diff options
author | Matthias P. Braendli <matthias.braendli@mpb.li> | 2017-05-19 17:38:06 +0200 |
---|---|---|
committer | Matthias P. Braendli <matthias.braendli@mpb.li> | 2017-05-19 17:38:06 +0200 |
commit | c8d61fa0a7b36e3c3acec5a4c22ee4b4ab14a700 (patch) | |
tree | 2d637d6fa8ec7724bb3eb0ca3cf2397c064fa653 /src/subsample_align.py | |
parent | 3dfe0a526a21093b864b99f113eb49ab84e3b377 (diff) | |
download | ODR-StaticPrecorrection-c8d61fa0a7b36e3c3acec5a4c22ee4b4ab14a700.tar.gz ODR-StaticPrecorrection-c8d61fa0a7b36e3c3acec5a4c22ee4b4ab14a700.tar.bz2 ODR-StaticPrecorrection-c8d61fa0a7b36e3c3acec5a4c22ee4b4ab14a700.zip |
Port AlignSample.cpp to python
Diffstat (limited to 'src/subsample_align.py')
-rwxr-xr-x | src/subsample_align.py | 89 |
1 files changed, 89 insertions, 0 deletions
diff --git a/src/subsample_align.py b/src/subsample_align.py new file mode 100755 index 0000000..376058c --- /dev/null +++ b/src/subsample_align.py @@ -0,0 +1,89 @@ +#!/usr/bin/env python +import numpy as np +from scipy import signal, optimize +import sys +import matplotlib.pyplot as plt + +def gen_omega(length): + if (length % 2) == 1: + raise ValueError("Needs an even length array.") + + halflength = int(length/2) + factor = 2.0 * np.pi / length + + omega = np.zeros(length, dtype=np.float) + for i in range(halflength): + omega[i] = factor * i + + for i in range(halflength, length): + omega[i] = factor * (i - length) + + return omega; + +def subsample_align(sig, ref_sig): + """Do subsample alignment for sig relative to the reference signal + ref_sig. The delay between the two must be less than sample + + Returns the aligned signal""" + + n = len(sig) + if (n % 2) == 1: + raise ValueError("Needs an even length signal.") + halflen = int(n/2) + + fft_sig = np.fft.fft(sig) + + omega = gen_omega(n) + + def correlate_for_delay(tau): + # A subsample offset between two signals corresponds, in the frequency + # domain, to a linearly increasing phase shift, whose slope + # corresponds to the delay. + # + # Here, we build this phase shift in rotate_vec, and multiply it with + # our signal. + + rotate_vec = np.exp(1j * tau * omega) + # zero-frequency is rotate_vec[0], so rotate_vec[N/2] is the + # bin corresponding to the [-1, 1, -1, 1, ...] time signal, which + # is both the maximum positive and negative frequency. + # I don't remember why we handle it differently. + rotate_vec[halflen] = np.cos(np.pi * tau) + + corr_sig = np.fft.ifft(rotate_vec * fft_sig) + + # TODO why do we only look at the real part? Because it's faster than + # a complex cross-correlation? Clarify! + return -np.sum(np.real(corr_sig) * np.real(ref_sig.real)) + + optim_result = optimize.minimize_scalar(correlate_for_delay, bounds=(-1,1), method='bounded', options={'disp': True}) + + if optim_result.success: + print("x:") + print(optim_result.x) + + best_tau = optim_result.x + + print("Found subsample delay = {}".format(best_tau)) + + # Prepare rotate_vec = fft_sig with rotated phase + rotate_vec = np.exp(1j * best_tau * omega) + rotate_vec[halflen] = np.cos(np.pi * best_tau) + return np.fft.ifft(rotate_vec * fft_sig) + else: + print("Could not optimize: " + optim_result.message) + return np.zeros(0, dtype=np.complex64) + +if __name__ == "__main__": + phaseref_filename = "/home/bram/dab/aux/odr-dab-cir/phasereference.2048000.fc64.iq" + phase_ref = np.fromfile(phaseref_filename, np.complex64) + + delay = 15 + n_up = 32 + + print("Generate signal with delay {}/{} = {}".format(delay, n_up, delay/n_up)) + phase_ref_up = signal.resample(phase_ref, phase_ref.shape[0] * n_up) + phase_ref_up_late = np.append(np.zeros(delay, dtype=np.complex64), phase_ref_up[:-delay]) + phase_ref_late = signal.resample(phase_ref_up_late, phase_ref.shape[0]) + + phase_ref_realigned = subsample_align(phase_ref_late, phase_ref) |