aboutsummaryrefslogtreecommitdiffstats
path: root/src/AVTEDIInput.cpp
blob: f8a9e60609726aac167853252caf4912ab35c848 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
/* ------------------------------------------------------------------
 * Copyright (C) 2017 AVT GmbH - Fabien Vercasson
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 * -------------------------------------------------------------------
 */

#include "AVTEDIInput.h"
#include <cstring>
#include <cstdio>
#include <stdint.h>
#include <limits.h>

#include "crc.h"
#include "OrderedQueue.h"

extern "C" {
#include <fec.h>
}

#define SUBCH_QUEUE_SIZE    (50)   /* In 24ms frames. Intermediate buffer */

#define RS_DECODE           1 /* Set to 0 to disable rs decoding */
#define RS_TEST1            0 /* Remove one fragment on each PFT */
#define RS_TEST2            0 /* Remove regularily fragments */
#define RS_TEST2_NBDROP     3 /* For RS_TEST2, nb packet remove on each time */

#define PRINTF(fmt, A...)   fprintf(stderr, fmt, ##A)
//#define PRINTF(x ...)
#define INFO(fmt, A...)   fprintf(stderr, "AVT EDI: " fmt, ##A)
//#define DEBUG(fmt, A...)   fprintf(stderr, "AVT EDI: " fmt, ##A)
#define DEBUG(X...)
#define ERROR(fmt, A...)   fprintf(stderr, "AVT EDI: ERROR " fmt, ##A)

static int hideFirstPFTErrors = 30; /* Hide the errors that can occurs on           */
                                    /* the first PFT, as they are likely incomplete */

#define TAG_NAME_DETI		(('d'<<24)|('e'<<16)|('t'<<8)|('i'))
#define TAG_NAME_EST		(('e'<<24)|('s'<<16)|('t'<<8))

/* ------------------------------------------------------------------
static void _dump(const uint8_t* buf, int size)
{
    for( int i = 0 ; i < size ; i ++)
    {
        PRINTF("%02X ", buf[i]);
        if( (i+1) % 16 == 0 ) PRINTF("\n");
    }
    if( size % 16 != 0 ) PRINTF("\n");
}
*/

/* ------------------------------------------------------------------
 *
 */
static uint32_t unpack2(const uint8_t* buf)
{
    return( buf[0] << 8 |
            buf[1]);
}

/* ------------------------------------------------------------------
 *
 */
static uint32_t unpack3(const uint8_t* buf)
{
    return( buf[0] << 16 |
            buf[1] << 8 |
            buf[2]);
}

/* ------------------------------------------------------------------
 *
 */
static uint32_t unpack4(const uint8_t* buf)
{
    return( buf[0] << 24 |
            buf[1] << 16 |
            buf[2] << 8 |
            buf[3]);
}

/* ------------------------------------------------------------------
 * bitpos 0 : left most bit.
 * 
 */
static uint32_t unpack1bit(uint8_t byte, int bitpos)
{
    return (byte & 1 << (7-bitpos)) > (7-bitpos);
}


/* ------------------------------------------------------------------
 * 
 */
static bool _checkCRC(uint8_t* buf, size_t length)
{
    if (length <= 2) return false;
    
    uint16_t CRC = unpack2(buf+length-2);

    uint16_t crc = 0xffff;
    crc = crc16(crc, buf, length-2);
    crc ^= 0xffff;          

    return (CRC == crc);
}

/* ------------------------------------------------------------------
 * 
 */
AVTEDIInput::AVTEDIInput(uint32_t fragmentTimeoutMs)
    : _fragmentTimeoutMs(fragmentTimeoutMs)
{
    _subChannelQueue = new OrderedQueue(5000, SUBCH_QUEUE_SIZE);
}

/* ------------------------------------------------------------------
 *
 */
AVTEDIInput::~AVTEDIInput()
{
    PFTIterator it = _pft.begin();
    while (it != _pft.end()) {
        delete it->second;
        it++;
    }
    delete _subChannelQueue;
}

/* ------------------------------------------------------------------
 *
 */
bool AVTEDIInput::pushData(uint8_t* buf, size_t length)
{
    bool identified = false;
    
    if (length >= 12 && buf[0] == 'P' && buf[1] == 'F')
    {

#if RS_TEST2
        static int count=0;
        if (++count%1421<RS_TEST2_NBDROP)
            identified = true;
        else
#endif // RS_TEST2           
        identified = _pushPFTFrag(buf, length);
            
    }
    else if (length >= 10 && buf[0] == 'A' && buf[1] == 'F')
    {
        identified = _pushAF(buf, length, false);            
    }
    return identified;
}

/* ------------------------------------------------------------------
 *
 */
size_t AVTEDIInput::popFrame(std::vector<uint8_t>& data, int32_t& frameNumber)
{  
    return _subChannelQueue->pop(data, &frameNumber);
}

/* ------------------------------------------------------------------
 *
 */
bool AVTEDIInput::_pushPFTFrag(uint8_t* buf, size_t length)
{
    PFTFrag* frag = new PFTFrag(buf, length);
    bool isValid = frag->isValid();
    if (!isValid) {
        delete frag;
    } else {
        // Find PFT
        PFT* pft = NULL;
        PFTIterator it = _pft.find(frag->Pseq());        
        if (it != _pft.end()) {
            pft = it->second;
        } else {
            // create PFT is new
            pft = new PFT(frag->Pseq(), frag->Fcount());
            if (_pft.insert(std::make_pair(frag->Pseq(), pft)).second == false)
            {
                // Not inserted
                delete pft;
                pft = NULL;
            }
            it = _pft.find(frag->Pseq());
        }

        if (pft) {
            // Add frag to PFT
            pft->pushPFTFrag(frag);

            // If the PFT is complete, extract the AF
            if (pft->complete()) {
                std::vector<uint8_t> af;
                bool ok = pft->extractAF(af);

                if (ok) {
                    _pushAF(af.data(), af.size(), ok);
                } else {
                    ERROR("AF Frame Corrupted, Size=%zu\n", af.size());
                    //_dump(af.data(), 10);
                }

                _pft.erase(it);
                delete pft;
            }
        }
    }

    // Check old incomplete PFT to either try to extract AF or discard it
    // TODO
    const auto now = std::chrono::steady_clock::now();
    const auto timeout_duration = std::chrono::milliseconds(_fragmentTimeoutMs);

    PFTIterator it = _pft.begin();
    while (it != _pft.end()) {
        PFT* pft = it->second;
        bool erased = false;
        if (pft) {
            const auto creation = pft->creation();
            const auto diff = now - creation;
            if (diff > timeout_duration) {
                //DEBUG("PFT timeout\n");
                std::vector<uint8_t> af;
                bool ok = pft->extractAF(af);
                if (ok) {
                    _pushAF(af.data(), af.size(), ok);
                } else {
                    //ERROR("AF Frame CorruptedSize=%zu\n", af.size());
                    //_dump(af.data(), 10);
                }

                it = _pft.erase(it);
                delete pft;
                erased = true;
            }
        }
        if (!erased) ++it;
    }

    return isValid;
}

/* ------------------------------------------------------------------
 *
 */
bool AVTEDIInput::_pushAF(uint8_t* buf, size_t length, bool checked)
{
    bool ok = checked;

    // Check the AF integrity
    if (!ok) {
       // EDI specific, must have a CRC.
        if (length >= 12) {
            ok = (buf[0] == 'A' && buf[1] == 'F');
            ok &= _checkCRC(buf, length);
        }
    }

    int index = 0;
    
    index += 2;
    uint32_t LEN = unpack4(buf+index); index += 4;
    ok = (LEN == length-12);
    //uint32_t SEQ = unpack2(buf+index); index += 2;

    if (ok) {
        uint32_t CF = unpack1bit(buf[index], 0);
        uint32_t MAJ = (buf[index]&0x70) >> 4;
        uint32_t MIN = (buf[index]&0x0F);
        index += 1;
        uint32_t PT = buf[index]; index += 1;
        
        // EDI specific
        ok = (CF == 1 && PT == 'T' && MAJ == 1 && MIN == 0);

//        DEBUG("AF Header: LEN=%u SEQ=%u CF=%u MAJ=%u MIN=%u PT=%c ok=%d\n",
//            LEN, SEQ, CF, MAJ, MIN, PT, ok);
    }

    if (ok) {
        // Extract the first stream and FrameCount from AF
        int tagIndex = index;
        uint32_t frameCount = 0;
        bool frameCountFound = false;
        int est0Index = 0;
        size_t est0Length = 0;
        // Iterate through tags
        while (tagIndex < (ssize_t)length - 2/*CRC*/ - 8/*Min tag length*/ && (!frameCountFound || est0Index==0) )
        {
            uint32_t tagName = unpack4(buf+tagIndex); tagIndex += 4;
            uint32_t tagLen = unpack4(buf+tagIndex); tagIndex += 4;
            uint32_t tagLenByte = (tagLen+7)/8;
//            DEBUG("TAG %c%c%c%c size %u bits %u bytes\n",
//                    tagName>>24&0xFF, tagName>>16&0xFF, tagName>>8&0xFF, tagName&0xFF,
//                    tagLen, tagLenByte);
            
            if (tagName == TAG_NAME_DETI) {
                uint32_t FCTH = buf[tagIndex] & 0x1F;
                uint32_t FCT = buf[tagIndex+1];
                frameCount = FCTH * 250 + FCT;
                frameCountFound = true;
//                DEBUG("frameCount=%u\n", frameCount);
            } else if ((tagName & 0xFFFFFF00) ==  TAG_NAME_EST) {                
                est0Index = tagIndex+3 /*3 bytes SSTC*/;
                est0Length = tagLenByte-3;
//                DEBUG("Stream found at index %u, size=%zu\n", est0Index, est0Length);
            }

            tagIndex += tagLenByte;
        }
        if (frameCountFound && est0Index !=0) {
            _subChannelQueue->push(frameCount, buf+est0Index, est0Length);
        } else {
            ok = false;
        }
    }

    return ok;
}

/* ------------------------------------------------------------------
 * ------------------------------------------------------------------
 * ------------------------------------------------------------------
 * ------------------------------------------------------------------
 */

/* ------------------------------------------------------------------
 *
 */
//static int nbPFTFrag = 0;
PFTFrag::PFTFrag(uint8_t* buf, size_t length)
{
    //DEBUG("+ PFTFrag %d\n", ++nbPFTFrag);
    _valid = _parse(buf, length);    
}

/* ------------------------------------------------------------------
 *
 */
PFTFrag::~PFTFrag()
{    
    //DEBUG("- PFTFrag %d\n", --nbPFTFrag);
}

/* ------------------------------------------------------------------
 *
 */
bool PFTFrag::_parse(uint8_t* buf, size_t length)
{
    int index = 0;
    
    // Parse PFT Fragment Header (ETSI TS 102 821 V1.4.1 ch7.1)
    index += 2; // Psync
    
    _Pseq = unpack2(buf+index); index += 2;
    _Findex = unpack3(buf+index); index += 3;
    _Fcount = unpack3(buf+index); index += 3;
    _FEC = unpack1bit(buf[index], 0);
    _Addr = unpack1bit(buf[index], 1);
    _Plen = unpack2(buf+index) & 0x3FFF; index += 2;
    
    // Optional RS Header
    _RSk = 0;
    _RSz = 0;
    if (_FEC) {
        _RSk = buf[index]; index += 1;
        _RSz = buf[index]; index += 1;
    }
    
    // Optional transport header
    _Source = 0;
    _Dest = 0;
    if (_Addr) {
        _Source = unpack2(buf+index); index += 2;
        _Dest = unpack2(buf+index); index += 2;
    }

    index += 2;
    bool isValid = (_FEC==0) || _checkCRC(buf, index);
    isValid &= length == index + _Plen;
 
    if (!isValid) {
//        DEBUG("PFT isValid=%d Pseq=%u Findex=%u Fcount=%u FEC=%u "
//            "Addr=%u Plen=%u",
//            isValid, _Pseq, _Findex, _Fcount, _FEC,
//            _Addr, _Plen);
        if (_FEC) PRINTF(" RSk=%u RSz=%u", _RSk, _RSz);
        if (_Addr) PRINTF(" Source=%u Dest=%u", _Source, _Dest);
        PRINTF("\n");
    }

    if (isValid) {
        _payload.resize(_Plen);
        memcpy(_payload.data(), buf+index, _Plen);
    }

    return isValid;
}

/* ------------------------------------------------------------------
 * ------------------------------------------------------------------
 * ------------------------------------------------------------------
 * ------------------------------------------------------------------
 */
void* PFT::_rs_handler = NULL;

/* ------------------------------------------------------------------
 *
 */
//static int nbPFT = 0;
PFT::PFT(uint32_t Pseq, uint32_t Fcount)
    : _frags(NULL)
    , _Pseq(Pseq)
    , _Fcount(Fcount)
    , _Plen(0)
    , _nbFrag(0)
    , _RSk(0)
    , _RSz(0)
    , _cmax(0)
    , _rxmin(0)
    , _creation(std::chrono::steady_clock::now())
{
//    DEBUG("+ PFT %d\n", ++nbPFT);
    if (Fcount > 0) {
        _frags = new PFTFrag* [Fcount];
        memset(_frags, 0, Fcount*sizeof(PFTFrag*));
    }
}

/* ------------------------------------------------------------------
 *
 */
PFT::~PFT()
{
//    DEBUG("- PFT %d\n", --nbPFT);
    if (_frags) {
        for (size_t i = 0 ; i < _Fcount ; i++) {
            delete _frags[i];
        }
        delete [] _frags;
    }
}

/* ------------------------------------------------------------------
 * static
 */
void PFT::_initRSDecoder()
{
#if RS_DECODE
    if (!_rs_handler) {       
        // From ODR-DabMux: PFT.h/cpp and ReedSolomon.h/cpp

        // Create the RS(k+p,k) encoder
        const int firstRoot = 1; // Discovered by analysing EDI dump
        const int gfPoly = 0x11d;

        // The encoding has to be 255, 207 always, because the chunk has to
        // be padded at the end, and not at the beginning as libfec would
        // do
        const int N = 255;
        const int K = 207;
        const int primElem = 1;
        const int symsize = 8;
        const int nroots = N - K; // For EDI PFT, this must be 48
        const int pad = ((1 << symsize) - 1) - N; // is 255-N

        _rs_handler = init_rs_char(symsize, gfPoly, firstRoot, primElem, nroots, pad);


/* TEST RS CODE */
#if 0

        // Populate data
        uint8_t data[255];
        memset(data, 0x00, 255);
        for (int i=0;i<207;i++) data[i] = i%10;

        // Add RS Code
        encode_rs_char(_rs_handler, data, data+207);
        _dump(data, 255);
        
        // Disturb data
        for (int i=50; i<50+24; i++) data[i]+=0x50;
        
        // Correct data
        int nbErr =  decode_rs_char(_rs_handler, data, NULL, 0);
        printf("nbErr=%d\n", nbErr);
        _dump(data, 255);

        // Check data
        for (int i=0;i<207;i++) {
            if (data[i] != i%10) {
                printf("Error position %d %hhu != %d\n", i, data[i], i%10);
            }
        }

        // STOP (sorry :-| )
        int* i=0;
        *i = 9;
#endif // 0       
    }
#endif
}

/* ------------------------------------------------------------------
 *
 */
void PFT::pushPFTFrag(PFTFrag* frag)
{
    uint32_t Findex = frag->Findex();
#if RS_TEST1    
    if (Findex != 0 && _frags[Findex] == NULL)  /* TEST */
#else
    if (_frags[Findex] == NULL)
#endif
    {
        _frags[Findex] = frag;
        _nbFrag++;

        // Calculate the minimum number of fragment necessary to apply FEC
        // This can't be done with the last fragment that does may have a smaller size
        // ETSI TS 102 821 V1.4.1 ch 7.4.4       
        if (_Plen == 0 && (Findex == 0 || Findex < (_Fcount-1)))
        {
            _Plen = frag->Plen();
        }

        if (_cmax == 0 && frag->FEC() && (Findex == 0 || Findex < (_Fcount-1)) && _Plen>0)
        {
            _RSk = frag->RSk();
            _RSz = frag->RSz();
            _cmax = (_Fcount*_Plen) / (_RSk+48);
            _rxmin = _Fcount - (_cmax*48)/_Plen;
        }
    } else {
        // Already received, delete the fragment
        delete frag;
    }
}

/* ------------------------------------------------------------------
 *
 */
bool PFT::complete()
{
#if RS_TEST1    
    return _nbFrag == _Fcount-1;
#else
    return _nbFrag == _Fcount;
#endif
}

/* ------------------------------------------------------------------
 *
 */
bool PFT::_canAttemptToDecode()
{
    if (complete()) return true;
    
    if (_cmax>0 && _nbFrag >= _rxmin) return true;    

    return false;
}

/* ------------------------------------------------------------------
 *
 */
bool PFT::extractAF(std::vector<uint8_t>& afdata)
{
    bool ok = false;
//    DEBUG("extractAF from PFT %u. Fcount=%u nbFrag=%u Plen=%u cmax=%u rxmin=%u RSk=%u RSz=%u\n",
//            _Pseq, _Fcount, _nbFrag, _Plen, _cmax, _rxmin, _RSk, _RSz);

    if (_canAttemptToDecode()) {
        int totCorrectedErr = 0;

        if (_cmax > 0)      // FEC present.
        {
            uint8_t* p_data_w;
            uint8_t* p_data_r;
            size_t data_len = 0;

            // Re-assemble RS block
            uint8_t rs_block[_Plen*_Fcount];
            int eras_pos[_cmax][/*48*/255]; /* 48 theoritically but ... */
            int no_eras[_cmax];
            memset(no_eras, 0, sizeof(no_eras));

            p_data_w = rs_block;
            for (size_t j = 0; j < _Fcount; ++j) {
                if (!_frags[j]) // fill with zeros if fragment is missing
                {
                    for (size_t k = 0; k < _Plen; k++) {
                        size_t pos = k * _Fcount;
                        p_data_w[pos] = 0x00;
                        size_t chunk = pos / (_RSk+48);
                        size_t chunkpos = (pos) % (_RSk+48);
                        if (chunkpos > _RSk) {
                            chunkpos += (207-_RSk);
                        }
                        eras_pos[chunk][no_eras[chunk]] = chunkpos;
                        no_eras[chunk]++;
                    }
                } else {
                    uint8_t* p_data_r = _frags[j]->payload();
                    for (size_t k = 0; k < _frags[j]->Plen(); k++)
                        p_data_w[k * _Fcount] = *p_data_r++;
                    for (size_t k = _frags[j]->Plen(); k < _Plen; k++)
                        p_data_w[k * _Fcount] = 0x00;
                }
                p_data_w++;
            }

            // Apply RS Code
#if RS_DECODE
            uint8_t rs_chunks[255 * _cmax];
            _initRSDecoder();
            if (_rs_handler) {
                size_t k = _RSk;
                memset(rs_chunks, 0, sizeof(rs_chunks));
                p_data_w = rs_chunks;
                p_data_r = rs_block;
                for (size_t j = 0; j < _cmax; j++) {
                    memcpy(p_data_w, p_data_r, k);
                    p_data_w += k;
                    p_data_r += k;
                    if (k < 207)
                        memset(p_data_w, 0, 207 - k);
                    p_data_w += 207 - k; 
                    memcpy(p_data_w, p_data_r, 48);
                    p_data_w += 48;
                    p_data_r += 48;
                }

                p_data_r = rs_chunks;
                for (size_t j = 0 ; j < _cmax && totCorrectedErr != -1 ; j++) {
#if RS_TEST1 || RS_TEST2
                    if (no_eras[j]>0) {
                        DEBUG("RS Chuck %d: %d errors\n", j, no_eras[j]);
                    }
#endif
                    int nbErr = decode_rs_char(_rs_handler, p_data_r, eras_pos[j], no_eras[j]);
//                    int nbErr = decode_rs_char(_rs_handler, p_data_r, NULL, 0);
                    if (nbErr >= 0) {
#if RS_TEST1 || RS_TEST2
                        if (nbErr > 0) DEBUG("RS Chuck %d: %d corrections\n", j, nbErr);
#endif
                        totCorrectedErr += nbErr;
                    } else {
#if RS_TEST1 || RS_TEST2
                        DEBUG("RS Chuck %d: too many errors\n", j);
#endif
                        totCorrectedErr = -1;
                    }
                    p_data_r += 255;
                }
#if RS_TEST1 || RS_TEST2
                if (totCorrectedErr>0) {
                    DEBUG("RS corrected %d errors in %d chunks\n", totCorrectedErr, _cmax);
                }
#endif
            }
#endif // RS_DECODE
            // Assemble AF frame from rs code
            /* --- re-assemble packet from Reed-Solomon block ----------- */
            afdata.resize(_Plen*_Fcount);
            p_data_w = afdata.data();
#if RS_DECODE
            p_data_r = rs_chunks;
            for (size_t j = 0; j < _cmax; j++) {
                memcpy(p_data_w, p_data_r, _RSk);
                p_data_w += _RSk;
                p_data_r += 255;
                data_len += _RSk;
            }
#else
            p_data_r = rs_block;
            for (size_t j = 0; j < _cmax; j++) {
                memcpy(p_data_w, p_data_r, _RSk);
                p_data_w += _RSk;
                p_data_r += _RSk + 48;
                data_len += _RSk;
            }
#endif // RS_DECODE
            data_len -= _RSz;
            afdata.resize(data_len);
        } else {            // No Fec Just assemble packets
            afdata.resize(0);
            for (size_t j = 0; j < _Fcount; ++j) {
                if (_frags[j])
                {
                    afdata.insert(afdata.end(),
                       _frags[j]->payloadVector().begin(), _frags[j]->payloadVector().end());
                }
            }
        }

        // EDI specific, must have a CRC.
        if( afdata.size()>=12 ) {
            ok = _checkCRC(afdata.data(), afdata.size());
            if (ok && totCorrectedErr > 0) {
                if (hideFirstPFTErrors==0) {
                    INFO("AF reconstructed from %u/%u PFT fragments\n", _nbFrag, _Fcount);
                }
            }
            if (!ok && totCorrectedErr == -1) {
                if (hideFirstPFTErrors==0) {
                    ERROR("Too many errors to reconstruct AF from %u/%u PFT fragments\n", _nbFrag, _Fcount);
                }
            }
        }
    }
    else {
       if (hideFirstPFTErrors==0) {
           ERROR("Not enough fragments to reconstruct AF from %u/%u PFT fragments (min=%u)\n", _nbFrag, _Fcount, _rxmin);
       }
    }
    
    if( hideFirstPFTErrors > 0 ) hideFirstPFTErrors--;

    return ok;
}