aboutsummaryrefslogtreecommitdiffstats
path: root/src/two_tone_lib.py
diff options
context:
space:
mode:
authorandreas128 <Andreas>2017-01-08 14:59:52 +0000
committerandreas128 <Andreas>2017-01-08 14:59:52 +0000
commit059eb97446a52b346a550d12f47478fc978b6001 (patch)
tree18590699a3291d3809de9420718a5872122fd0e9 /src/two_tone_lib.py
parent770048b409f7ba0636abc74cecc8efaeb863afb4 (diff)
downloadODR-StaticPrecorrection-059eb97446a52b346a550d12f47478fc978b6001.tar.gz
ODR-StaticPrecorrection-059eb97446a52b346a550d12f47478fc978b6001.tar.bz2
ODR-StaticPrecorrection-059eb97446a52b346a550d12f47478fc978b6001.zip
Add two_tone_lib and tested two_tone_tuner
Diffstat (limited to 'src/two_tone_lib.py')
-rw-r--r--src/two_tone_lib.py75
1 files changed, 75 insertions, 0 deletions
diff --git a/src/two_tone_lib.py b/src/two_tone_lib.py
new file mode 100644
index 0000000..df7d53f
--- /dev/null
+++ b/src/two_tone_lib.py
@@ -0,0 +1,75 @@
+import numpy as np
+import matplotlib.pyplot as plt
+
+def gen_two_tone(path = "./input.dat", predist = None, par = None, debug = False):
+ period1 = 3.875
+ period2 = 4
+ t_both = 124
+ assert(t_both / period1 % 1 == 0)
+ assert(t_both / period2 % 1 == 0)
+
+ t = np.arange(0,t_both)
+ sin1 = np.sin(t * 2 * np.pi * 1./period1)
+ sin2 = np.sin(t * 2 * np.pi * 1./period2)
+ sig = sin1 + sin2
+
+ if predist is None:
+ res = sig
+ else:
+ res = predist(sig, par)
+
+ res = res / np.max(res)
+
+ res = res.astype(np.complex64)
+ res.tofile(path)
+
+ a_load = np.fromfile(path, dtype=np.complex64)
+ assert(np.isclose(a_load, res).all()), "Inconsistent stored file"
+
+ if debug == True:
+ plt.plot(np.abs(np.concatenate((a_load, a_load))))
+ plt.savefig(path + ".png")
+ plt.clf()
+
+ plt.plot(np.abs(np.fft.fftshift(np.fft.fft(np.concatenate((a_load, a_load))))), 'ro')
+ plt.savefig(path + "_fft.png")
+ plt.clf()
+
+ return path
+
+def predist_poly(sig, coefs = []):
+ res = sig
+ for idx, coef in enumerate(coefs):
+ res += sig * np.abs(sig)**(idx+1) * coef #+1 because first correction term is squared
+ return res
+
+def analyse_power_spec(spec, debug = False, debug_path="", suffix=""):
+ peak_1 = None
+ peak_2 = None
+ spec_start = 4096
+ spec_end = 8192
+ first_peak = spec_start + 2048
+ second_peak = spec_start + 2114
+ delta_freq = 66
+ peak_other = []
+ if debug: plt.plot(spec[spec_start:spec_end])
+ for x in [c * delta_freq + delta_freq//2 for c in range(spec_start//delta_freq)]:
+ start = spec_start + x
+ end = spec_start + x + delta_freq
+ peak = spec[start:end].max()
+ if debug: plt.plot((start-spec_start,end-spec_start), (peak, peak))
+ if start < first_peak and end > first_peak:
+ peak_1 = peak
+ if debug: plt.plot((start-spec_start,end-spec_start), (peak+1, peak+1))
+ elif start < second_peak and end > second_peak:
+ peak_2 = peak
+ if debug: plt.plot((start-spec_start,end-spec_start), (peak+1, peak+1))
+ else:
+ peak_other.append(peak)
+ mean_signal = (peak_1 + peak_2) / 2
+ mean_others = np.mean(peak_other)
+ score = mean_signal - mean_others
+ if debug:
+ plt.savefig(debug_path + "/" + str(score) + suffix + ".png")
+ plt.clf()
+ return score