aboutsummaryrefslogtreecommitdiffstats
path: root/src/dab_tuning_lib.py
diff options
context:
space:
mode:
authorandreas128 <Andreas>2017-04-02 10:46:49 +0100
committerandreas128 <Andreas>2017-04-02 10:46:49 +0100
commit2aa99f6275e2530a8dd4d3be270e9d7a3633cd66 (patch)
tree9bb6c05b6e17e3c00c4d68660cb47f846c4d66ba /src/dab_tuning_lib.py
parent3ee39e3ae187e76b252b5758c12bd35e5707e187 (diff)
downloadODR-StaticPrecorrection-2aa99f6275e2530a8dd4d3be270e9d7a3633cd66.tar.gz
ODR-StaticPrecorrection-2aa99f6275e2530a8dd4d3be270e9d7a3633cd66.tar.bz2
ODR-StaticPrecorrection-2aa99f6275e2530a8dd4d3be270e9d7a3633cd66.zip
Add two tone and mer measure
Diffstat (limited to 'src/dab_tuning_lib.py')
-rw-r--r--src/dab_tuning_lib.py67
1 files changed, 64 insertions, 3 deletions
diff --git a/src/dab_tuning_lib.py b/src/dab_tuning_lib.py
index 8faafef..e5348b0 100644
--- a/src/dab_tuning_lib.py
+++ b/src/dab_tuning_lib.py
@@ -17,7 +17,6 @@ def calc_signal_sholder_ratio(fft, sampling_rate, debug = False, debug_path="",
du.freq_to_fft_sample(-du.c["bw"]/2, fft_size, sampling_rate))
sholder = np.mean(fft[n_sholder[0]:n_sholder[1]])
- score = -sholder
if debug == True:
print(n_sig, n_sholder, n_noise)
@@ -25,7 +24,69 @@ def calc_signal_sholder_ratio(fft, sampling_rate, debug = False, debug_path="",
plt.plot((n_sig[0], n_sig[1]), (sig, sig), linewidth=5, color='g')
plt.plot((n_noise[0], n_noise[1]), (noise, noise), linewidth=5, color='r')
plt.plot((n_sholder[0], n_sholder[1]), (sholder, sholder), linewidth=5, color='y')
- plt.savefig(debug_path + "/" + str(score) + suffix + ".png")
+ if debug_path: plt.savefig(debug_path + "/" + str(loss) + suffix + ".png")
+ plt.show()
plt.clf()
- return score
+ return sholder
+
+def calc_signal_sholder_peak_ratio(fft, sampling_rate, debug = False, debug_path="", suffix=""):
+ fft_size = fft.shape[0]
+ n_sig = (du.freq_to_fft_sample(-du.c["bw"]/2., fft_size, sampling_rate),
+ du.freq_to_fft_sample( du.c["bw"]/2., fft_size, sampling_rate))
+ sig = np.mean(fft[n_sig[0]:n_sig[1]])
+
+ n_noise = (du.freq_to_fft_sample(-3000000., fft_size, sampling_rate),
+ du.freq_to_fft_sample(-2500000, fft_size, sampling_rate))
+ noise = np.mean(fft[n_noise[0]:n_noise[1]])
+
+ n_sholder = (du.freq_to_fft_sample(-1500000, fft_size, sampling_rate),
+ du.freq_to_fft_sample(-du.c["bw"]/2, fft_size, sampling_rate))
+ sholder = np.mean(fft[n_sholder[0]:n_sholder[1]])
+
+ loss = sholder/sig
+
+
+ if debug == True:
+ print(n_sig, n_sholder, n_noise)
+ plt.plot(fft)
+ plt.plot((n_sig[0], n_sig[1]), (sig, sig), linewidth=5, color='g')
+ plt.plot((n_noise[0], n_noise[1]), (noise, noise), linewidth=5, color='r')
+ plt.plot((n_sholder[0], n_sholder[1]), (sholder, sholder), linewidth=5, color='y')
+ if debug_path: plt.savefig(debug_path + "/" + str(loss) + suffix + ".png")
+ plt.show()
+ plt.clf()
+
+ return loss
+
+def calc_max_in_freq_range(fft, sampling_rate, f_start, f_end, debug = False, debug_path="", suffix=""):
+ fft_size = fft.shape[0]
+ n_sig = (du.freq_to_fft_sample(f_start, fft_size, sampling_rate),
+ du.freq_to_fft_sample(f_end, fft_size, sampling_rate))
+ sig = np.max(fft[n_sig[0]:n_sig[1]])
+
+ if debug == True:
+ print(n_sig)
+ plt.plot(fft)
+ plt.plot((n_sig[0], n_sig[1]), (sig, sig), linewidth=5, color='g')
+ if debug_path: plt.savefig(debug_path + "/" + str(loss) + suffix + ".png")
+ plt.show()
+ plt.clf()
+
+ return sig
+
+def calc_mean_in_freq_range(fft, sampling_rate, f_start, f_end, debug = False, debug_path="", suffix=""):
+ fft_size = fft.shape[0]
+ n_sig = (du.freq_to_fft_sample(f_start, fft_size, sampling_rate),
+ du.freq_to_fft_sample(f_end, fft_size, sampling_rate))
+ sig = np.mean(fft[n_sig[0]:n_sig[1]])
+
+ if debug == True:
+ print(n_sig)
+ plt.plot(fft)
+ plt.plot((n_sig[0], n_sig[1]), (sig, sig), linewidth=5, color='g')
+ if debug_path: plt.savefig(debug_path + "/" + str(loss) + suffix + ".png")
+ plt.show()
+ plt.clf()
+
+ return sig