aboutsummaryrefslogtreecommitdiffstats
path: root/lib/edi/PFT.cpp
blob: 4348f14e2b453b3b57251ad50c617aaf9ab6ef46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
/* ------------------------------------------------------------------
 * Copyright (C) 2017 AVT GmbH - Fabien Vercasson
 * Copyright (C) 2017 Matthias P. Braendli
 *                    matthias.braendli@mpb.li
 *
 * http://opendigitalradio.org
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 * -------------------------------------------------------------------
 */

#include <stdio.h>
#include <cassert>
#include <cstring>
#include <sstream>
#include <stdexcept>
#include <algorithm>
#include "crc.h"
#include "PFT.hpp"
#include "Log.h"
#include "buffer_unpack.hpp"
extern "C" {
#include "fec/fec.h"
}

namespace EdiDecoder {
namespace PFT {

using namespace std;

const findex_t NUM_AFBUILDERS_TO_KEEP = 10;

static bool checkCRC(const uint8_t *buf, size_t size)
{
    const uint16_t crc_from_packet = read_16b(buf + size - 2);
    uint16_t crc_calc = 0xffff;
    crc_calc = crc16(crc_calc, buf, size - 2);
    crc_calc ^= 0xffff;

    return crc_from_packet == crc_calc;
}

class FECDecoder {
    public:
        FECDecoder() {
            m_rs_handler = init_rs_char(
                    symsize, gfPoly, firstRoot, primElem, nroots, pad);
        }
        FECDecoder(const FECDecoder& other) = delete;
        FECDecoder& operator=(const FECDecoder& other) = delete;
        ~FECDecoder() {
            free_rs_char(m_rs_handler);
        }

        // return -1 in case of failure, non-negative value if errors
        // were corrected.
        // Known positions of erasures should be given in eras_pos to
        // improve decoding probability. After calling this function
        // eras_pos will contain the positions of the corrected errors.
        int decode(vector<uint8_t> &data, vector<int> &eras_pos) {
            assert(data.size() == N);
            const size_t no_eras = eras_pos.size();

            eras_pos.resize(nroots);
            int num_err = decode_rs_char(m_rs_handler, data.data(),
                    eras_pos.data(), no_eras);
            if (num_err > 0) {
                eras_pos.resize(num_err);
            }
            return num_err;
        }

        // return -1 in case of failure, non-negative value if errors
        // were corrected. No known erasures.
        int decode(vector<uint8_t> &data) {
            assert(data.size() == N);
            int num_err = decode_rs_char(m_rs_handler, data.data(), nullptr, 0);
            return num_err;
        }

    private:
        void* m_rs_handler;

        const int firstRoot = 1; // Discovered by analysing EDI dump
        const int gfPoly = 0x11d;

        // The encoding has to be 255, 207 always, because the chunk has to
        // be padded at the end, and not at the beginning as libfec would
        // do
        const size_t N = 255;
        const size_t K = 207;
        const int primElem = 1;
        const int symsize = 8;
        const size_t nroots = N - K; // For EDI PFT, this must be 48
        const size_t pad = ((1 << symsize) - 1) - N; // is 255-N

};

size_t Fragment::loadData(const std::vector<uint8_t> &buf)
{
    const size_t header_len = 14;
    if (buf.size() < header_len) {
        return 0;
    }

    size_t index = 0;

    // Parse PFT Fragment Header (ETSI TS 102 821 V1.4.1 ch7.1)
    if (not (buf[0] == 'P' and buf[1] == 'F') ) {
        throw invalid_argument("Invalid PFT SYNC bytes");
    }
    index += 2; // Psync

    _Pseq = read_16b(buf.begin()+index); index += 2;
    _Findex = read_24b(buf.begin()+index); index += 3;
    _Fcount = read_24b(buf.begin()+index); index += 3;
    _FEC = unpack1bit(buf[index], 0);
    _Addr = unpack1bit(buf[index], 1);
    _Plen = read_16b(buf.begin()+index) & 0x3FFF; index += 2;

    const size_t required_len = header_len +
        (_FEC ? 1 : 0) +
        (_Addr ? 2 : 0) +
        2; // CRC
    if (buf.size() < required_len) {
        return 0;
    }

    // Optional RS Header
    _RSk = 0;
    _RSz = 0;
    if (_FEC) {
        _RSk = buf[index]; index += 1;
        _RSz = buf[index]; index += 1;
    }

    // Optional transport header
    _Source = 0;
    _Dest = 0;
    if (_Addr) {
        _Source = read_16b(buf.begin()+index); index += 2;
        _Dest = read_16b(buf.begin()+index); index += 2;
    }

    index += 2;
    const bool crc_valid = checkCRC(buf.data(), index);
    const bool buf_has_enough_data = (buf.size() >= index + _Plen);

    if (not buf_has_enough_data) {
        return 0;
    }

    _valid = ((not _FEC) or crc_valid) and buf_has_enough_data;

#if 0
    if (!_valid) {
        stringstream ss;
        ss << "Invalid PF fragment: ";
        if (_FEC) {
            ss << " RSk=" << (uint32_t)_RSk << " RSz=" << (uint32_t)_RSz;
        }

        if (_Addr) {
            ss << " Source=" << _Source << " Dest=" << _Dest;
        }
        etiLog.log(debug, "%s\n", ss.str().c_str());
    }
#endif

    _payload.clear();
    if (_valid) {
        copy( buf.begin()+index,
                buf.begin()+index+_Plen,
                back_inserter(_payload));
        index += _Plen;
    }

    return index;
}


AFBuilder::AFBuilder(pseq_t Pseq, findex_t Fcount, size_t lifetime)
{
    _Pseq = Pseq;
    _Fcount = Fcount;
    assert(lifetime > 0);
    lifeTime = lifetime;
}

void AFBuilder::pushPFTFrag(const Fragment &frag)
{
    if (_Pseq != frag.Pseq() or _Fcount != frag.Fcount()) {
        throw invalid_argument("Invalid PFT fragment Pseq or Fcount");
    }
    const auto Findex = frag.Findex();
    const bool fragment_already_received = _fragments.count(Findex);

    if (not fragment_already_received)
    {
        _fragments[Findex] = frag;
    }
}

bool Fragment::checkConsistency(const Fragment& other) const
{
    /* Consistency check, TS 102 821 Clause 7.3.2.
     *
     * Every PFT Fragment produced from a single AF or RS Packet shall have
     * the same values in all of the PFT Header fields except for the Findex,
     * Plen and HCRC fields.
     */

    return other._Fcount == _Fcount and
        other._FEC == _FEC and
        other._RSk == _RSk and
        other._RSz == _RSz and
        other._Addr == _Addr and
        other._Source == _Source and
        other._Dest == _Dest and

        /* The Plen field of all fragments shall be the s for the initial f-1
         * fragments and s - (L%f) for the final fragment.
         * Note that when Reed Solomon has been used, all fragments will be of
         * length s.
         */
        (_FEC ? other._Plen == _Plen : true);
}


AFBuilder::decode_attempt_result_t AFBuilder::canAttemptToDecode() const
{
    if (_fragments.empty()) {
        return AFBuilder::decode_attempt_result_t::no;
    }

    if (_fragments.size() == _Fcount) {
        return AFBuilder::decode_attempt_result_t::yes;
    }

    /* Check that all fragments are consistent */
    const Fragment& first = _fragments.begin()->second;
    if (not std::all_of(_fragments.begin(), _fragments.end(),
            [&](const pair<int, Fragment>& pair) {
                const Fragment& frag = pair.second;
                return first.checkConsistency(frag) and _Pseq == frag.Pseq();
            }) ) {
        throw invalid_argument("Inconsistent PFT fragments");
    }

    // Calculate the minimum number of fragments necessary to apply FEC.
    // This can't be done with the last fragment that may have a
    // smaller size
    // ETSI TS 102 821 V1.4.1 ch 7.4.4
    auto frag_it = _fragments.begin();
    if (frag_it->second.Fcount() == _Fcount - 1) {
        frag_it++;

        if (frag_it == _fragments.end()) {
            return AFBuilder::decode_attempt_result_t::no;
        }
    }

    const Fragment& frag = frag_it->second;

    if ( frag.FEC() )
    {
        const uint16_t _Plen = frag.Plen();

        /* max number of RS chunks that may have been sent */
        const uint32_t _cmax = (_Fcount*_Plen) / (frag.RSk()+48);
        assert(_cmax > 0);

        /* Receiving _rxmin fragments does not guarantee that decoding
         * will succeed! */
        const uint32_t _rxmin = _Fcount - (_cmax*48)/_Plen;

        if (_fragments.size() >= _rxmin) {
            return AFBuilder::decode_attempt_result_t::maybe;
        }
    }

    return AFBuilder::decode_attempt_result_t::no;
}

std::vector<uint8_t> AFBuilder::extractAF() const
{
    if (not _af_packet.empty()) {
        return _af_packet;
    }

    bool ok = false;

    if (canAttemptToDecode() != AFBuilder::decode_attempt_result_t::no) {

        auto frag_it = _fragments.begin();
        if (frag_it->second.Fcount() == _Fcount - 1) {
            frag_it++;

            if (frag_it == _fragments.end()) {
                throw std::runtime_error("Invalid attempt at extracting AF");
            }
        }

        const Fragment& ref_frag = frag_it->second;
        const auto RSk = ref_frag.RSk();
        const auto RSz = ref_frag.RSz();
        const auto Plen = ref_frag.Plen();

        if ( ref_frag.FEC() )
        {
            const uint32_t cmax = (_Fcount*Plen) / (RSk+48);

            // Keep track of erasures (missing fragments) for
            // every chunk
            map<int, vector<int> > erasures;


            // Assemble fragments into a RS block, immediately
            // deinterleaving it.
            vector<uint8_t> rs_block(Plen * _Fcount);
            for (size_t j = 0; j < _Fcount; j++) {
                const bool fragment_present = _fragments.count(j);
                if (fragment_present) {
                    const auto& fragment = _fragments.at(j).payload();

                    if (j != _Fcount - 1 and fragment.size() != Plen) {
                        throw runtime_error("Incorrect fragment length " +
                                to_string(fragment.size()) + " " +
                                to_string(Plen));
                    }

                    if (j == _Fcount - 1 and fragment.size() > Plen) {
                        throw runtime_error("Incorrect last fragment length " +
                                to_string(fragment.size()) + " " +
                                to_string(Plen));
                    }

                    size_t k = 0;
                    for (; k < fragment.size(); k++) {
                        rs_block[k * _Fcount + j] = fragment[k];
                    }

                    for (; k < Plen; k++) {
                        rs_block[k * _Fcount + j] = 0x00;
                    }
                }
                else {
                    // fill with zeros if fragment is missing
                    for (size_t k = 0; k < Plen; k++) {
                        rs_block[k * _Fcount + j] = 0x00;

                        const size_t chunk_ix = (k * _Fcount + j) / (RSk + 48);
                        const size_t chunk_offset = (k * _Fcount + j) % (RSk + 48);
                        erasures[chunk_ix].push_back(chunk_offset);
                    }
                }
            }

            // The RS block is a concatenation of chunks of RSk bytes + 48 parity
            // followed by RSz padding

            FECDecoder fec;
            for (size_t i = 0; i < cmax; i++) {
                // We need to pad the chunk ourself
                vector<uint8_t> chunk(255);
                const auto& block_begin = rs_block.begin() + (RSk + 48) * i;
                copy(block_begin, block_begin + RSk, chunk.begin());
                // bytes between RSk and 207 are 0x00 already
                copy(block_begin + RSk, block_begin + RSk + 48,
                        chunk.begin() + 207);

                int errors_corrected = -1;
                if (erasures.count(i)) {
                    errors_corrected = fec.decode(chunk, erasures[i]);
                }
                else {
                    errors_corrected = fec.decode(chunk);
                }

                if (errors_corrected == -1) {
                    _af_packet.clear();
                    return {};
                }

#if 0
                if (errors_corrected > 0) {
                    etiLog.log(debug, "Corrected %d errors at ", errors_corrected);
                    for (const auto &index : erasures[i]) {
                        etiLog.log(debug, " %d", index);
                    }
                    etiLog.log(debug, "\n");
                }
#endif

                _af_packet.insert(_af_packet.end(), chunk.begin(), chunk.begin() + RSk);
            }

            _af_packet.resize(_af_packet.size() - RSz);
        }
        else {
            // No FEC: just assemble fragments

            for (size_t j = 0; j < _Fcount; ++j) {
                const bool fragment_present = _fragments.count(j);
                if (fragment_present)
                {
                    const auto& fragment = _fragments.at(j);

                    _af_packet.insert(_af_packet.end(),
                       fragment.payload().begin(),
                       fragment.payload().end());
                }
                else {
                    throw logic_error("Missing fragment");
                }
            }
        }

        // EDI specific, must have a CRC.
        if( _af_packet.size() >= 12 ) {
            ok = checkCRC(_af_packet.data(), _af_packet.size());

            if (not ok) {
                etiLog.log(debug, "Too many errors to reconstruct AF from %zu/%u"
                        " PFT fragments\n", _fragments.size(), _Fcount);
            }
        }
    }

    if (not ok) {
        _af_packet.clear();
    }

    return _af_packet;
}

std::string AFBuilder::visualise() const
{
    stringstream ss;
    ss << "|";
    for (size_t i = 0; i < _Fcount; i++) {
        if (_fragments.count(i)) {
            ss << ".";
        }
        else {
            ss << " ";
        }
    }
    ss << "| " << AFBuilder::dar_to_string(canAttemptToDecode()) << " " << lifeTime;
    return ss.str();
}

void PFT::pushPFTFrag(const Fragment &fragment)
{
    // Start decoding the first pseq we receive. In normal
    // operation without interruptions, the map should
    // never become empty
    if (m_afbuilders.empty()) {
        m_next_pseq = fragment.Pseq();
        etiLog.log(debug,"Initialise next_pseq to %u\n", m_next_pseq);
    }

    if (m_afbuilders.count(fragment.Pseq()) == 0) {
        // The AFBuilder wants to know the lifetime in number of fragments,
        // we know the delay in number of AF packets. Every AF packet
        // is cut into Fcount fragments.
        const size_t lifetime = fragment.Fcount() * m_max_delay;

        // Build the afbuilder in the map in-place
        m_afbuilders.emplace(std::piecewise_construct,
                /* key */
                std::forward_as_tuple(fragment.Pseq()),
                /* builder */
                std::forward_as_tuple(fragment.Pseq(), fragment.Fcount(), lifetime));
    }

    auto& p = m_afbuilders.at(fragment.Pseq());
    p.pushPFTFrag(fragment);

#if 0
    etiLog.log(debug, "Got frag %u:%u, afbuilders: ",
            fragment.Pseq(), fragment.Findex());
    for (const auto &k : m_afbuilders) {
        const bool isNextPseq = (m_next_pseq == k.first);
        etiLog.level(debug) << (isNextPseq ? "->" : "  ") << k.first << " " << k.second.visualise();
    }
#endif
}


std::vector<uint8_t> PFT::getNextAFPacket()
{
    if (m_afbuilders.count(m_next_pseq) == 0) {
        if (m_afbuilders.size() > m_max_delay) {
            m_afbuilders.clear();
            etiLog.level(debug) << " Reinit";
        }

        return {};
    }

    auto &builder = m_afbuilders.at(m_next_pseq);

    using dar_t = AFBuilder::decode_attempt_result_t;

    if (builder.canAttemptToDecode() == dar_t::yes) {
        auto afpacket = builder.extractAF();
        assert(not afpacket.empty());
        incrementNextPseq();
        return afpacket;
    }
    else if (builder.canAttemptToDecode() == dar_t::maybe) {
        if (builder.lifeTime > 0) {
            builder.lifeTime--;
        }

        if (builder.lifeTime == 0) {
            // Attempt Reed-Solomon decoding
            auto afpacket = builder.extractAF();

            if (afpacket.empty()) {
                etiLog.log(debug,"pseq %d timed out after RS", m_next_pseq);
            }
            incrementNextPseq();
            return afpacket;
        }
    }
    else {
        if (builder.lifeTime > 0) {
            builder.lifeTime--;
        }

        if (builder.lifeTime == 0) {
            etiLog.log(debug, "pseq %d timed out\n", m_next_pseq);
            incrementNextPseq();
        }
    }

    return {};
}

void PFT::setMaxDelay(size_t num_af_packets)
{
    m_max_delay = num_af_packets;
}

void PFT::incrementNextPseq()
{
    if (m_afbuilders.count(m_next_pseq - NUM_AFBUILDERS_TO_KEEP) > 0) {
        m_afbuilders.erase(m_next_pseq - NUM_AFBUILDERS_TO_KEEP);
    }

    m_next_pseq++;
}

}
}