1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
import numpy as np
import scipy
import matplotlib.pyplot as plt
import src.dabconst as dabconst
import src.subsample_align as sa
from scipy import signal
c = {}
c["bw"]=1536000
c["frame_ms"]=96
c["frame_8192000"]=c["frame_ms"] * 8192
c["frame_2048000"]=c["frame_ms"] * 2048
c["sym_8192000"]=96./76*8192
c["sym_2048000"]=96./76*2048
def calc_fft(signal, fft_size = 65536, sampling_rate = 8192000, plot = False):
"""returns one numpy array for the frequencies and one for the corresponding fft"""
signal_spectrum = np.fft.fftshift(np.fft.fft(signal, fft_size))
freqs = np.fft.fftshift(np.fft.fftfreq(fft_size, d=1./sampling_rate))
if plot == True:
plot_freq_spec(freqs, signal_spectrum)
return freqs, signal_spectrum
def plot_freq_spec(freq, spec = None):
plt.figure(figsize=(10,5))
if spec == None:
plt.plot(freq)
else:
plt.plot(freq, np.abs(spec))
def freq_to_fft_sample(freq, fft_size, sampling_rate):
freq_ratio = 1.0 * fft_size / sampling_rate
return int(freq * freq_ratio + fft_size / 2)
def crop_signal(signal, n_window = 1000, n_zeros = 120000, debug = False):
#signal = signal[-10:-1]
mag = abs(signal)
window = np.ones(n_window) / float(n_window)
mag = scipy.signal.convolve(window, mag)
mag = scipy.signal.convolve(window, mag)
thr = 0.05 * np.max(mag)
idx_start = np.argmax(mag > thr)
idx_end = mag.shape[0] - np.argmax(np.flipud(mag > thr))
if debug:
plt.plot(mag < thr)
plt.plot((idx_start,idx_start), (0,0.1), color='g', linewidth=2)
plt.plot((idx_end,idx_end), (0,0.1), color='r', linewidth=2)
signal = signal[max(0,idx_start - n_zeros): min(idx_end + n_zeros, signal.shape[0] -1)]
return signal
#def fftlag(sig_orig, sig_rec):
# """
# Efficient way to find lag between two signals
# Args:
# sig_orig: The signal that has been sent
# sig_rec: The signal that has been recored
# """
# c = np.flipud(scipy.signal.fftconvolve(sig_orig,np.flipud(sig_rec)))
# #plt.plot(c)
# return np.argmax(c) - sig_orig.shape[0] + 1
def lag(sig_orig, sig_rec):
"""
Find lag between two signals
Args:
sig_orig: The signal that has been sent
sig_rec: The signal that has been recored
"""
off = sig_rec.shape[0]
c = signal.correlate(sig_orig, sig_rec)
return np.argmax(c) - off + 1
def lag_upsampling(sig_orig, sig_rec, n_up):
sig_orig_up = signal.resample(sig_orig, sig_orig.shape[0] * n_up)
sig_rec_up = signal.resample(sig_rec, sig_rec.shape[0] * n_up)
l = lag(sig_orig_up, sig_rec_up)
l_orig = float(l) / n_up
return l_orig
def subsample_align(sig1, sig2):
"""
Returns an aligned version of sig1 and sig2 by cropping and subsample alignment
"""
off_meas = lag_upsampling(sig2, sig1, n_up=1)
off = int(abs(off_meas))
if off_meas > 0:
sig1 = sig1[:-off]
sig2 = sig2[off:]
elif off_meas < 0:
sig1 = sig1[off:]
sig2 = sig2[:-off]
if off % 2 == 1:
sig1 = sig1[:-1]
sig2 = sig2[:-1]
sig2 = sa.subsample_align(sig2, sig1)
return sig1, sig2
def get_amp_ratio(ampl_1, ampl_2, a_out_abs, a_in_abs):
idxs = (a_in_abs > ampl_1) & (a_in_abs < ampl_2)
ratio = a_out_abs[idxs] / a_in_abs[idxs]
return ratio.mean(), ratio.var()
def get_phase(ampl_1, ampl_2, a_out, a_in):
idxs = (np.abs(a_in) > ampl_1) & (np.abs(a_in) < ampl_2)
ratio = np.angle(a_out[idxs], deg=True) - np.angle(a_in[idxs], deg=True)
return ratio.mean(), ratio.var()
def get_transmission_frame_indices(n_frames, offset, rate = 2048000):
tm1 = dabconst.tm1(rate)
indices = [tm1.S_F * i + offset for i in range(n_frames)]
return indices
def fromfile(filename, offset=0, length=None):
if length is None:
return np.memmap(filename, dtype=np.complex64, mode='r', offset=64/8*offset)
else:
return np.memmap(filename, dtype=np.complex64, mode='r', offset=64/8*offset, shape=length)
|