diff options
| author | andreas128 <Andreas> | 2017-05-29 21:55:44 +0100 | 
|---|---|---|
| committer | andreas128 <Andreas> | 2017-05-29 21:55:44 +0100 | 
| commit | 59ff35e5b6a81150a87cc0b5a972a91bd64c3ab9 (patch) | |
| tree | 84996d2f963fc90bef09802fbb74916e14da0f15 /src/dab_util_test.py | |
| parent | c8d61fa0a7b36e3c3acec5a4c22ee4b4ab14a700 (diff) | |
| download | ODR-StaticPrecorrection-59ff35e5b6a81150a87cc0b5a972a91bd64c3ab9.tar.gz ODR-StaticPrecorrection-59ff35e5b6a81150a87cc0b5a972a91bd64c3ab9.tar.bz2 ODR-StaticPrecorrection-59ff35e5b6a81150a87cc0b5a972a91bd64c3ab9.zip | |
Add subsample_alignment and it's test
Diffstat (limited to 'src/dab_util_test.py')
| -rw-r--r-- | src/dab_util_test.py | 49 | 
1 files changed, 49 insertions, 0 deletions
| diff --git a/src/dab_util_test.py b/src/dab_util_test.py index be36d53..3f9e941 100644 --- a/src/dab_util_test.py +++ b/src/dab_util_test.py @@ -1,5 +1,7 @@  from scipy import signal  import numpy as np +import pandas as pd +from tqdm import tqdm  import src.gen_source as gs  import src.dab_util as du @@ -28,7 +30,54 @@ def test_phase_offset(lag_function, tol):          res.append(np.abs(off-off_meas)<tol)      return np.mean(res) + +def test_using_aligned_pair(sample_orig=r'../data/orig_rough_aligned.dat', sample_rec =r'../data/recored_rough_aligned.dat', length = 10240, max_size = 1000000): +    res = [] +    for i in tqdm(range(100)): +        start = np.random.randint(50, max_size) +        r = np.random.randint(-50, 50) + +        s1 = du.fromfile(sample_orig, offset=start+r, length=length) +        s2 = du.fromfile(sample_rec, offset=start, length=length) + +        res.append({'offset':r, +                    '1':r - du.lag_upsampling(s2, s1, n_up=1), +                    '2':r - du.lag_upsampling(s2, s1, n_up=2), +                    '3':r - du.lag_upsampling(s2, s1, n_up=3), +                    '4':r - du.lag_upsampling(s2, s1, n_up=4), +                    '8':r - du.lag_upsampling(s2, s1, n_up=8), +                    '16':r - du.lag_upsampling(s2, s1, n_up=16), +                    '32':r - du.lag_upsampling(s2, s1, n_up=32), +                    }) +    df = pd.DataFrame(res) +    df = df.reindex_axis(sorted(df.columns), axis=1) +    print(df.describe()) + +def test_subsample_alignment(sample_orig=r'../data/orig_rough_aligned.dat', +        sample_rec =r'../data/recored_rough_aligned.dat', length = 10240, max_size = 1000000): +    res1 = [] +    res2 = [] +    for i in tqdm(range(10)): +        start = np.random.randint(50, max_size) +        r = np.random.randint(-50, 50) + +        s1 = du.fromfile(sample_orig, offset=start+r, length=length) +        s2 = du.fromfile(sample_rec, offset=start, length=length) + +        res1.append(du.lag_upsampling(s2, s1, 32)) + +        s1_aligned, s2_aligned = du.subsample_align(s1,s2) + +        res2.append(du.lag_upsampling(s2_aligned, s1_aligned, 32)) + +    print("Before subsample alignment: lag_std = %.2f, lag_abs_mean = %.2f" % (np.std(res1), np.mean(np.abs(res1)))) +    print("After subsample alignment: lag_std = %.2f, lag_abs_mean = %.2f" % (np.std(res2), np.mean(np.abs(res2)))) + +print("Align using upsampling")  for n_up in [1, 2, 3, 4, 7, 8, 16]:     correct_ratio = test_phase_offset(lambda x,y: du.lag_upsampling(x,y,n_up), tol=1./n_up)     print("%.1f%% of the tested offsets were measured within tolerance %.4f for n_up = %d" % (correct_ratio * 100, 1./n_up, n_up)) +test_using_aligned_pair() +print("Phase alignment") +test_subsample_alignment() | 
