diff options
author | Matthias P. Braendli <matthias.braendli@mpb.li> | 2018-12-04 10:18:33 +0100 |
---|---|---|
committer | Matthias P. Braendli <matthias.braendli@mpb.li> | 2018-12-04 10:18:33 +0100 |
commit | d5cbe10c0e2298b0e40161607a3da158249bdb82 (patch) | |
tree | 5f6a0ff40ce5b3dd39d0df1c348557b183b48a7e /dpd/src/Measure_Shoulders.py | |
parent | 594cb2691debaa7562fd7d76d3b224701ec087ea (diff) | |
download | dabmod-d5cbe10c0e2298b0e40161607a3da158249bdb82.tar.gz dabmod-d5cbe10c0e2298b0e40161607a3da158249bdb82.tar.bz2 dabmod-d5cbe10c0e2298b0e40161607a3da158249bdb82.zip |
Move python stuff to folder
Diffstat (limited to 'dpd/src/Measure_Shoulders.py')
-rw-r--r-- | dpd/src/Measure_Shoulders.py | 158 |
1 files changed, 0 insertions, 158 deletions
diff --git a/dpd/src/Measure_Shoulders.py b/dpd/src/Measure_Shoulders.py deleted file mode 100644 index fd90050..0000000 --- a/dpd/src/Measure_Shoulders.py +++ /dev/null @@ -1,158 +0,0 @@ -# -*- coding: utf-8 -*- -# -# DPD Computation Engine, calculate peak to shoulder difference. -# -# http://www.opendigitalradio.org -# Licence: The MIT License, see notice at the end of this file - -import datetime -import os -import logging -import multiprocessing -import numpy as np -import matplotlib.pyplot as plt - - -def plt_next_axis(sub_rows, sub_cols, i_sub): - i_sub += 1 - ax = plt.subplot(sub_rows, sub_cols, i_sub) - return i_sub, ax - - -def plt_annotate(ax, x, y, title=None, legend_loc=None): - ax.set_xlabel(x) - ax.set_ylabel(y) - if title is not None: - ax.set_title(title) - if legend_loc is not None: - ax.legend(loc=legend_loc) - - -def calc_fft_db(signal, offset, c): - fft = np.fft.fftshift(np.fft.fft(signal[offset:offset + c.MS_FFT_size])) - fft_db = 20 * np.log10(np.abs(fft)) - return fft_db - - -def _calc_peak(fft, c): - assert fft.shape == (c.MS_FFT_size,), fft.shape - idxs = (c.MS_peak_start, c.MS_peak_end) - peak = np.mean(fft[idxs[0]:idxs[1]]) - return peak, idxs - - -def _calc_shoulder_hight(fft_db, c): - assert fft_db.shape == (c.MS_FFT_size,), fft_db.shape - idxs_left = (c.MS_shoulder_left_start, c.MS_shoulder_left_end) - idxs_right = (c.MS_shoulder_right_start, c.MS_shoulder_right_end) - - shoulder_left = np.mean(fft_db[idxs_left[0]:idxs_left[1]]) - shoulder_right = np.mean(fft_db[idxs_right[0]:idxs_right[1]]) - - shoulder = np.mean((shoulder_left, shoulder_right)) - return shoulder, (idxs_left, idxs_right) - - -def calc_shoulder(fft, c): - peak = _calc_peak(fft, c)[0] - shoulder = _calc_shoulder_hight(fft, c)[0] - assert (peak >= shoulder), (peak, shoulder) - return peak, shoulder - - -def shoulder_from_sig_offset(arg): - signal, offset, c = arg - fft_db = calc_fft_db(signal, offset, c) - peak, shoulder = calc_shoulder(fft_db, c) - return peak - shoulder, peak, shoulder - - -class Measure_Shoulders: - """Calculate difference between the DAB signal and the shoulder hight in the - power spectrum""" - - def __init__(self, c): - self.c = c - self.plot = c.MS_plot - - def _plot(self, signal): - if self.c.plot_location is None: - return - - dt = datetime.datetime.now().isoformat() - fig_path = self.c.plot_location + "/" + dt + "_sync_subsample_aligned.png" - - fft = calc_fft_db(signal, 100, self.c) - peak, idxs_peak = _calc_peak(fft, self.c) - shoulder, idxs_sh = _calc_shoulder_hight(fft, self.c) - - sub_rows = 1 - sub_cols = 1 - fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6)) - i_sub = 0 - - i_sub, ax = plt_next_axis(sub_rows, sub_cols, i_sub) - ax.scatter(np.arange(fft.shape[0]), fft, s=0.1, - label="FFT", - color="red") - ax.plot(idxs_peak, (peak, peak)) - ax.plot(idxs_sh[0], (shoulder, shoulder), color='blue') - ax.plot(idxs_sh[1], (shoulder, shoulder), color='blue') - plt_annotate(ax, "Frequency", "Magnitude [dB]", None, 4) - - ax.text(100, -17, str(calc_shoulder(fft, self.c))) - - ax.set_ylim(-20, 30) - fig.tight_layout() - fig.savefig(fig_path) - plt.close(fig) - - def average_shoulders(self, signal, n_avg=None): - if not self.c.MS_enable: - logging.info("Shoulder Measurement disabled via Const.py") - return None - - assert signal.shape[0] > 4 * self.c.MS_FFT_size - if n_avg is None: - n_avg = self.c.MS_averaging_size - - off_min = 0 - off_max = signal.shape[0] - self.c.MS_FFT_size - offsets = np.linspace(off_min, off_max, num=n_avg, dtype=int) - - args = zip( - [signal, ] * offsets.shape[0], - offsets, - [self.c, ] * offsets.shape[0] - ) - - pool = multiprocessing.Pool(self.c.MS_n_proc) - res = pool.map(shoulder_from_sig_offset, args) - shoulders_diff, shoulders, peaks = zip(*res) - - if logging.getLogger().getEffectiveLevel() == logging.DEBUG and self.plot: - self._plot(signal) - - return np.mean(shoulders_diff), np.mean(shoulders), np.mean(peaks) - -# The MIT License (MIT) -# -# Copyright (c) 2017 Andreas Steger -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. |