aboutsummaryrefslogtreecommitdiffstats
path: root/fpm/ios.hpp
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2024-10-06 19:47:19 +0200
committerMatthias P. Braendli <matthias.braendli@mpb.li>2024-10-06 19:47:19 +0200
commit8736f6160aeafe7a177cb6143fea80157e174e52 (patch)
treec73d39eda0db5341875b0fac34cdc89c0961c94a /fpm/ios.hpp
parentb563b465e8b3df367da7799e789d29e0009cb96a (diff)
downloaddabmod-8736f6160aeafe7a177cb6143fea80157e174e52.tar.gz
dabmod-8736f6160aeafe7a177cb6143fea80157e174e52.tar.bz2
dabmod-8736f6160aeafe7a177cb6143fea80157e174e52.zip
Implement fixed-point symbols, FFT and file output
Diffstat (limited to 'fpm/ios.hpp')
-rw-r--r--fpm/ios.hpp740
1 files changed, 740 insertions, 0 deletions
diff --git a/fpm/ios.hpp b/fpm/ios.hpp
new file mode 100644
index 0000000..69581fb
--- /dev/null
+++ b/fpm/ios.hpp
@@ -0,0 +1,740 @@
+#ifndef FPM_IOS_HPP
+#define FPM_IOS_HPP
+
+#include "fixed.hpp"
+#include "math.hpp"
+#include <array>
+#include <algorithm>
+#include <cctype>
+#include <climits>
+#include <limits>
+#include <ios>
+#include <vector>
+
+namespace fpm
+{
+
+template <typename CharT, typename B, typename I, unsigned int F, bool R>
+std::basic_ostream<CharT>& operator<<(std::basic_ostream<CharT>& os, fixed<B, I, F, R> x) noexcept
+{
+ const auto uppercase = ((os.flags() & std::ios_base::uppercase) != 0);
+ const auto showpoint = ((os.flags() & std::ios_base::showpoint) != 0);
+ const auto adjustfield = (os.flags() & std::ios_base::adjustfield);
+ const auto width = os.width();
+ const auto& ctype = std::use_facet<std::ctype<CharT>>(os.getloc());
+ const auto& numpunct = std::use_facet<std::numpunct<CharT>>(os.getloc());
+
+ auto floatfield = (os.flags() & std::ios_base::floatfield);
+ auto precision = os.precision();
+ auto show_trailing_zeros = true;
+ auto use_significant_digits = false;
+
+ // Invalid precision? Reset to the default
+ if (precision < 0)
+ {
+ precision = 6;
+ }
+
+ // Output buffer. Needs to be big enough for the formatted number without padding.
+ // Optional prefixes (i.e. "+"/"-", decimal separator, exponent "e+/-" and/or "0x").
+ constexpr auto worst_case_constant_size = 6;
+ // Maximum number of digits from the base type (covers integral + fractional digits)
+ constexpr auto worst_case_digit_count = std::numeric_limits<B>::digits10 + 2;
+ // Exponent suffixes (i.e. maximum digits based on log of the base type size).
+ // Needs a log10, but that isn't constexpr, so we're over-allocating on the stack. Can't hurt.
+ constexpr auto worst_case_suffix_size = std::numeric_limits<B>::digits;
+ // Double the digit count: in the worst case the thousands grouping add a character per digit.
+ using buffer_t = std::array<CharT, worst_case_constant_size + worst_case_digit_count * 2 + worst_case_suffix_size>;
+ buffer_t buffer;
+
+ // Output cursor
+ auto end = buffer.begin();
+
+ // Keep track of the start of "internal" padding
+ typename buffer_t::iterator internal_pad = buffer.end();
+
+ // Representation of a number.
+ // The value of the number is: raw / divisor * (10|2) ^ exponent
+ // The base of the exponent is 2 in hexfloat mode, or 10 otherwise.
+ struct number_t {
+ I raw; // raw fixed-point value
+ I divisor; // the divisor indicating the place of the decimal point
+ int exponent; // the exponent applied
+ };
+
+ // Convert a value without exponent to scientific representation
+ // where the part before the decimal point is less than 10.
+ const auto as_scientific = [](number_t value) {
+ assert(value.exponent == 0);
+ if (value.raw > 0)
+ {
+ while (value.raw / 10 >= value.divisor) {
+ value.divisor *= 10;
+ ++value.exponent;
+ }
+ while (value.raw < value.divisor) {
+ value.raw *= 10;
+ --value.exponent;
+ }
+ }
+ return value;
+ };
+
+ number_t value = { x.raw_value(), I{1} << F, 0};
+
+ auto base = B{10};
+
+ // First write the sign
+ if (value.raw < 0)
+ {
+ *end++ = ctype.widen('-');
+ value.raw = -value.raw;
+ internal_pad = end;
+ }
+ else if (os.flags() & std::ios_base::showpos)
+ {
+ *end++ = ctype.widen('+');
+ internal_pad = end;
+ }
+ assert(value.raw >= 0);
+
+ switch (floatfield)
+ {
+ case std::ios_base::fixed | std::ios_base::scientific:
+ // Hexadecimal mode: figure out the hexadecimal exponent and write "0x"
+ if (value.raw > 0)
+ {
+ auto bit = detail::find_highest_bit(value.raw);
+ value.exponent = bit - F; // exponent is applied to base 2
+ value.divisor = I{1} << bit; // divisor is at the highest bit, ensuring it starts with "1."
+ precision = (bit + 3) / 4; // precision is number of nibbles, so we show all of them
+ }
+ base = 16;
+ show_trailing_zeros = false; // Always strip trailing zeros in hexfloat mode
+
+ *end++ = ctype.widen('0');
+ *end++ = ctype.widen(uppercase ? 'X' : 'x');
+ break;
+
+ case std::ios_base::scientific:
+ // Scientific mode, normalize value to scientific notation
+ value = as_scientific(value);
+ break;
+
+ case std::ios_base::fixed:
+ // Fixed mode. Nothing to do.
+ break;
+
+ default:
+ {
+ // "auto" mode: figure out the exponent
+ const number_t sci_value = as_scientific(value);
+
+ // Now `precision` indicates the number of *significant digits* (not fractional digits).
+ use_significant_digits = true;
+ precision = std::max<std::streamsize>(precision, 1);
+
+ if (sci_value.exponent >= precision || sci_value.exponent < -4) {
+ // Display as scientific format
+ floatfield = std::ios_base::scientific;
+ value = sci_value;
+ } else {
+ // Display as fixed format.
+ // "showpoint" indicates whether or not we show trailing zeros
+ floatfield = std::ios_base::fixed;
+ show_trailing_zeros = showpoint;
+ }
+ break;
+ }
+ };
+
+ // If we didn't write a sign, any internal padding starts here
+ // (after a potential "0x" for hexfloats).
+ if (internal_pad == buffer.end()) {
+ internal_pad = end;
+ }
+
+ // Separate out the integral part of the number
+ I integral = value.raw / value.divisor;
+ value.raw %= value.divisor;
+
+ // Here we start printing the number itself
+ const char* const digits = uppercase ? "0123456789ABCDEF" : "0123456789abcdef";
+ const auto digits_start = end;
+
+ // Are we already printing significant digits? (yes if we're not counting significant digits)
+ bool significant_digits = !use_significant_digits;
+
+ // Print the integral part
+ int last_digit = 0;
+ if (integral == 0) {
+ *end++ = ctype.widen('0');
+ if (value.raw == 0) {
+ // If the fraction is zero too, all zeros including the integral count
+ // as significant digits.
+ significant_digits = true;
+ }
+ } else {
+ while (integral > 0) {
+ last_digit = integral % base;
+ *end++ = ctype.widen(digits[last_digit]);
+ integral /= base;
+ }
+ std::reverse(digits_start, end);
+ significant_digits = true;
+ }
+
+ if (use_significant_digits && significant_digits)
+ {
+ // Apparently the integral part was significant; subtract its
+ // length from the remaining significant digits.
+ precision -= (end - digits_start);
+ }
+
+ // At this point, `value` contains only the fraction and
+ // `precision` holds the number of digits to print.
+ assert(value.raw < value.divisor);
+ assert(precision >= 0);
+
+ // Location of decimal point
+ typename buffer_t::iterator point = buffer.end();
+
+ // Start (and length) of the trailing zeros to insert while printing
+ // By tracking this to print them later instead of actually printing them now,
+ // we can support large precisions with a small printing buffer.
+ typename buffer_t::iterator trailing_zeros_start = buffer.end();
+ std::streamsize trailing_zeros_count = 0;
+
+ if (precision > 0)
+ {
+ // Print the fractional part
+ *(point = end++) = numpunct.decimal_point();
+
+ for (int i = 0; i < precision; ++i)
+ {
+ if (value.raw == 0)
+ {
+ // The rest of the digits are all zeros, mark them
+ // to be printed in this spot.
+ trailing_zeros_start = end;
+ trailing_zeros_count = precision - i;
+ break;
+ }
+
+ // Shift the divisor if we can to avoid overflow on the value
+ if (value.divisor % base == 0) {
+ value.divisor /= base;
+ } else {
+ value.raw *= base;
+ }
+ assert(value.divisor > 0);
+ assert(value.raw >= 0);
+ last_digit = (value.raw / value.divisor) % base;
+ value.raw %= value.divisor;
+ *end++ = ctype.widen(digits[last_digit]);
+
+ if (!significant_digits) {
+ // We're still finding the first significant digit
+ if (last_digit != 0) {
+ // Found it
+ significant_digits = true;
+ } else {
+ // Not yet; increment number of digits to print
+ ++precision;
+ }
+ }
+ }
+ }
+ else if (showpoint)
+ {
+ // No fractional part to print, but we still want the point
+ *(point = end++) = numpunct.decimal_point();
+ }
+
+ // Insert `ch` into the output at `position`, updating all references accordingly
+ const auto insert_character = [&](typename buffer_t::iterator position, CharT ch) {
+ assert(position >= buffer.begin() && position < end);
+ std::move_backward(position, end, end + 1);
+ if (point != buffer.end() && position < point) {
+ ++point;
+ }
+ if (trailing_zeros_start != buffer.end() && position < trailing_zeros_start) {
+ ++trailing_zeros_start;
+ }
+ ++end;
+ *position = ch;
+ };
+
+ // Round the number: round to nearest
+ bool increment = false;
+ if (value.raw > value.divisor / 2) {
+ // Round up
+ increment = true;
+ } else if (value.raw == value.divisor / 2) {
+ // It's a tie (i.e. "xyzw.5"): round to even
+ increment = ((last_digit % 2) == 1);
+ }
+
+ if (increment)
+ {
+ auto p = end - 1;
+ // Increment all digits backwards while we see "9"
+ while (p >= digits_start) {
+ if (p == point) {
+ // Skip over the decimal point
+ --p;
+ }
+ if ((*p)++ != ctype.widen('9')) {
+ break;
+ }
+ *p-- = ctype.widen('0');
+ }
+
+ if (p < digits_start) {
+ // We've incremented all the way to the start (all 9's), we need to insert the
+ // carried-over 1 from incrementing the last 9.
+ assert(p == digits_start - 1);
+ insert_character(++p, ctype.widen('1'));
+
+ if (floatfield == std::ios::scientific)
+ {
+ // We just made the integral part equal to 10, so we shift the decimal point
+ // back one place (if any) and tweak the exponent, so that we keep the integer part
+ // less than 10.
+ if (point != buffer.end()) {
+ assert(p + 2 == point);
+ std::swap(*(point - 1), *point);
+ --point;
+ }
+ ++value.exponent;
+
+ // We've introduced an extra digit so we need to strip the last digit
+ // to maintain the same precision
+ --end;
+ }
+ }
+
+ if (use_significant_digits && *p == ctype.widen('1') && point != buffer.end()) {
+ // We've converted a leading zero to a 1 so we need to strip the last digit
+ // (behind the decimal point) to maintain the same significant digit count.
+ --end;
+ }
+ }
+
+ if (point != buffer.end())
+ {
+ if (!show_trailing_zeros)
+ {
+ // Remove trailing zeros
+ while (*(end - 1) == ctype.widen('0')) {
+ --end;
+ }
+
+ // Also clear the "trailing zeros to append during printing" range
+ trailing_zeros_start = buffer.end();
+ trailing_zeros_count = 0;
+ }
+
+ if (end - 1 == point && trailing_zeros_count == 0 && !showpoint) {
+ // Remove the decimal point, too
+ --end;
+ }
+ }
+
+ // Apply thousands grouping
+ const auto& grouping = numpunct.grouping();
+ if (!grouping.empty())
+ {
+ // Step backwards from the end or decimal point, inserting the
+ // thousands separator at every group interval.
+ const CharT thousands_sep = ctype.widen(numpunct.thousands_sep());
+ std::size_t group = 0;
+ auto p = point != buffer.end() ? point : end;
+ auto size = static_cast<int>(grouping[group]);
+ while (size > 0 && size < CHAR_MAX && p - digits_start > size) {
+ p -= size;
+ insert_character(p, thousands_sep);
+ if (group < grouping.size() - 1) {
+ size = static_cast<int>(grouping[++group]);
+ }
+ }
+ }
+
+ // Print the exponent if required
+ assert(floatfield != 0);
+ if (floatfield & std::ios_base::scientific)
+ {
+ // Hexadecimal (%a/%A) or decimal (%e/%E) scientific notation
+ if (floatfield & std::ios_base::fixed) {
+ *end++ = ctype.widen(uppercase ? 'P' : 'p');
+ } else {
+ *end++ = ctype.widen(uppercase ? 'E' : 'e');
+ }
+
+ if (value.exponent < 0) {
+ *end++ = ctype.widen('-');
+ value.exponent = -value.exponent;
+ } else {
+ *end++ = ctype.widen('+');
+ }
+
+ if (floatfield == std::ios_base::scientific) {
+ // In decimal scientific notation (%e/%E), the exponent is at least two digits
+ if (value.exponent < 10) {
+ *end++ = ctype.widen('0');
+ }
+ }
+
+ const auto exponent_start = end;
+ if (value.exponent == 0) {
+ *end++ = ctype.widen('0');
+ } else while (value.exponent > 0) {
+ *end++ = ctype.widen(digits[value.exponent % 10]);
+ value.exponent /= 10;
+ }
+ std::reverse(exponent_start, end);
+ }
+
+ // Write character `ch` `count` times to the stream
+ const auto sputcn = [&](CharT ch, std::streamsize count){
+ // Fill a buffer to output larger chunks
+ constexpr std::streamsize chunk_size = 64;
+ std::array<CharT, chunk_size> fill_buffer;
+ std::fill_n(fill_buffer.begin(), std::min(count, chunk_size), ch);
+
+ for (std::streamsize size, left = count; left > 0; left -= size) {
+ size = std::min(chunk_size, left);
+ os.rdbuf()->sputn(&fill_buffer[0], size);
+ }
+ };
+
+ // Outputs a range of characters, making sure to output the trailing zeros range
+ // if it lies in the specified range
+ const auto put_range = [&](typename buffer_t::const_iterator begin, typename buffer_t::const_iterator end) {
+ assert(end >= begin);
+ if (trailing_zeros_start >= begin && trailing_zeros_start <= end) {
+ // Print range with trailing zeros range in the middle
+ assert(trailing_zeros_count > 0);
+ os.rdbuf()->sputn(&*begin, trailing_zeros_start - begin);
+ sputcn(ctype.widen('0'), trailing_zeros_count);
+ os.rdbuf()->sputn(&*trailing_zeros_start, end - trailing_zeros_start);
+ } else {
+ // Print range as-is
+ os.rdbuf()->sputn(&*begin, end - begin);
+ }
+ };
+
+ // Pad the buffer if necessary.
+ // Note that the length of trailing zeros is counted towards the length of the content.
+ const auto content_size = end - buffer.begin() + trailing_zeros_count;
+ if (content_size >= width)
+ {
+ // Buffer needs no padding, output as-is
+ put_range(buffer.begin(), end);
+ }
+ else
+ {
+ const auto pad_size = width - content_size;
+ switch (adjustfield)
+ {
+ case std::ios_base::left:
+ // Content is left-aligned, so output the buffer, followed by the padding
+ put_range(buffer.begin(), end);
+ sputcn(os.fill(), pad_size);
+ break;
+ case std::ios_base::internal:
+ // Content is internally aligned, so output the buffer up to the "internal pad"
+ // point, followed by the padding, followed by the remainder of the buffer.
+ put_range(buffer.begin(), internal_pad);
+ sputcn(os.fill(), pad_size);
+ put_range(internal_pad, end);
+ break;
+ default:
+ // Content is right-aligned, so output the padding, followed by the buffer
+ sputcn(os.fill(), pad_size);
+ put_range(buffer.begin(), end);
+ break;
+ }
+ }
+
+ // Width is reset after every write
+ os.width(0);
+
+ return os;
+}
+
+
+template <typename CharT, class Traits, typename B, typename I, unsigned int F, bool R>
+std::basic_istream<CharT, Traits>& operator>>(std::basic_istream<CharT, Traits>& is, fixed<B, I, F, R>& x)
+{
+ typename std::basic_istream<CharT, Traits>::sentry sentry(is);
+ if (!sentry)
+ {
+ return is;
+ }
+
+ const auto& ctype = std::use_facet<std::ctype<CharT>>(is.getloc());
+ const auto& numpunct = std::use_facet<std::numpunct<CharT>>(is.getloc());
+
+ bool thousands_separator_allowed = false;
+ const bool supports_thousands_separators = !numpunct.grouping().empty();
+
+ const auto& is_valid_character = [](char ch) {
+ // Note: allowing ['p', 'i', 'n', 't', 'y'] is technically in violation of the spec (we are emulating std::num_get),
+ // but otherwise we cannot parse hexfloats and "infinity". This is a known issue with the spec (LWG #2381).
+ return std::isxdigit(ch) ||
+ ch == 'x' || ch == 'X' || ch == 'p' || ch == 'P' ||
+ ch == 'i' || ch == 'I' || ch == 'n' || ch == 'N' ||
+ ch == 't' || ch == 'T' || ch == 'y' || ch == 'Y' ||
+ ch == '-' || ch == '+';
+ };
+
+ const auto& peek = [&]() {
+ for(;;) {
+ auto ch = is.rdbuf()->sgetc();
+ if (ch == Traits::eof()) {
+ is.setstate(std::ios::eofbit);
+ return '\0';
+ }
+ if (ch == numpunct.decimal_point()) {
+ return '.';
+ }
+ if (ch == numpunct.thousands_sep())
+ {
+ if (!supports_thousands_separators || !thousands_separator_allowed) {
+ return '\0';
+ }
+ // Ignore valid thousands separators
+ is.rdbuf()->sbumpc();
+ continue;
+ }
+ auto res = ctype.narrow(ch, 0);
+ if (!is_valid_character(res)) {
+ // Invalid character: end input
+ return '\0';
+ }
+ return res;
+ }
+ };
+
+ const auto& bump = [&]() {
+ is.rdbuf()->sbumpc();
+ };
+
+ const auto& next = [&]() {
+ bump();
+ return peek();
+ };
+
+ bool negate = false;
+ auto ch = peek();
+ if (ch == '-') {
+ negate = true;
+ ch = next();
+ } else if (ch == '+') {
+ ch = next();
+ }
+
+ const char infinity[] = "infinity";
+ // Must be "inf" or "infinity"
+ int i = 0;
+ while (i < 8 && ch == infinity[i]) {
+ ++i;
+ ch = next();
+ }
+
+ if (i > 0) {
+ if (i == 3 || i == 8) {
+ x = negate ? std::numeric_limits<fixed<B, I, F, R>>::min() : std::numeric_limits<fixed<B, I, F, R>>::max();
+ } else {
+ is.setstate(std::ios::failbit);
+ }
+ return is;
+ }
+
+ char exponent_char = 'e';
+ int base = 10;
+
+ constexpr auto NoFraction = std::numeric_limits<std::size_t>::max();
+ std::size_t fraction_start = NoFraction;
+ std::vector<unsigned char> significand;
+
+ if (ch == '0') {
+ ch = next();
+ if (ch == 'x' || ch == 'X') {
+ // Hexfloat
+ exponent_char = 'p';
+ base = 16;
+ ch = next();
+ } else {
+ significand.push_back(0);
+ }
+ }
+
+ // Parse the significand
+ thousands_separator_allowed = true;
+ for (;; ch = next()) {
+ if (ch == '.') {
+ if (fraction_start != NoFraction) {
+ // Double decimal point. Stop parsing.
+ break;
+ }
+ fraction_start = significand.size();
+ thousands_separator_allowed = false;
+ } else {
+ unsigned char val = base;
+ if (ch >= '0' && ch <= '9') {
+ val = ch - '0';
+ } else if (ch >= 'a' && ch <= 'f') {
+ val = ch - 'a' + 10;
+ } else if (ch >= 'A' && ch <= 'F') {
+ val = ch - 'A' + 10;
+ }
+ if (val < 0 || val >= base) {
+ break;
+ }
+ significand.push_back(val);
+ }
+ }
+ if (significand.empty()) {
+ // We need a significand
+ is.setstate(std::ios::failbit);
+ return is;
+ }
+ thousands_separator_allowed = false;
+
+ if (fraction_start == NoFraction) {
+ // If we haven't seen a fraction yet, place it at the end of the significand
+ fraction_start = significand.size();
+ }
+
+ // Parse the exponent
+ bool exponent_overflow = false;
+ std::size_t exponent = 0;
+ bool exponent_negate = false;
+ if (std::tolower(ch) == exponent_char)
+ {
+ ch = next();
+ if (ch == '-') {
+ exponent_negate = true;
+ ch = next();
+ } else if (ch == '+') {
+ ch = next();
+ }
+
+ bool parsed = false;
+ while (std::isdigit(ch)) {
+ if (exponent <= std::numeric_limits<int>::max() / 10) {
+ exponent = exponent * 10 + (ch - '0');
+ } else {
+ exponent_overflow = true;
+ }
+ parsed = true;
+ ch = next();
+ }
+ if (!parsed) {
+ // If the exponent character is given, the exponent value may not be empty
+ is.setstate(std::ios::failbit);
+ return is;
+ }
+ }
+
+ // We've parsed all we need. Construct the value.
+ if (exponent_overflow) {
+ // Absolute exponent is too large
+ if (std::all_of(significand.begin(), significand.end(), [](unsigned char x){ return x == 0; })) {
+ // Significand is zero. Exponent doesn't matter.
+ x = fixed<B, I, F, R>(0);
+ } else if (exponent_negate) {
+ // A huge negative exponent approaches 0.
+ x = fixed<B, I, F, R>::from_raw_value(0);
+ } else {
+ // A huge positive exponent approaches infinity.
+ x = std::numeric_limits<fixed<B, I, F, R>>::max();
+ }
+ return is;
+ }
+
+ // Shift the fraction offset according to exponent
+ {
+ const auto exponent_mult = (base == 10) ? 1: 4;
+ if (exponent_negate) {
+ const auto adjust = std::min(exponent / exponent_mult, fraction_start);
+ fraction_start -= adjust;
+ exponent -= adjust * exponent_mult;
+ } else {
+ const auto adjust = std::min(exponent / exponent_mult, significand.size() - fraction_start);
+ fraction_start += adjust;
+ exponent -= adjust * exponent_mult;
+ }
+ }
+
+ constexpr auto IsSigned = std::is_signed<B>::value;
+ constexpr auto IntBits = sizeof(B) * 8 - F - (IsSigned ? 1 : 0);
+ constexpr auto MaxInt = (I{1} << IntBits) - 1;
+ constexpr auto MaxFraction = (I{1} << F) - 1;
+ constexpr auto MaxValue = (I{1} << sizeof(B) * 8) - 1;
+
+ // Parse the integer part
+ I integer = 0;
+ for (std::size_t i = 0; i < fraction_start; ++i) {
+ if (integer > MaxInt / base) {
+ // Overflow
+ x = negate ? std::numeric_limits<fixed<B, I, F, R>>::min() : std::numeric_limits<fixed<B, I, F, R>>::max();
+ return is;
+ }
+ assert(significand[i] < base);
+ integer = integer * base + significand[i];
+ }
+
+ // Parse the fractional part
+ I fraction = 0;
+ I divisor = 1;
+ for (std::size_t i = fraction_start; i < significand.size(); ++i) {
+ assert(significand[i] < base);
+ if (divisor > MaxFraction / base) {
+ // We're done
+ break;
+ }
+ fraction = fraction * base + significand[i];
+ divisor *= base;
+ }
+
+ // Construct the value from the parsed parts
+ I raw_value = (integer << F) + (fraction << F) / divisor;
+
+ // Apply remaining exponent
+ if (exponent_char == 'p') {
+ // Base-2 exponent
+ if (exponent_negate) {
+ raw_value >>= exponent;
+ } else {
+ raw_value <<= exponent;
+ }
+ } else {
+ // Base-10 exponent
+ if (exponent_negate) {
+ I remainder = 0;
+ for (std::size_t e = 0; e < exponent; ++e) {
+ remainder = raw_value % 10;
+ raw_value /= 10;
+ }
+ raw_value += remainder / 5;
+ } else {
+ for (std::size_t e = 0; e < exponent; ++e) {
+ if (raw_value > MaxValue / 10) {
+ // Overflow
+ x = negate ? std::numeric_limits<fixed<B, I, F, R>>::min() : std::numeric_limits<fixed<B, I, F, R>>::max();
+ return is;
+ }
+ raw_value *= 10;
+ }
+ }
+ }
+ x = fixed<B, I, F, R>::from_raw_value(static_cast<B>(negate ? -raw_value : raw_value));
+ return is;
+}
+
+}
+
+#endif