aboutsummaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/dab_util.py39
-rw-r--r--src/dab_util_test.py36
-rw-r--r--src/gen_source.py6
3 files changed, 71 insertions, 10 deletions
diff --git a/src/dab_util.py b/src/dab_util.py
index 2b23812..843f8a5 100644
--- a/src/dab_util.py
+++ b/src/dab_util.py
@@ -3,6 +3,7 @@ import scipy
import matplotlib.pyplot as plt
import fftconvolve
import src.dabconst as dabconst
+from scipy import signal
c = {}
c["bw"]=1536000
@@ -47,27 +48,45 @@ def crop_signal(signal, n_window = 1000, n_zeros = 120000, debug = False):
signal = signal[max(0,idx_start - n_zeros): min(idx_end + n_zeros, signal.shape[0] -1)]
return signal
-#def fftlag(signal_original, signal_rec):
+#def fftlag(sig_orig, sig_rec):
# """
# Efficient way to find lag between two signals
# Args:
-# signal_original: The signal that has been sent
-# signal_rec: The signal that has been recored
+# sig_orig: The signal that has been sent
+# sig_rec: The signal that has been recored
# """
-# c = np.flipud(scipy.signal.fftconvolve(signal_original,np.flipud(signal_rec)))
+# c = np.flipud(scipy.signal.fftconvolve(sig_orig,np.flipud(sig_rec)))
# #plt.plot(c)
-# return np.argmax(c) - signal_original.shape[0] + 1
+# return np.argmax(c) - sig_orig.shape[0] + 1
-def fftlag(signal_original, signal_rec, n_upsampling = 1):
+def lag(sig_orig, sig_rec):
+ """
+ Find lag between two signals
+ Args:
+ sig_orig: The signal that has been sent
+ sig_rec: The signal that has been recored
+ """
+ off = sig_rec.shape[0]
+ c = signal.correlate(sig_orig, sig_rec)
+ return np.argmax(c) - off + 1
+
+def lag_upsampling(sig_orig, sig_rec, n_up):
+ sig_orig_up = signal.resample(sig_orig, sig_orig.shape[0] * n_up)
+ sig_rec_up = signal.resample(sig_rec, sig_rec.shape[0] * n_up)
+ l = lag(sig_orig_up, sig_rec_up)
+ l_orig = float(l) / n_up
+ return l_orig
+
+def fftlag(sig_orig, sig_rec, n_upsampling = 1):
"""
Efficient way to find lag between two signals
Args:
- signal_original: The signal that has been sent
- signal_rec: The signal that has been recored
+ sig_orig: The signal that has been sent
+ sig_rec: The signal that has been recored
"""
- c = np.flipud(fftconvolve.fftconvolve(signal_original,np.flipud(signal_rec), n_upsampling))
+ c = np.flipud(fftconvolve.fftconvolve(sig_orig,np.flipud(sig_rec), n_upsampling))
#plt.plot(c)
- return (np.argmax(c) - signal_original.shape[0] + 1)
+ return (np.argmax(c) - sig_orig.shape[0] + 1)
def get_amp_ratio(ampl_1, ampl_2, a_out_abs, a_in_abs):
idxs = (a_in_abs > ampl_1) & (a_in_abs < ampl_2)
diff --git a/src/dab_util_test.py b/src/dab_util_test.py
new file mode 100644
index 0000000..83813a9
--- /dev/null
+++ b/src/dab_util_test.py
@@ -0,0 +1,36 @@
+from scipy import signal
+import numpy as np
+import src.gen_source as gs
+reload(gs)
+import src.dab_util as du
+reload(du)
+
+def gen_test_signals(oversampling=4, sample_offset_float=0):
+ off = int(sample_offset_float)
+ phi_samples = sample_offset_float - off
+ phi = phi_samples*360/oversampling
+
+ s1 = np.zeros((1024))
+ s1[256:768] = gs.gen_sin(512, oversampling, 0)
+ s2 = np.zeros((1024))
+ s2[256+off:768+off] = gs.gen_sin(512, oversampling, phi)
+
+ return s1, s2
+
+def test_phase_offset(lag_function, tol):
+ def r():
+ return np.random.rand(1)*100-50
+ res = []
+ for i in range(100):
+ off = r()
+ s1, s2 = gen_test_signals(
+ oversampling=4, sample_offset_float=off)
+
+ off_meas = lag_function(s2, s1)
+ res.append(np.abs(off-off_meas)<tol)
+ return np.mean(res)
+
+for n_up in [1, 2, 3, 4, 7, 8, 16]:
+ correct_ratio = test_phase_offset(lambda x,y: du.lag_upsampling(x,y,n_up), tol=1./n_up)
+ print("%.1f%% of the tested offsets were measured within tolerance %.4f for n_up = %d" % (correct_ratio * 100, 1./n_up, n_up))
+
diff --git a/src/gen_source.py b/src/gen_source.py
index 7620bc3..c8509ed 100644
--- a/src/gen_source.py
+++ b/src/gen_source.py
@@ -97,3 +97,9 @@ def gen_file_i(frequency_0, frequency_1, x1 = 0, x2 = 0, x3 = 0, x4 = 0, samp_ra
assert(np.isclose(a_load, two_tone).all()), "Inconsistent stored file"
return path
+
+def gen_sin(samples, oversampling, phi):
+ t = np.arange(samples, dtype=np.float)
+ sig = np.sin(((2*np.pi)/oversampling) * t - np.pi*phi/180.)
+ return sig
+