}
uint16_t crc = 0xffff;
for (size_t i = 0; i < AFPACKET_HEADER_LEN + taglength; i++) {
crc = crc16(crc, &input_data[i], 1);
}
crc ^= 0xffff;
uint16_t packet_crc = read_16b(input_data.begin() + AFPACKET_HEADER_LEN + taglength);
if (packet_crc != crc) {
throw invalid_argument(
"AF Packet crc wrong");
}
else {
vector<uint8_t> payload(taglength);
copy(input_data.begin() + AFPACKET_HEADER_LEN,
input_data.begin() + AFPACKET_HEADER_LEN + taglength,
payload.begin());
return {decode_tagpacket(payload),
AFPACKET_HEADER_LEN + taglength + 2};
}
}
void TagDispatcher::register_tag(const std::string& tag, tag_handler&& h)
{
m_handlers[tag] = move(h);
}
bool TagDispatcher::decode_tagpacket(const vector<uint8_t> &payload)
{
size_t length = 0;
bool success = true;
for (size_t i = 0; i + 8 < payload.size(); i += 8 + length) {
char tag_sz[5];
tag_sz[4] = '\0';
copy(payload.begin() + i, payload.begin() + i + 4, tag_sz);
string tag(tag_sz);
uint32_t taglength = read_32b(payload.begin() + i + 4);
if (taglength % 8 != 0) {
etiLog.log(warn, "Invalid tag length: not multiple of 8!");
break;
}
taglength /= 8;
length = taglength;
if (i + 8 + taglength >= payload.size()) {
etiLog.log(warn, "Invalid tag length: tag larger than tagpacket!");
break;
}
vector<uint8_t> tag_value(taglength);
copy( payload.begin() + i+8,
payload.begin() + i+8+taglength,
tag_value.begin());
bool tagsuccess = false;
bool found = false;
for (auto tag_handler : m_handlers) {
if (tag_handler.first.size() == 4 and tag_handler.first == tag) {
found = true;
tagsuccess = tag_handler.second(tag_value, 0);
}
else if (tag_handler.first.size() == 3 and
tag.substr(0, 3) == tag_handler.first) {
found = true;
uint8_t n = tag_sz[3];
tagsuccess = tag_handler.second(tag_value, n);
}
else if (tag_handler.first.size() == 2 and
tag.substr(0, 2) == tag_handler.first) {
found = true;
uint16_t n = 0;
n = (uint16_t)(tag_sz[2]) << 8;
n |= (uint16_t)(tag_sz[3]);
tagsuccess = tag_handler.second(tag_value, n);
}
}
if (not found) {
etiLog.log(warn, "Ignoring unknown TAG %s", tag.c_str());
break;
}
if (not tagsuccess) {
etiLog.log(warn, "Error decoding TAG %s", tag.c_str());
success = tagsuccess;
break;
}
}
return success;
}
odr_version_data parse_odr_version_data(const std::vector<uint8_t>& data)
{
if (data.size() < sizeof(uint32_t)) {
return {};
}
const size_t versionstr_length = data.size() - sizeof(uint32_t);
string version(data.begin(), data.begin() + versionstr_length);
uint32_t uptime_s = read_32b(data.begin() + versionstr_length);
return {version, uptime_s};
}
}
|