aboutsummaryrefslogtreecommitdiffstats
path: root/src/GainControl.cpp
blob: dbb94642ae3c501d169015b1e9e01f0839d50c84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/*
   Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
   Her Majesty the Queen in Right of Canada (Communications Research
   Center Canada)

   Copyright (C) 2017
   Matthias P. Braendli, matthias.braendli@mpb.li

    http://opendigitalradio.org
 */
/*
   This file is part of ODR-DabMod.

   ODR-DabMod is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as
   published by the Free Software Foundation, either version 3 of the
   License, or (at your option) any later version.

   ODR-DabMod is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with ODR-DabMod.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "GainControl.h"
#include "PcDebug.h"

#include <stdio.h>
#include <stdexcept>
#include <string>

#ifdef __SSE__
#  include <xmmintrin.h>
union __u128 {
    __m128 m;
    float f[4];
};
#endif


using namespace std;

static float var_variance;

GainControl::GainControl(size_t framesize,
                         GainMode gainMode,
                         float digGain,
                         float normalise,
                         float varVariance) :
    PipelinedModCodec(),
    RemoteControllable("gain"),
#ifdef __SSE__
    m_frameSize(framesize * sizeof(complexf) / sizeof(__m128)),
#else // !__SSE__
    m_frameSize(framesize),
#endif
    m_digGain(digGain),
    m_normalise(normalise),
    m_var_variance_rc(varVariance),
    m_gainmode(gainMode),
    m_mutex()
{
    PDEBUG("GainControl::GainControl(%zu, %zu) @ %p\n", framesize, (size_t)m_gainmode, this);

    /* register the parameters that can be remote controlled */
    RC_ADD_PARAMETER(digital, "Digital Gain");
    RC_ADD_PARAMETER(mode, "Gainmode (fix|max|var)");
    RC_ADD_PARAMETER(var, "Variance setting for gainmode var (default: 4)");

    start_pipeline_thread();
}


int GainControl::internal_process(Buffer* const dataIn, Buffer* dataOut)
{
    PDEBUG("GainControl::process"
            "(dataIn: %p, dataOut: %p)\n",
            dataIn, dataOut);

    dataOut->setLength(dataIn->getLength());

#ifdef __SSE__
    __m128 (*computeGain)(const __m128* in, size_t sizeIn);
#else
    float (*computeGain)(const complexf* in, size_t sizeIn);
#endif
    {
        std::lock_guard<std::mutex> lock(m_mutex);

        var_variance = m_var_variance_rc;

        switch (m_gainmode) {
            case GainMode::GAIN_FIX:
                PDEBUG("Gain mode: fix\n");
                computeGain = computeGainFix;
                break;
            case GainMode::GAIN_MAX:
                PDEBUG("Gain mode: max\n");
                computeGain = computeGainMax;
                break;
            case GainMode::GAIN_VAR:
                PDEBUG("Gain mode: var\n");
                computeGain = computeGainVar;
                break;
            default:
                throw std::logic_error("Internal error: invalid gainmode");
        }
    }

#ifdef __SSE__
    const __m128* in  = reinterpret_cast<const __m128*>(dataIn->getData());
    __m128* out       = reinterpret_cast<__m128*>(dataOut->getData());
    size_t  sizeIn    = dataIn->getLength() / sizeof(__m128);
    size_t  sizeOut   = dataOut->getLength() / sizeof(__m128);
    __u128  gain128;


    if ((sizeIn % m_frameSize) != 0) {
        PDEBUG("%zu != %zu\n", sizeIn, m_frameSize);
        throw std::runtime_error(
                "GainControl::process input size not valid!");
    }

    for (size_t i = 0; i < sizeIn; i += m_frameSize) {
        gain128.m = computeGain(in, m_frameSize);
        gain128.m = _mm_mul_ps(gain128.m, _mm_set1_ps(m_normalise * m_digGain));

        PDEBUG("********** Gain: %10f **********\n", gain128.f[0]);

        ////////////////////////////////////////////////////////////////////////
        // Applying gain to output data
        ////////////////////////////////////////////////////////////////////////
        for (size_t sample = 0; sample < m_frameSize; ++sample) {
            out[sample] = _mm_mul_ps(in[sample], gain128.m);
        }

        in  += m_frameSize;
        out += m_frameSize;
    }
#else // !__SSE__
    const complexf* in = reinterpret_cast<const complexf*>(dataIn->getData());
    complexf* out  = reinterpret_cast<complexf*>(dataOut->getData());
    size_t sizeIn  = dataIn->getLength() / sizeof(complexf);
    size_t sizeOut = dataOut->getLength() / sizeof(complexf);
    float  gain;

    if ((sizeIn % m_frameSize) != 0) {
        PDEBUG("%zu != %zu\n", sizeIn, m_frameSize);
        throw std::runtime_error(
                "GainControl::process input size not valid!");
    }

    for (size_t i = 0; i < sizeIn; i += m_frameSize) {
        gain = m_normalise * m_digGain * computeGain(in, m_frameSize);

        PDEBUG("********** Gain: %10f **********\n", gain);

        ////////////////////////////////////////////////////////////////////////
        // Applying gain to output data
        ////////////////////////////////////////////////////////////////////////
        for (size_t sample = 0; sample < m_frameSize; ++sample) {
            out[sample] = in[sample] * gain;
        }

        in  += m_frameSize;
        out += m_frameSize;
    }
#endif // __SSE__

    return sizeOut;
}


#ifdef __SSE__
__m128 GainControl::computeGainFix(const __m128* in, size_t sizeIn)
{
    return _mm_set1_ps(512.0f);
}

__m128 GainControl::computeGainMax(const __m128* in, size_t sizeIn)
{
    __u128 gain128;
    __u128 min128;
    __u128 max128;
    __u128 tmp128;
    static const __m128 factor128 = _mm_set1_ps(0x7fff);

    ////////////////////////////////////////////////////////////////////////
    // Computing max, min and average
    ////////////////////////////////////////////////////////////////////////
    min128.m = _mm_set1_ps(__FLT_MAX__);
    max128.m = _mm_set1_ps(__FLT_MIN__);

    for (size_t sample = 0; sample < sizeIn; ++sample) {
        min128.m = _mm_min_ps(in[sample], min128.m);
        max128.m = _mm_max_ps(in[sample], max128.m);
    }

    // Merging min
    tmp128.m = _mm_shuffle_ps(min128.m, min128.m, _MM_SHUFFLE(0, 1, 2, 3));
    min128.m = _mm_min_ps(min128.m, tmp128.m);
    tmp128.m = _mm_shuffle_ps(min128.m, min128.m, _MM_SHUFFLE(1, 0, 3, 2));
    min128.m = _mm_min_ps(min128.m, tmp128.m);
    PDEBUG("********** Min:   %10f  **********\n", min128.f[0]);

    // Merging max
    tmp128.m = _mm_shuffle_ps(max128.m, max128.m, _MM_SHUFFLE(0, 1, 2, 3));
    max128.m = _mm_max_ps(max128.m, tmp128.m);
    tmp128.m = _mm_shuffle_ps(max128.m, max128.m, _MM_SHUFFLE(1, 0, 3, 2));
    max128.m = _mm_max_ps(max128.m, tmp128.m);
    PDEBUG("********** Max:   %10f  **********\n", max128.f[0]);

    ////////////////////////////////////////////////////////////////////////////
    // Computing gain
    ////////////////////////////////////////////////////////////////////////////
    // max = max(-min, max)
    max128.m = _mm_max_ps(_mm_mul_ps(min128.m, _mm_set1_ps(-1.0f)), max128.m);

    // Detect NULL
    if ((int)max128.f[0] != 0) {
        gain128.m = _mm_div_ps(factor128, max128.m);
    }
    else {
        gain128.m = _mm_set1_ps(1.0f);
    }

    return gain128.m;
}

__m128 GainControl::computeGainVar(const __m128* in, size_t sizeIn)
{
    __u128 gain128;
    __u128 mean128;
    __u128 var128;
    __u128 tmp128;
    static const __m128 factor128 = _mm_set1_ps(0x7fff);

    mean128.m = _mm_setzero_ps();

    for (size_t sample = 0; sample < sizeIn; ++sample) {
        __m128 delta128 = _mm_sub_ps(in[sample], mean128.m);
        __m128 i128 = _mm_set1_ps(sample + 1);
        __m128 q128 = _mm_div_ps(delta128, i128);
        mean128.m = _mm_add_ps(mean128.m, q128);

        /*
        tmp128.m = in[sample];
        printf("S %zu, %.2f+%.2fj\t",
                sample,
                tmp128.f[0], tmp128.f[1]);
        printf(": %.2f+%.2fj\n", mean128.f[0], mean128.f[1]);

        printf("S %zu, %.2f+%.2fj\t",
                sample,
                tmp128.f[2], tmp128.f[3]);
        printf(": %.2f+%.2fj\n", mean128.f[2], mean128.f[3]);
        */
    }

    // Merging average
    tmp128.m = _mm_shuffle_ps(mean128.m, mean128.m, _MM_SHUFFLE(1, 0, 3, 2));
    mean128.m = _mm_add_ps(mean128.m, tmp128.m);
    mean128.m = _mm_mul_ps(mean128.m, _mm_set1_ps(0.5f));
    PDEBUG("********** Mean:  %10f + %10fj %10f + %10fj **********\n",
            mean128.f[0], mean128.f[1], mean128.f[2], mean128.f[3]);

    ////////////////////////////////////////////////////////////////////////
    // Computing standard deviation
    ////////////////////////////////////////////////////////////////////////
    var128.m = _mm_setzero_ps();
    for (size_t sample = 0; sample < sizeIn; ++sample) {
        __m128 diff128 = _mm_sub_ps(in[sample], mean128.m);
        __m128 delta128 = _mm_sub_ps(_mm_mul_ps(diff128, diff128), var128.m);
        __m128 i128 = _mm_set1_ps(sample + 1);
        __m128 q128 = _mm_div_ps(delta128, i128);
        var128.m = _mm_add_ps(var128.m, q128);

        /*
        __u128 udiff128;  udiff128.m = diff128;
        __u128 udelta128; udelta128.m = delta128;
        for (int off=0; off<4; off+=2) {
            printf("S %zu, %.2f+%.2fj\t",
                    sample,
                    udiff128.f[off], udiff128.f[1+off]);
            printf(": %.2f+%.2fj\t", udelta128.f[off], udelta128.f[1+off]);
            printf(": %.2f+%.2fj\n", var128.f[off], var128.f[1+off]);
        }
        */

    }
    PDEBUG("********** Vars:  %10f + %10fj, %10f + %10fj **********\n",
            var128.f[0], var128.f[1], var128.f[2], var128.f[3]);

    // Merging standard deviations
    tmp128.m = _mm_shuffle_ps(var128.m, var128.m, _MM_SHUFFLE(1, 0, 3, 2));
    var128.m = _mm_add_ps(var128.m, tmp128.m);
    var128.m = _mm_mul_ps(var128.m, _mm_set1_ps(0.5f));
    var128.m = _mm_sqrt_ps(var128.m);
    PDEBUG("********** Var:   %10f + %10fj, %10f + %10fj **********\n",
            var128.f[0], var128.f[1], var128.f[2], var128.f[3]);
    var128.m = _mm_mul_ps(var128.m, _mm_set1_ps(var_variance));
    PDEBUG("********** 4*Var: %10f + %10fj, %10f + %10fj **********\n",
            var128.f[0], var128.f[1], var128.f[2], var128.f[3]);

    ////////////////////////////////////////////////////////////////////////////
    // Computing gain
    ////////////////////////////////////////////////////////////////////////////
    // gain = factor128 / max(real, imag)
    // Detect NULL
    if ((int)var128.f[0] != 0) {
        gain128.m = _mm_div_ps(factor128,
                _mm_max_ps(var128.m,
                    _mm_shuffle_ps(var128.m, var128.m, _MM_SHUFFLE(2, 3, 0, 1))));
    } else {
        gain128.m = _mm_set1_ps(1.0f);
    }

    return gain128.m;
}

#else // !__SSE__

float GainControl::computeGainFix(const complexf* in, size_t sizeIn)
{
    return 512.0f;
}

float GainControl::computeGainMax(const complexf* in, size_t sizeIn)
{
    float gain;
    float min;
    float max;
    static const float factor = 0x7fff;

    ////////////////////////////////////////////////////////////////////////
    // Computing max, min and average
    ////////////////////////////////////////////////////////////////////////
    min = __FLT_MAX__;
    max = __FLT_MIN__;

    for (size_t sample = 0; sample < sizeIn; ++sample) {
        if (in[sample].real() < min) {
            min = in[sample].real();
        }
        if (in[sample].real() > max) {
            max = in[sample].real();
        }
        if (in[sample].imag() < min) {
            min = in[sample].imag();
        }
        if (in[sample].imag() > max) {
            max = in[sample].imag();
        }
    }

    PDEBUG("********** Min:  %10f **********\n", min);
    PDEBUG("********** Max:  %10f **********\n", max);

    ////////////////////////////////////////////////////////////////////////////
    // Computing gain
    ////////////////////////////////////////////////////////////////////////////
    // gain = factor128 / max(-min, max)
    min = -min;
    if (min > max) {
        max = min;
    }

    // Detect NULL
    if ((int)max != 0) {
        gain = factor / max;
    }
    else {
        gain = 1.0f;
    }

    return gain;
}

float GainControl::computeGainVar(const complexf* in, size_t sizeIn)
{
    complexf mean;

    /* The variance calculation is a bit strange, because we
     * emulate the exact same functionality as the SSE code,
     * which is the most used one.
     *
     * TODO: verify that this actually corresponds to the
     * gain mode suggested in EN 300 798 Clause 5.3 Numerical Range.
     */
    complexf var1;
    complexf var2;

    static const float factor = 0x7fff;

    mean = complexf(0.0f, 0.0f);

    for (size_t sample = 0; sample < sizeIn; ++sample) {
        complexf delta = in[sample] - mean;
        float i = sample + 1;
        complexf q = delta / i;
        mean = mean + q;

        /*
        printf("F %zu, %.2f+%.2fj\t",
                sample,
                in[sample].real(), in[sample].imag());

        printf(": %.2f+%.2fj\n", mean.real(), mean.imag());
        */
    }

    PDEBUG("********** Mean:  %10f + %10fj **********\n", mean.real(), mean.imag());

    ////////////////////////////////////////////////////////////////////////
    // Computing standard deviation
    ////////////////////////////////////////////////////////////////////////
    var1 = complexf(0.0f, 0.0f);
    var2 = complexf(0.0f, 0.0f);
    for (size_t sample = 0; sample < sizeIn; ++sample) {
        complexf diff  = in[sample] - mean;
        complexf delta;
        complexf q;

        float    i = (sample/2) + 1;
        if (sample % 2 == 0) {
            delta = complexf(diff.real() * diff.real(),
                             diff.imag() * diff.imag()) - var1;
            q = delta / i;

            var1 += q;
        }
        else {
            delta = complexf(diff.real() * diff.real(),
                             diff.imag() * diff.imag()) - var2;
            q = delta / i;

            var2 += q;
        }

        /*
        printf("F %zu, %.2f+%.2fj\t",
                sample,
                diff.real(), diff.imag());

        printf(": %.2f+%.2fj\t", delta.real(), delta.imag());
        printf(": %.2f+%.2fj\t", var1.real(), var1.imag());
        printf(": %.2f+%.2fj\n", var2.real(), var2.imag());
        */
    }

    PDEBUG("********** Vars:  %10f + %10fj, %10f + %10fj **********\n",
                var1.real(), var1.imag(),
                var2.real(), var2.imag());

    // Merge standard deviations in the same way the SSE version does it
    complexf tmpvar = (var1 + var2) * 0.5f;
    complexf var(sqrt(tmpvar.real()), sqrt(tmpvar.imag()));
    PDEBUG("********** Var:   %10f + %10fj **********\n", var.real(), var.imag());

    var = var * var_variance;
    PDEBUG("********** 4*Var: %10f + %10fj **********\n", var.real(), var.imag());

    ////////////////////////////////////////////////////////////////////////////
    // Computing gain
    ////////////////////////////////////////////////////////////////////////////
    float gain = var.real();
    // gain = factor128 / max(real, imag)
    if (var.imag() > gain) {
        gain = var.imag();
    }

    // Ignore zero variance samples and apply no gain
    if ((int)gain == 0) {
        gain = 1.0f;
    }
    else {
        gain = factor / gain;
    }

    return gain;
}
#endif // !__SSE__

void GainControl::set_parameter(const string& parameter, const string& value)
{
    stringstream ss(value);
    ss.exceptions ( stringstream::failbit | stringstream::badbit );

    if (parameter == "digital") {
        float new_factor;
        ss >> new_factor;
        m_digGain = new_factor;
    }
    else if (parameter == "mode") {
        string new_mode;
        ss >> new_mode;
        std::transform(new_mode.begin(), new_mode.end(), new_mode.begin(),
                [](const char c) { return std::tolower(c); } );

        GainMode m;
        if (new_mode == "fix") {
            m = GainMode::GAIN_FIX;
        }
        else if (new_mode == "max") {
            m = GainMode::GAIN_MAX;
        }
        else if (new_mode == "var") {
            m = GainMode::GAIN_VAR;
        }
        else {
            throw ParameterError("Gainmode " + new_mode + " unknown");
        }

        {
            std::lock_guard<std::mutex> lock(m_mutex);
            m_gainmode = m;
        }
    }
    else if (parameter == "var") {
        float newvar = 0;
        ss >> newvar;
        {
            std::lock_guard<std::mutex> lock(m_mutex);
            m_var_variance_rc = newvar;
        }
    }
    else {
        stringstream ss_err;
        ss_err << "Parameter '" << parameter
            << "' is not exported by controllable " << get_rc_name();
        throw ParameterError(ss_err.str());
    }
}

const string GainControl::get_parameter(const string& parameter) const
{
    stringstream ss;
    if (parameter == "digital") {
        ss << std::fixed << m_digGain;
    }
    else if (parameter == "mode") {
        switch (m_gainmode) {
            case GainMode::GAIN_FIX:
                ss << "fix";
                break;
            case GainMode::GAIN_MAX:
                ss << "max";
                break;
            case GainMode::GAIN_VAR:
                ss << "var";
                break;
        }
    }
    else if (parameter == "var") {
        ss << std::fixed << m_var_variance_rc;
    }
    else {
        ss << "Parameter '" << parameter <<
            "' is not exported by controllable " << get_rc_name();
        throw ParameterError(ss.str());
    }
    return ss.str();
}