aboutsummaryrefslogtreecommitdiffstats
path: root/src/dab_util.py
blob: e33ea050da4d304e5c1a859edc9c14106a095179 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import scipy
import matplotlib.pyplot as plt
import src.dabconst as dabconst
import src.subsample_align as sa
from scipy import signal

c = {}
c["bw"]=1536000
c["frame_ms"]=96
c["frame_8192000"]=c["frame_ms"] * 8192
c["frame_2048000"]=c["frame_ms"] * 2048
c["sym_8192000"]=96./76*8192
c["sym_2048000"]=96./76*2048

def calc_fft(signal, fft_size = 65536, sampling_rate = 8192000, plot = False):
    """returns one numpy array for the frequencies and one for the corresponding fft"""
    signal_spectrum = np.fft.fftshift(np.fft.fft(signal, fft_size))
    freqs = np.fft.fftshift(np.fft.fftfreq(fft_size, d=1./sampling_rate))
    if plot == True:
        plot_freq_spec(freqs, signal_spectrum)
    return freqs, signal_spectrum

def plot_freq_spec(freq, spec = None):
    plt.figure(figsize=(10,5))
    if spec == None:
        plt.plot(freq)
    else:
        plt.plot(freq, np.abs(spec))

def freq_to_fft_sample(freq, fft_size, sampling_rate):
    freq_ratio = 1.0 * fft_size / sampling_rate
    return int(freq * freq_ratio + fft_size / 2)

def crop_signal(signal, n_window = 1000, n_zeros = 120000, debug = False):
    #signal = signal[-10:-1]
    mag = abs(signal)
    window = np.ones(n_window) / float(n_window)
    mag = scipy.signal.convolve(window, mag)
    mag = scipy.signal.convolve(window, mag)
    thr = 0.05 * np.max(mag)
    idx_start = np.argmax(mag > thr)
    idx_end = mag.shape[0] - np.argmax(np.flipud(mag > thr))
    if debug:
        plt.plot(mag < thr)
        plt.plot((idx_start,idx_start), (0,0.1), color='g', linewidth=2)
        plt.plot((idx_end,idx_end), (0,0.1), color='r', linewidth=2)
    signal = signal[max(0,idx_start - n_zeros): min(idx_end + n_zeros, signal.shape[0] -1)]
    return signal

#def fftlag(sig_orig, sig_rec):
#    """
#    Efficient way to find lag between two signals
#    Args:
#        sig_orig: The signal that has been sent
#        sig_rec: The signal that has been recored
#    """
#    c = np.flipud(scipy.signal.fftconvolve(sig_orig,np.flipud(sig_rec)))
#    #plt.plot(c)
#    return np.argmax(c) - sig_orig.shape[0] + 1

def lag(sig_orig, sig_rec):
    """
    Find lag between two signals
    Args:
        sig_orig: The signal that has been sent
        sig_rec: The signal that has been recored
    """
    off = sig_rec.shape[0]
    c = signal.correlate(sig_orig, sig_rec)
    return np.argmax(c) - off + 1

def lag_upsampling(sig_orig, sig_rec, n_up):
    sig_orig_up = signal.resample(sig_orig, sig_orig.shape[0] * n_up)
    sig_rec_up  = signal.resample(sig_rec, sig_rec.shape[0] * n_up)
    l = lag(sig_orig_up, sig_rec_up)
    l_orig = float(l) / n_up
    return l_orig

def subsample_align_upsampling(sig1, sig2, n_up=32):
    """
    Returns an aligned version of sig1 and sig2 by cropping and subsample alignment
    Using upsampling
    """
    assert(sig1.shape[0] == sig2.shape[0])

    if sig1.shape[0] % 2 == 1:
        sig1 = sig1[:-1]
        sig2 = sig2[:-1]

    sig1_up = signal.resample(sig1, sig1.shape[0] * n_up)
    sig2_up = signal.resample(sig2, sig2.shape[0] * n_up)

    off_meas = lag_upsampling(sig2_up, sig1_up, n_up=1)
    off = int(abs(off_meas))

    if off_meas > 0:
        sig1_up = sig1_up[:-off]
        sig2_up = sig2_up[off:]
    elif off_meas < 0:
        sig1_up = sig1_up[off:]
        sig2_up = sig2_up[:-off]

    sig1 = signal.resample(sig1_up, sig1_up.shape[0] / n_up).astype(np.complex64)
    sig2 = signal.resample(sig2_up, sig2_up.shape[0] / n_up).astype(np.complex64)
    return sig1, sig2

def subsample_align(sig1, sig2):
    """
    Returns an aligned version of sig1 and sig2 by cropping and subsample alignment
    """
    off_meas = lag_upsampling(sig2, sig1, n_up=1)
    off = int(abs(off_meas))

    if off_meas > 0:
        sig1 = sig1[:-off]
        sig2 = sig2[off:]
    elif off_meas < 0:
        sig1 = sig1[off:]
        sig2 = sig2[:-off]

    if off % 2 == 1:
        sig1 = sig1[:-1]
        sig2 = sig2[:-1]

    sig2 = sa.subsample_align(sig2, sig1)
    return sig1, sig2

def get_amp_ratio(ampl_1, ampl_2, a_out_abs, a_in_abs):
    idxs = (a_in_abs > ampl_1) & (a_in_abs < ampl_2)
    ratio = a_out_abs[idxs] / a_in_abs[idxs]
    return ratio.mean(), ratio.var()

def get_phase(ampl_1, ampl_2, a_out, a_in):
    idxs = (np.abs(a_in) > ampl_1) & (np.abs(a_in) < ampl_2)
    ratio = np.angle(a_out[idxs], deg=True) - np.angle(a_in[idxs], deg=True)
    return ratio.mean(), ratio.var()

def get_transmission_frame_indices(n_frames, offset, rate = 2048000):
    tm1 = dabconst.tm1(rate)
    indices = [tm1.S_F * i + offset for i in range(n_frames)]
    return indices

def fromfile(filename, offset=0, length=None):
    if length is None:
        return np.memmap(filename, dtype=np.complex64, mode='r', offset=64/8*offset)
    else:
        return np.memmap(filename, dtype=np.complex64, mode='r', offset=64/8*offset, shape=length)