aboutsummaryrefslogtreecommitdiffstats
path: root/libtoolame-dab/psycho_2.c
blob: 4d805753c9ab014526e963f1e9d1a49c724622fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "common.h"
#include "encoder.h"
#include "mem.h"
#include "fft.h"
#include "psycho_2.h"

/* The static variables "r", "phi_sav", "new", "old" and "oldest" have    */
/* to be remembered for the unpredictability measure.  For "r" and        */
/* "phi_sav", the first index from the left is the channel select and     */
/* the second index is the "age" of the data.                             */

static int new = 0, old = 1, oldest = 0;
static int init = 0, flush, sync_flush, syncsize, sfreq_idx;

/* The following static variables are constants.                           */

static double nmt = 5.5;

static FLOAT crit_band[27] = { 0, 100, 200, 300, 400, 510, 630, 770,
  920, 1080, 1270, 1480, 1720, 2000, 2320, 2700,
  3150, 3700, 4400, 5300, 6400, 7700, 9500, 12000,
  15500, 25000, 30000
};

static FLOAT bmax[27] = { 20.0, 20.0, 20.0, 20.0, 20.0, 17.0, 15.0,
  10.0, 7.0, 4.4, 4.5, 4.5, 4.5, 4.5,
  4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5,
  4.5, 4.5, 4.5, 3.5, 3.5, 3.5
};

static FLOAT *grouped_c, *grouped_e, *nb, *cb, *ecb, *bc;
static FLOAT *wsamp_r, *phi, *energy;
static FLOAT *c, *fthr;
static F32 *snrtmp;

static int *numlines;
static int *partition;
static FLOAT *cbval, *rnorm;
static FLOAT *window;
static FLOAT *absthr;
static double *tmn;
static FCB *s;
static FHBLK *lthr;
static F2HBLK *r, *phi_sav;

void psycho_2_init (double sfreq);

void psycho_2 (short int *buffer, short int savebuf[1056], int chn,
		double *smr, double sfreq, options *glopts)
/* to match prototype : FLOAT args are always double */
{
  unsigned int i, j, k;
  FLOAT r_prime, phi_prime;
  FLOAT minthres, sum_energy;
  double tb, temp1, temp2, temp3;

  if (init == 0) {
    psycho_2_init (sfreq);
    init++;
  }

  for (i = 0; i < 2; i++) {
      /*****************************************************************************
       * Net offset is 480 samples (1056-576) for layer 2; this is because one must*
       * stagger input data by 256 samples to synchronize psychoacoustic model with*
       * filter bank outputs, then stagger so that center of 1024 FFT window lines *
       * up with center of 576 "new" audio samples.                                *
       
           flush = 384*3.0/2.0;  = 576
           syncsize = 1056;
           sync_flush = syncsize - flush;   480
           BLKSIZE = 1024
       *****************************************************************************/

    for (j = 0; j < 480; j++) {
      savebuf[j] = savebuf[j + flush];
      wsamp_r[j] = window[j] * ((FLOAT) savebuf[j]);
    }
    for (; j < 1024; j++) {
      savebuf[j] = *buffer++;
      wsamp_r[j] = window[j] * ((FLOAT) savebuf[j]);
    }
    for (; j < 1056; j++)
      savebuf[j] = *buffer++;

      /**Compute FFT****************************************************************/
    psycho_2_fft (wsamp_r, energy, phi);
      /*****************************************************************************
       * calculate the unpredictability measure, given energy[f] and phi[f]        *
       *****************************************************************************/
    /*only update data "age" pointers after you are done with both channels      */
    /*for layer 1 computations, for the layer 2 double computations, the pointers */
    /*are reset automatically on the second pass                                 */
    {
      if (new == 0) {
	new = 1;
	oldest = 1;
      } else {
	new = 0;
	oldest = 0;
      }
      if (old == 0)
	old = 1;
      else
	old = 0;
    }
    for (j = 0; j < HBLKSIZE; j++) {
      r_prime = 2.0 * r[chn][old][j] - r[chn][oldest][j];
      phi_prime = 2.0 * phi_sav[chn][old][j] - phi_sav[chn][oldest][j];
      r[chn][new][j] = sqrt ((double) energy[j]);
      phi_sav[chn][new][j] = phi[j];
#ifdef SINCOS
      {
	// 12% faster
	//#warning "Use __sincos"
	double sphi, cphi, sprime, cprime;
	__sincos ((double) phi[j], &sphi, &cphi);
	__sincos ((double) phi_prime, &sprime, &cprime);
	temp1 = r[chn][new][j] * cphi - r_prime * cprime;
	temp2 = r[chn][new][j] * sphi - r_prime * sprime;
      }
#else
      temp1 =
	r[chn][new][j] * cos ((double) phi[j]) -
	r_prime * cos ((double) phi_prime);
      temp2 =
	r[chn][new][j] * sin ((double) phi[j]) -
	r_prime * sin ((double) phi_prime);
#endif

      temp3 = r[chn][new][j] + fabs ((double) r_prime);
      if (temp3 != 0)
	c[j] = sqrt (temp1 * temp1 + temp2 * temp2) / temp3;
      else
	c[j] = 0;
    }
      /*****************************************************************************
       * Calculate the grouped, energy-weighted, unpredictability measure,         *
       * grouped_c[], and the grouped energy. grouped_e[]                          *
       *****************************************************************************/

    for (j = 1; j < CBANDS; j++) {
      grouped_e[j] = 0;
      grouped_c[j] = 0;
    }
    grouped_e[0] = energy[0];
    grouped_c[0] = energy[0] * c[0];
    for (j = 1; j < HBLKSIZE; j++) {
      grouped_e[partition[j]] += energy[j];
      grouped_c[partition[j]] += energy[j] * c[j];
    }

      /*****************************************************************************
       * convolve the grouped energy-weighted unpredictability measure             *
       * and the grouped energy with the spreading function, s[j][k]               *
       *****************************************************************************/
    for (j = 0; j < CBANDS; j++) {
      ecb[j] = 0;
      cb[j] = 0;
      for (k = 0; k < CBANDS; k++) {
	if (s[j][k] != 0.0) {
	  ecb[j] += s[j][k] * grouped_e[k];
	  cb[j] += s[j][k] * grouped_c[k];
	}
      }
      if (ecb[j] != 0)
	cb[j] = cb[j] / ecb[j];
      else
	cb[j] = 0;
    }

      /*****************************************************************************
       * Calculate the required SNR for each of the frequency partitions           *
       *         this whole section can be accomplished by a table lookup          *
       *****************************************************************************/
    for (j = 0; j < CBANDS; j++) {
      if (cb[j] < .05)
	cb[j] = 0.05;
      else if (cb[j] > .5)
	cb[j] = 0.5;
      tb = -0.434294482 * log ((double) cb[j]) - 0.301029996;
      cb[j] = tb;
      bc[j] = tmn[j] * tb + nmt * (1.0 - tb);
      k = cbval[j] + 0.5;
      bc[j] = (bc[j] > bmax[k]) ? bc[j] : bmax[k];
      bc[j] = exp ((double) -bc[j] * LN_TO_LOG10);
    }

      /*****************************************************************************
       * Calculate the permissible noise energy level in each of the frequency     *
       * partitions. Include absolute threshold and pre-echo controls              *
       *         this whole section can be accomplished by a table lookup          *
       *****************************************************************************/
    for (j = 0; j < CBANDS; j++)
      if (rnorm[j] && numlines[j])
	nb[j] = ecb[j] * bc[j] / (rnorm[j] * numlines[j]);
      else
	nb[j] = 0;
    for (j = 0; j < HBLKSIZE; j++) {
      /*temp1 is the preliminary threshold */
      temp1 = nb[partition[j]];
      temp1 = (temp1 > absthr[j]) ? temp1 : absthr[j];
#ifdef LAYERI
      /*do not use pre-echo control for layer 2 because it may do bad things to the */
      /*  MUSICAM bit allocation algorithm                                         */
      if (lay == 1) {
	fthr[j] = (temp1 < lthr[chn][j]) ? temp1 : lthr[chn][j];
	temp2 = temp1 * 0.00316;
	fthr[j] = (temp2 > fthr[j]) ? temp2 : fthr[j];
      } else
	fthr[j] = temp1;
      lthr[chn][j] = LXMIN * temp1;
#else
      fthr[j] = temp1;
      lthr[chn][j] = LXMIN * temp1;
#endif
    }

      /*****************************************************************************
       * Translate the 512 threshold values to the 32 filter bands of the coder    *
       *****************************************************************************/
    for (j = 0; j < 193; j += 16) {
      minthres = 60802371420160.0;
      sum_energy = 0.0;
      for (k = 0; k < 17; k++) {
	if (minthres > fthr[j + k])
	  minthres = fthr[j + k];
	sum_energy += energy[j + k];
      }
      snrtmp[i][j / 16] = sum_energy / (minthres * 17.0);
      snrtmp[i][j / 16] = 4.342944819 * log ((double) snrtmp[i][j / 16]);
    }
    for (j = 208; j < (HBLKSIZE - 1); j += 16) {
      minthres = 0.0;
      sum_energy = 0.0;
      for (k = 0; k < 17; k++) {
	minthres += fthr[j + k];
	sum_energy += energy[j + k];
      }
      snrtmp[i][j / 16] = sum_energy / minthres;
      snrtmp[i][j / 16] = 4.342944819 * log ((double) snrtmp[i][j / 16]);
    }
      /*****************************************************************************
       * End of Psychoacuostic calculation loop                                    *
       *****************************************************************************/
  }
  for (i = 0; i < 32; i++) {
    smr[i] = (snrtmp[0][i] > snrtmp[1][i]) ? snrtmp[0][i] : snrtmp[1][i];
  }
}

/********************************
 * init psycho model 2
 ********************************/
void psycho_2_init (double sfreq)
{
  int i, j;
  FLOAT freq_mult;
  double temp1, temp2, temp3;
  FLOAT bval_lo;

  grouped_c = (FLOAT *) mem_alloc (sizeof (FCB), "grouped_c");
  grouped_e = (FLOAT *) mem_alloc (sizeof (FCB), "grouped_e");
  nb = (FLOAT *) mem_alloc (sizeof (FCB), "nb");
  cb = (FLOAT *) mem_alloc (sizeof (FCB), "cb");
  ecb = (FLOAT *) mem_alloc (sizeof (FCB), "ecb");
  bc = (FLOAT *) mem_alloc (sizeof (FCB), "bc");
  wsamp_r = (FLOAT *) mem_alloc (sizeof (FBLK), "wsamp_r");
  phi = (FLOAT *) mem_alloc (sizeof (FBLK), "phi");
  energy = (FLOAT *) mem_alloc (sizeof (FBLK), "energy");
  c = (FLOAT *) mem_alloc (sizeof (FHBLK), "c");
  fthr = (FLOAT *) mem_alloc (sizeof (FHBLK), "fthr");
  snrtmp = (F32 *) mem_alloc (sizeof (F2_32), "snrtmp");

  numlines = (int *) mem_alloc (sizeof (ICB), "numlines");
  partition = (int *) mem_alloc (sizeof (IHBLK), "partition");
  cbval = (FLOAT *) mem_alloc (sizeof (FCB), "cbval");
  rnorm = (FLOAT *) mem_alloc (sizeof (FCB), "rnorm");
  window = (FLOAT *) mem_alloc (sizeof (FBLK), "window");
  absthr = (FLOAT *) mem_alloc (sizeof (FHBLK), "absthr");
  tmn = (double *) mem_alloc (sizeof (DCB), "tmn");
  s = (FCB *) mem_alloc (sizeof (FCBCB), "s");
  lthr = (FHBLK *) mem_alloc (sizeof (F2HBLK), "lthr");
  r = (F2HBLK *) mem_alloc (sizeof (F22HBLK), "r");
  phi_sav = (F2HBLK *) mem_alloc (sizeof (F22HBLK), "phi_sav");

  i = sfreq + 0.5;
  switch (i) {
  case 32000:
  case 16000:
    sfreq_idx = 0;
    break;
  case 44100:
  case 22050:
    sfreq_idx = 1;
    break;
  case 48000:
  case 24000:
    sfreq_idx = 2;
    break;
  default:
    fprintf (stderr, "error, invalid sampling frequency: %d Hz\n", i);
    exit (-1);
  }
  fprintf (stderr, "absthr[][] sampling frequency index: %d\n", sfreq_idx);
  psycho_2_read_absthr (absthr, sfreq_idx);

  flush = 384 * 3.0 / 2.0;
  syncsize = 1056;
  sync_flush = syncsize - flush;

  /* calculate HANN window coefficients */
  /*   for(i=0;i<BLKSIZE;i++)window[i]=0.5*(1-cos(2.0*PI*i/(BLKSIZE-1.0))); */
  for (i = 0; i < BLKSIZE; i++)
    window[i] = 0.5 * (1 - cos (2.0 * PI * (i - 0.5) / BLKSIZE));
  /* reset states used in unpredictability measure */
  for (i = 0; i < HBLKSIZE; i++) {
    r[0][0][i] = r[1][0][i] = r[0][1][i] = r[1][1][i] = 0;
    phi_sav[0][0][i] = phi_sav[1][0][i] = 0;
    phi_sav[0][1][i] = phi_sav[1][1][i] = 0;
    lthr[0][i] = 60802371420160.0;
    lthr[1][i] = 60802371420160.0;
  }
  /*****************************************************************************
   * Initialization: Compute the following constants for use later             *
   *    partition[HBLKSIZE] = the partition number associated with each        *
   *                          frequency line                                   *
   *    cbval[CBANDS]       = the center (average) bark value of each          *
   *                          partition                                        *
   *    numlines[CBANDS]    = the number of frequency lines in each partition  *
   *    tmn[CBANDS]         = tone masking noise                               *
   *****************************************************************************/
  /* compute fft frequency multiplicand */
  freq_mult = sfreq / BLKSIZE;

  /* calculate fft frequency, then bval of each line (use fthr[] as tmp storage) */
  for (i = 0; i < HBLKSIZE; i++) {
    temp1 = i * freq_mult;
    j = 1;
    while (temp1 > crit_band[j])
      j++;
    fthr[i] =
      j - 1 + (temp1 - crit_band[j - 1]) / (crit_band[j] - crit_band[j - 1]);
  }
  partition[0] = 0;
  /* temp2 is the counter of the number of frequency lines in each partition */
  temp2 = 1;
  cbval[0] = fthr[0];
  bval_lo = fthr[0];
  for (i = 1; i < HBLKSIZE; i++) {
    if ((fthr[i] - bval_lo) > 0.33) {
      partition[i] = partition[i - 1] + 1;
      cbval[partition[i - 1]] = cbval[partition[i - 1]] / temp2;
      cbval[partition[i]] = fthr[i];
      bval_lo = fthr[i];
      numlines[partition[i - 1]] = temp2;
      temp2 = 1;
    } else {
      partition[i] = partition[i - 1];
      cbval[partition[i]] += fthr[i];
      temp2++;
    }
  }
  numlines[partition[i - 1]] = temp2;
  cbval[partition[i - 1]] = cbval[partition[i - 1]] / temp2;

  /************************************************************************
   * Now compute the spreading function, s[j][i], the value of the spread-*
   * ing function, centered at band j, for band i, store for later use    *
   ************************************************************************/
  for (j = 0; j < CBANDS; j++) {
    for (i = 0; i < CBANDS; i++) {
      temp1 = (cbval[i] - cbval[j]) * 1.05;
      if (temp1 >= 0.5 && temp1 <= 2.5) {
	temp2 = temp1 - 0.5;
	temp2 = 8.0 * (temp2 * temp2 - 2.0 * temp2);
      } else
	temp2 = 0;
      temp1 += 0.474;
      temp3 =
	15.811389 + 7.5 * temp1 -
	17.5 * sqrt ((double) (1.0 + temp1 * temp1));
      if (temp3 <= -100)
	s[i][j] = 0;
      else {
	temp3 = (temp2 + temp3) * LN_TO_LOG10;
	s[i][j] = exp (temp3);
      }
    }
  }

  /* Calculate Tone Masking Noise values */
  for (j = 0; j < CBANDS; j++) {
    temp1 = 15.5 + cbval[j];
    tmn[j] = (temp1 > 24.5) ? temp1 : 24.5;
    /* Calculate normalization factors for the net spreading functions */
    rnorm[j] = 0;
    for (i = 0; i < CBANDS; i++) {
      rnorm[j] += s[j][i];
    }
  }

  if (glopts.verbosity > 10){
    /* Dump All the Values to STDOUT and exit */
    int wlow, whigh=0;
    fprintf(stdout,"psy model 2 init\n");
    fprintf(stdout,"index \tnlines \twlow \twhigh \tbval \tminval \ttmn\n");
    for (i=0;i<CBANDS;i++) {
      wlow = whigh+1;
      whigh = wlow + numlines[i] - 1;
      fprintf(stdout,"%i \t%i \t%i \t%i \t%5.2f \t%4.2f \t%4.2f\n",i+1, numlines[i],wlow, whigh, cbval[i],bmax[(int)(cbval[i]+0.5)],tmn[i]);
    }
    exit(0);
  }

}

void psycho_2_read_absthr (absthr, table)
     FLOAT *absthr;
     int table;
{
  int j;
#include "absthr.h"

  if ((table < 0) || (table > 3)) {
    printf ("internal error: wrong table number");
    return;
  }

  for (j = 0; j < HBLKSIZE; j++) {
    absthr[j] = absthr_table[table][j];
  }
  return;
}