diff options
author | andreas128 <Andreas> | 2017-05-29 21:55:44 +0100 |
---|---|---|
committer | andreas128 <Andreas> | 2017-05-29 21:55:44 +0100 |
commit | 59ff35e5b6a81150a87cc0b5a972a91bd64c3ab9 (patch) | |
tree | 84996d2f963fc90bef09802fbb74916e14da0f15 /src/dab_util_test.py | |
parent | c8d61fa0a7b36e3c3acec5a4c22ee4b4ab14a700 (diff) | |
download | ODR-StaticPrecorrection-59ff35e5b6a81150a87cc0b5a972a91bd64c3ab9.tar.gz ODR-StaticPrecorrection-59ff35e5b6a81150a87cc0b5a972a91bd64c3ab9.tar.bz2 ODR-StaticPrecorrection-59ff35e5b6a81150a87cc0b5a972a91bd64c3ab9.zip |
Add subsample_alignment and it's test
Diffstat (limited to 'src/dab_util_test.py')
-rw-r--r-- | src/dab_util_test.py | 49 |
1 files changed, 49 insertions, 0 deletions
diff --git a/src/dab_util_test.py b/src/dab_util_test.py index be36d53..3f9e941 100644 --- a/src/dab_util_test.py +++ b/src/dab_util_test.py @@ -1,5 +1,7 @@ from scipy import signal import numpy as np +import pandas as pd +from tqdm import tqdm import src.gen_source as gs import src.dab_util as du @@ -28,7 +30,54 @@ def test_phase_offset(lag_function, tol): res.append(np.abs(off-off_meas)<tol) return np.mean(res) + +def test_using_aligned_pair(sample_orig=r'../data/orig_rough_aligned.dat', sample_rec =r'../data/recored_rough_aligned.dat', length = 10240, max_size = 1000000): + res = [] + for i in tqdm(range(100)): + start = np.random.randint(50, max_size) + r = np.random.randint(-50, 50) + + s1 = du.fromfile(sample_orig, offset=start+r, length=length) + s2 = du.fromfile(sample_rec, offset=start, length=length) + + res.append({'offset':r, + '1':r - du.lag_upsampling(s2, s1, n_up=1), + '2':r - du.lag_upsampling(s2, s1, n_up=2), + '3':r - du.lag_upsampling(s2, s1, n_up=3), + '4':r - du.lag_upsampling(s2, s1, n_up=4), + '8':r - du.lag_upsampling(s2, s1, n_up=8), + '16':r - du.lag_upsampling(s2, s1, n_up=16), + '32':r - du.lag_upsampling(s2, s1, n_up=32), + }) + df = pd.DataFrame(res) + df = df.reindex_axis(sorted(df.columns), axis=1) + print(df.describe()) + +def test_subsample_alignment(sample_orig=r'../data/orig_rough_aligned.dat', + sample_rec =r'../data/recored_rough_aligned.dat', length = 10240, max_size = 1000000): + res1 = [] + res2 = [] + for i in tqdm(range(10)): + start = np.random.randint(50, max_size) + r = np.random.randint(-50, 50) + + s1 = du.fromfile(sample_orig, offset=start+r, length=length) + s2 = du.fromfile(sample_rec, offset=start, length=length) + + res1.append(du.lag_upsampling(s2, s1, 32)) + + s1_aligned, s2_aligned = du.subsample_align(s1,s2) + + res2.append(du.lag_upsampling(s2_aligned, s1_aligned, 32)) + + print("Before subsample alignment: lag_std = %.2f, lag_abs_mean = %.2f" % (np.std(res1), np.mean(np.abs(res1)))) + print("After subsample alignment: lag_std = %.2f, lag_abs_mean = %.2f" % (np.std(res2), np.mean(np.abs(res2)))) + +print("Align using upsampling") for n_up in [1, 2, 3, 4, 7, 8, 16]: correct_ratio = test_phase_offset(lambda x,y: du.lag_upsampling(x,y,n_up), tol=1./n_up) print("%.1f%% of the tested offsets were measured within tolerance %.4f for n_up = %d" % (correct_ratio * 100, 1./n_up, n_up)) +test_using_aligned_pair() +print("Phase alignment") +test_subsample_alignment() |