aboutsummaryrefslogtreecommitdiffstats
path: root/libtoolame-dab/psycho_3.c
blob: c623b7f65d6fba28068e4a1533f04ed4fd2a408a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "common.h"
#include "options.h"
#include "encoder.h"
#include "mem.h"
#include "fft.h"
#include "ath.h"
#define OLDTHRESHx
#include "psycho_3.h"
#include "psycho_3priv.h"

/* This is a reimplementation of psy model 1 using the ISO11172 standard.
   I found the original dist10 code (which is full of pointers) to be 
   a horrible thing to try and understand and debug.
   This implementation is not built for speed, but is rather meant to 
   clearly outline the steps specified by the standard (still, it's only
   a tiny fraction slower than the dist10 code, and nothing has been optimized)
   MFC Feb 2003 */

/* Keep a table to fudge the adding of dB */
#define DBTAB 1000
static double dbtable[DBTAB];

#define CRITBANDMAX 32 /* this is much higher than it needs to be. really only about 24 */
int cbands=0; /* How many critical bands there really are */
int cbandindex[CRITBANDMAX]; /* The spectral line index of the start of
				each critical band */

#define SUBSIZE 136
int freq_subset[SUBSIZE];
FLOAT bark[HBLKSIZE], ath[HBLKSIZE];

int *numlines;
FLOAT *cbval;
int partition[HBLKSIZE];
static D1408 *fft_buf;

frame_header *header;


double psycho_3_add_db (double a, double b)
{
  /* MFC - if the difference between a and b is large (>99), then just return the
     largest one. (about 10% of the time)
     - For differences between 0 and 99, return the largest value, but add
     in a pre-calculated difference value.  
     - the value 99 was chosen arbitarily.
     - maximum (a-b) i've seen is 572 */
  FLOAT fdiff;
  int idiff;
  fdiff = (10.0 * (a - b));

  if (fdiff > 990.0) {
    return a;
  }
  if (fdiff < -990.0) {
    return (b);
  }

  idiff = (int) fdiff;
  if (idiff >= 0) {
    return (a + dbtable[idiff]);
  }

  return (b + dbtable[-idiff]);
}

void psycho_3 (short buffer[2][1152], double scale[2][SBLIMIT],
	       double ltmin[2][SBLIMIT], frame_info * frame, options *glopts)
{
  int nch = frame->nch;
  int sblimit = frame->sblimit;
  int k, i;
  static char init = 0;
  static int off[2] = { 256, 256 };
  FLOAT sample[BLKSIZE];

  FLOAT energy[BLKSIZE];
  FLOAT power[HBLKSIZE];
  FLOAT Xtm[HBLKSIZE], Xnm[HBLKSIZE];
  int tonelabel[HBLKSIZE], noiselabel[HBLKSIZE];
  FLOAT LTg[HBLKSIZE];
  double Lsb[SBLIMIT];

  header = frame->header;

  if (init==0) {		
    psycho_3_init(glopts);
    init++;
  }
  

  for (k = 0; k < nch; k++) {
    int ok = off[k] % 1408;
    for (i = 0; i < 1152; i++) {
      fft_buf[k][ok++] = (FLOAT) buffer[k][i] / SCALE;
      if (ok >= 1408)
	ok = 0;
    }
    ok = (off[k] + 1216) % 1408;
    for (i = 0; i < BLKSIZE; i++) {
      sample[i] = fft_buf[k][ok++];
      if (ok >= 1408)
	ok = 0;
    }

    off[k] += 1152;
    off[k] %= 1408;

    psycho_3_fft(sample, energy);
    psycho_3_powerdensityspectrum(energy, power);    
    psycho_3_spl(Lsb, power, &scale[k][0]);
    psycho_3_tonal_label (power, tonelabel, Xtm);
    psycho_3_noise_label (power, energy, tonelabel, noiselabel, Xnm);
    if (glopts->verbosity > 20)
      psycho_3_dump(tonelabel, Xtm, noiselabel, Xnm);
    psycho_3_decimation(ath, tonelabel, Xtm, noiselabel, Xnm, bark);
    psycho_3_threshold(LTg, tonelabel, Xtm, noiselabel, Xnm, bark, ath, bitrate[header->version][header->bitrate_index] / nch, freq_subset);
    psycho_3_minimummasking(LTg, &ltmin[k][0], freq_subset);
    psycho_3_smr(&ltmin[k][0], Lsb);
  }
}

/* ISO11172 Sec D.1 Step 1 - Window with HANN and then perform the FFT */
void psycho_3_fft(FLOAT sample[BLKSIZE], FLOAT energy[BLKSIZE])
{
  FLOAT x_real[BLKSIZE];
  int i;
  static int init = 0;
  static FLOAT *window;

  if (!init) { /* calculate window function for the Fourier transform */
    window = (FLOAT *) mem_alloc (sizeof (DFFT), "window");
    register FLOAT sqrt_8_over_3 = pow (8.0 / 3.0, 0.5);
    for (i = 0; i < BLKSIZE; i++) {
      window[i] = sqrt_8_over_3 * 0.5 * (1 - cos (2.0 * PI * i / (BLKSIZE))) / BLKSIZE;
    }
    init++;
  }

  /* convolve the samples with the hann window */
  for (i = 0; i < BLKSIZE; i++)
    x_real[i] = (FLOAT) (sample[i] * window[i]);
  /* do the FFT */
  psycho_1_fft (x_real, energy, BLKSIZE);
}

/* Sect D.1 Step 1 - convert the energies into dB */
void psycho_3_powerdensityspectrum(FLOAT energy[BLKSIZE], FLOAT power[HBLKSIZE]) {
  int i;
  for (i=1;i<HBLKSIZE;i++) {	
    if (energy[i] < 1E-20)
      power[i] = -200.0 + POWERNORM;
    else
      power[i] = 10 * log10 (energy[i]) + POWERNORM;
  }
}

/* Sect D.1 Step 2 - Determine the sound pressure level in each subband */
void psycho_3_spl(double *Lsb, FLOAT *power, double *scale) {
  int i;
  FLOAT Xmax[SBLIMIT];

  for (i=0;i<SBLIMIT;i++) {
    Xmax[i] = DBMIN;
  }
  /* Find the maximum SPL in the power spectrum */
  for (i=1;i<HBLKSIZE;i++) {
    int index = i>>4;
    if (Xmax[index] < power[i])
      Xmax[index] = power[i];
  }

  /* Compare it to the sound pressure based upon the scale for this subband 
     and pick the maximum one */
  for (i=0;i<SBLIMIT;i++) {
    double val =  20 * log10 (scale[i] * 32768) - 10;
    Lsb[i] = MAX(Xmax[i], val);
  }  
}

/* Sect D.1 Step 4 Label the Tonal Components */
void psycho_3_tonal_label (FLOAT power[HBLKSIZE], int *tonelabel, FLOAT Xtm[HBLKSIZE])
{
  int i;
  int maxima[HBLKSIZE];

  /* Find the maxima as per ISO11172 D.1.4.a */
  maxima[0]=maxima[HBLKSIZE-1]=0;
  tonelabel[0]=tonelabel[HBLKSIZE-1]=0;
  Xtm[0] = Xtm[HBLKSIZE-1] = DBMIN;
  for (i=1;i<HBLKSIZE-1;i++) {
    tonelabel[i] = 0;
    Xtm[i] = DBMIN;
    if (power[i]>power[i-1] && power[i]>power[i+1]) /* The first criteria for a maximum */
      maxima[i]=1;
    else
      maxima[i]=0;
  }

  {
    /* Now find the tones as per ISO11172 D.1 Step4.b */
    /* The standard is a bit vague (surprise surprise).
       So I'm going to assume that 
       - a tone must be 7dB greater than *all* the relevant neighbours 
       - once a tone is found, the neighbours are immediately set to -inf dB
    */

    psycho_3_tonal_label_range(power, tonelabel, maxima, Xtm, 2, 63, 2);
    psycho_3_tonal_label_range(power, tonelabel, maxima, Xtm, 63,127,3);
    psycho_3_tonal_label_range(power, tonelabel, maxima, Xtm, 127,255,6);
    psycho_3_tonal_label_range(power, tonelabel, maxima, Xtm, 255,500,12);

  }
}

/* Sect D.1 Step4b 
   A tone within the range (start -> end), must be 7.0 dB greater than
   all it's neighbours within +/- srange. Don't count its immediate neighbours. */
void psycho_3_tonal_label_range(FLOAT *power, int *tonelabel, int *maxima, FLOAT *Xtm, int start, int end, int srange) {
  int j,k;

  for (k=start;k<end;k++)  /* Search for all the maxima in this range */
    if (maxima[k] == 1) {
      tonelabel[k] = TONE; /* assume it's a TONE and then prove otherwise */
      for (j=-srange;j<=+srange;j++) /* Check the neighbours within +/- srange */
	if (abs(j) > 1) /* Don't count the immediate neighbours, or itself */
	  if ((power[k] - power[k+j]) < 7.0)
	    tonelabel[k] = 0; /* Not greater by 7dB, therefore not a tone */
      if (tonelabel[k] == TONE) {
	/* Calculate the sound pressure level for this tone by summing 
	   the adjacent spectral lines
	   Xtm[k] = 10 * log10( pow(10.0, 0.1*power[k-1]) + pow(10.0, 0.1*power[k]) 
	                      + pow(10.0, 0.1*power[k+1]) ); */
	double temp = psycho_3_add_db(power[k-1], power[k]);
	Xtm[k] = psycho_3_add_db(temp, power[k+1]);
	
	/* *ALL* spectral lines within +/- srange are set to -inf dB 
	   So that when we do the noise calculate, they are not counted */
	for (j=-srange;j<=+srange;j++)
	    power[k+j] = DBMIN;
      }
    }
}

void psycho_3_init_add_db (void)
{
  int i;
  double x;
  for (i = 0; i < DBTAB; i++) {
    x = (double) i / 10.0;
    dbtable[i] = 10 * log10 (1 + pow (10.0, x / 10.0)) - x;
  }
}

/* D.1 Step 4.c Labelling non-tonal (noise) components 
   Sum the energies in each critical band (the tone energies have been removed 
   during the tone labelling).
   Find the "geometric mean" of these energies - i.e. find the best spot to put the
   sum of energies within this critical band. */
void psycho_3_noise_label (FLOAT power[HBLKSIZE], FLOAT energy[BLKSIZE], int *tonelabel, int *noiselabel, FLOAT Xnm[HBLKSIZE]) {
  int i,j;
  
  Xnm[0] = DBMIN;
  for (i=0;i<cbands;i++) {
    /* for each critical band */
    double sum = DBMIN;
    double esum=0;
    double centreweight = 0;
    int centre;
    for (j=cbandindex[i]; j<cbandindex[i+1]; j++) {
      Xnm[j] = DBMIN;
      /* go through all the spectral lines within the critical band, 
	 adding the energies. The tone energies have already been removed */
      if (power[j] != DBMIN) {
	/* Found a noise energy, add it to the sum */
	sum = psycho_3_add_db(power[j], sum);
	
	/* calculations for the geometric mean 
	   FIXME MFC Feb 2003: Would it just be easier to
	   do the *whole* of psycho_1 in the energy domain rather than 
	   in the dB domain? 
	   FIXME: This is just a lazy arsed arithmetic mean. Don't know 
	   if it's really going to make that much difference */
	esum += energy[j]; /* Calculate the sum of energies */
	centreweight += (j - cbandindex[i]) * energy[j]; /* And the energy moment */
      }
    }

    if (sum<=DBMIN) 
      /* If the energy sum is really small, just pretend the noise occurs 
	 in the centre frequency line */
      centre = (cbandindex[i] + cbandindex[i+1])/2;
    else
      /* Otherwise, work out the mean position of the noise, and put it there. */
      centre = cbandindex[i] + (int)(centreweight/esum);

    Xnm[centre] = sum;
    noiselabel[centre] = NOISE;
  }
}

/* ISO11172 D.1 Step 5
   Get rid of noise/tones that aren't greater than the ATH
   If two tones are within 0.5bark, then delete the tone with the lower energy */
void psycho_3_decimation(FLOAT *ath, int *tonelabel, FLOAT *Xtm, int *noiselabel, FLOAT *Xnm, FLOAT *bark) {
  int i;

  /* Delete components which aren't above the ATH */
  for (i=1;i<HBLKSIZE;i++) {
    if (noiselabel[i]==NOISE) {
      if (Xnm[i] < ath[i]) {
	/* this masker isn't above the ATH : delete it */
	Xnm[i] = DBMIN;
	noiselabel[i]=0;
      }
    } 
    if (tonelabel[i] == TONE) {
      if (Xtm[i] < ath[i]) {
	Xtm[i] = DBMIN;
	tonelabel[i]=0;
      }
    }
  }
  /* Search for tones that are within 0.5 bark */
  /* MFC FIXME Feb 2003: haven't done this yet */

}

/* ISO11172 Sect D.1 Step 6
   Calculation of individual masking thresholds
   Work out how each of the tones&noises maskes other frequencies 
   NOTE: Only a subset of other frequencies is checked. According to the 
   standard different subbands are subsampled to different amounts.
   See psycho_3_init and freq_subset */
void psycho_3_threshold(FLOAT *LTg, int *tonelabel, FLOAT *Xtm, int *noiselabel, FLOAT *Xnm, FLOAT *bark, FLOAT *ath, int bit_rate, int *freq_subset) {
  int i,j,k;
  FLOAT LTtm[SUBSIZE];
  FLOAT LTnm[SUBSIZE];

  for (i=0;i<SUBSIZE;i++) {
    LTtm[i] = DBMIN;
    LTnm[i] = DBMIN;
  }
  /* Loop over the entire spectrum and find every noise and tone 
     And then with each noise/tone work out how it masks 
     the spectral lines around it */
  for (k=1;k<HBLKSIZE;k++) {
    /* Find every tone */
    if (tonelabel[k]==TONE) {
      for (j=0;j<SUBSIZE;j++) {
	/* figure out how it masks the levels around it */  
	FLOAT dz = bark[freq_subset[j]] - bark[k];     
	if (dz >= -3.0 && dz < 8.0) {
	  FLOAT vf;
	  FLOAT av = -1.525 - 0.275 * bark[k] - 4.5 + Xtm[k];
	  /* masking function for lower & upper slopes */
	  if (dz < -1)
	    vf = 17 * (dz + 1) - (0.4 * Xtm[k] + 6);
	  else if (dz < 0)
	    vf = (0.4 * Xtm[k] + 6) * dz;
	  else if (dz < 1)
	    vf = (-17 * dz);
	  else
	    vf = -(dz - 1) * (17 - 0.15 * Xtm[k]) - 17;
	  LTtm[j] = psycho_3_add_db (LTtm[j], av + vf);
	}    
      }
    }

    /* find every noise label */
    if (noiselabel[k]==NOISE) {
      for (j=0;j<SUBSIZE;j++) {
	/* figure out how it masks the levels around it */  
	FLOAT dz = bark[freq_subset[j]] - bark[k];     
	if (dz >= -3.0 && dz < 8.0) {
	  FLOAT vf;
	  FLOAT av = -1.525 - 0.175 * bark[k] - 0.5 + Xnm[k]; 
	  /* masking function for lower & upper slopes */
	  if (dz < -1)
	    vf = 17 * (dz + 1) - (0.4 * Xnm[k] + 6);
	  else if (dz < 0)
	    vf = (0.4 * Xnm[k] + 6) * dz;
	  else if (dz < 1)
	    vf = (-17 * dz);
	  else
	    vf = -(dz - 1) * (17 - 0.15 * Xnm[k]) - 17;
	  LTnm[j] = psycho_3_add_db (LTnm[j], av + vf);
	}    
      }
    }
  }

  /* ISO11172 D.1 Step 7
     Calculate the global masking threhold */
  for (i=0;i<SUBSIZE;i++) {
    LTg[i] = psycho_3_add_db(LTnm[i], LTtm[i]);
    if (bit_rate < 96)
      LTg[i] = psycho_3_add_db(ath[freq_subset[i]], LTg[i]);
    else
      LTg[i] = psycho_3_add_db(ath[freq_subset[i]]-12.0, LTg[i]);
  }
}

  /* Find the minimum LTg for each subband. ISO11172 Sec D.1 Step 8 */
void psycho_3_minimummasking(FLOAT *LTg, double *LTmin, int *freq_subset) {
  int i;

  for (i=0;i<SBLIMIT;i++)
    LTmin[i] = 999999.9;

  for (i=0;i<SUBSIZE;i++) {
    int index = freq_subset[i]>>4;
    if (LTmin[index] > LTg[i]) {
      LTmin[index] = LTg[i];
    }
  }
}

/* ISO11172 Sect D.1 Step 9
   Calculate the signal-to-mask ratio 
   MFC FIXME Feb 2003 for better calling from
   toolame, add a "float SMR[]" array and return it */
void psycho_3_smr(double *LTmin, double *Lsb) {
  int i;
  for (i=0;i<SBLIMIT;i++) {
    LTmin[i] = Lsb[i] - LTmin[i];
  }
}

void psycho_3_init(options *glopts) {
  int i;
  int cbase = 0; /* current base index for the bark range calculation */

  fft_buf = (D1408 *) mem_alloc ((long) sizeof (D1408) * 2, "fft_buf");
  
  /* Initialise the tables for the adding dB */
  psycho_3_init_add_db();
  
  /* For each spectral line calculate the bark and the ATH (in dB) */
  FLOAT sfreq = (FLOAT) s_freq[header->version][header->sampling_frequency] * 1000;
  for (i=1;i<HBLKSIZE; i++) {
    FLOAT freq = i * sfreq/BLKSIZE;
    bark[i] = freq2bark(freq);
    ath[i] = ATH_dB(freq,glopts->athlevel);
  }
  
  { /* Work out the critical bands
       Starting from line 0, all lines within 1 bark of the starting
       bark are added to the same critical band. When a line is greater
       by 1.0 of a bark, start a new critical band.  */
    
    numlines = (int *)calloc(HBLKSIZE, sizeof(int));
    cbval = (FLOAT*)calloc(HBLKSIZE, sizeof(FLOAT));
    cbandindex[0] = 1;
    for (i=1;i<HBLKSIZE;i++) {
      if ((bark[i] - bark[cbase]) > 1.0) { /* 1 critical band? 1 bark? */
	/* this frequency line is too different from the starting line,
	   (in terms of the bark distance)
	   so make this spectral line the first member of the next critical band */
	cbase = i; /* Start the new critical band from this frequency line */
	cbands++;
	cbandindex[cbands] = cbase;
      } 
      /* partition[i] tells us which critical band the i'th frequency line is in */
      partition[i] = cbands;
      /* keep a count of how many frequency lines are in each partition */
      numlines[cbands]++;
    }
    
    cbands++;
    cbandindex[cbands] = 513; /* Set the top of the last critical band */

    /* For each crtical band calculate the average bark value 
       cbval [central bark value] */
    for (i=1;i<HBLKSIZE;i++) 
      cbval[partition[i]] += bark[i]; /* sum up all the bark values */
    for (i=1;i<CBANDS;i++) {
      if (numlines[i] != 0)
	cbval[i] /= numlines[i]; /* divide by the number of values */
      else {
	cbval[i]=0; /* this isn't a partition */
      }
    }     
  }
  
  {
    /* For Step6 - For the calculation of individual masking thresholds
       the spectral lines are subsampled 
       i.e. no need to work out the masking for every single spectral line.
       Depending upon which subband the calculation is for, you
       can skip a number of lines 
       There are 16 lines per subband -> 32 * 16 = 512 
       Subband 0-2 : Every line        (3 * 16 = 48 lines)
       Subband 3-5 : Every Second line (3 * 16/2 = 24 lines)
       Subband 6-11 : Every 4th line   (6 * 16/4 = 24 lines)
       Subband 12-31 : Every 12th line (20 * 16/8 = 40 lines) 
       
       create this subset of frequencies (freq_subset) */
    int freq_index=0;
    for (i=1;i<(3*16)+1;i++) 
      freq_subset[freq_index++] = i;
    for (;i<(6*16)+1;i+=2)
      freq_subset[freq_index++] = i;
    for (;i<(12*16)+1;i+=4)
      freq_subset[freq_index++] = i;
    for (;i<(32*16)+1;i+=8)
      freq_subset[freq_index++] = i;
  }

  if (glopts->verbosity > 4) {
    fprintf(stdout,"%i critical bands\n",cbands);
    for (i=0;i<cbands;i++)
      fprintf(stdout,"cband %i spectral line index %i\n",i,cbandindex[i]);
    fprintf(stdout,"%i Subsampled spectral lines\n",SUBSIZE);
    for (i=0;i<SUBSIZE;i++) 
      fprintf(stdout,"%i Spectral line %i Bark %.2f\n",i,freq_subset[i], bark[freq_subset[i]]);
  }
}

void psycho_3_dump(int *tonelabel, FLOAT *Xtm, int *noiselabel, FLOAT *Xnm) {
  int i;
  fprintf(stdout,"3 Ton:");
  for (i=1;i<HAN_SIZE;i++) {
    if (tonelabel[i] == TONE)
      fprintf(stdout,"[%i] %3.0f ",i,Xtm[i]);
  }
  fprintf(stdout,"\n");  

  fprintf(stdout,"3 Nos:");
  for (i=1;i<HAN_SIZE;i++) {
    if (noiselabel[i] == NOISE)
      fprintf(stdout,"[%i] %3.0f ",i,Xnm[i]);
  }
  fprintf(stdout,"\n");
}