aboutsummaryrefslogtreecommitdiffstats
path: root/libSBRdec/src/env_calc.cpp
blob: ade57fccf13791275ebd5dc400392e13751ffb52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
/* -----------------------------------------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

� Copyright  1995 - 2013 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
  All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
of the MPEG specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
individually for the purpose of encoding or decoding bit streams in products that are compliant with
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
software may already be covered under those patent licenses when it is used for those licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
applications information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification, are permitted without
payment of copyright license fees provided that you satisfy the following conditions:

You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation and/or other materials
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived from this library without
prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
and the date of any change. For modified versions of the FDK AAC Codec, the term
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
respect to this software.

You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
or business interruption, however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of this software, even if
advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------------------------------------- */

/*!
  \file
  \brief  Envelope calculation  

  The envelope adjustor compares the energies present in the transposed
  highband to the reference energies conveyed with the bitstream.
  The highband is amplified (sometimes) or attenuated (mostly) to the
  desired level.

  The spectral shape of the reference energies can be changed several times per
  frame if necessary. Each set of energy values corresponding to a certain range
  in time will be called an <em>envelope</em> here.
  The bitstream supports several frequency scales and two resolutions. Normally,
  one or more QMF-subbands are grouped to one SBR-band. An envelope contains
  reference energies for each SBR-band.
  In addition to the energy envelopes, noise envelopes are transmitted that
  define the ratio of energy which is generated by adding noise instead of
  transposing the lowband. The noise envelopes are given in a coarser time
  and frequency resolution.
  If a signal contains strong tonal components, synthetic sines can be
  generated in individual SBR bands.

  An overlap buffer of 6 QMF-timeslots is used to allow a more
  flexible alignment of the envelopes in time that is not restricted to the
  core codec's frame borders.
  Therefore the envelope adjustor has access to the spectral data of the
  current frame as well as the last 6 QMF-timeslots of the previous frame.
  However, in average only the data of 1 frame is being processed as
  the adjustor is called once per frame.

  Depending on the frequency range set in the bitstream, only QMF-subbands between
  <em>lowSubband</em> and <em>highSubband</em> are adjusted.

  Scaling of spectral data to maximize SNR (see #QMF_SCALE_FACTOR) as well as a special Mantissa-Exponent format
  ( see  calculateSbrEnvelope() ) are being used. The main entry point for this modules is calculateSbrEnvelope().

  \sa sbr_scale.h, #QMF_SCALE_FACTOR, calculateSbrEnvelope(), \ref documentationOverview
*/


#include "env_calc.h"

#include "sbrdec_freq_sca.h"
#include "env_extr.h"
#include "transcendent.h"
#include "sbr_ram.h"
#include "sbr_rom.h"

#include "genericStds.h"           /* need FDKpow() for debug outputs */

#if defined(__arm__)
#include "arm/env_calc_arm.cpp"
#endif

typedef struct
{
    FIXP_DBL nrgRef[MAX_FREQ_COEFFS];
    FIXP_DBL nrgEst[MAX_FREQ_COEFFS];
    FIXP_DBL nrgGain[MAX_FREQ_COEFFS];
    FIXP_DBL noiseLevel[MAX_FREQ_COEFFS];
    FIXP_DBL nrgSine[MAX_FREQ_COEFFS];

    SCHAR   nrgRef_e[MAX_FREQ_COEFFS];
    SCHAR   nrgEst_e[MAX_FREQ_COEFFS];
    SCHAR   nrgGain_e[MAX_FREQ_COEFFS];
    SCHAR   noiseLevel_e[MAX_FREQ_COEFFS];
    SCHAR   nrgSine_e[MAX_FREQ_COEFFS];
}
ENV_CALC_NRGS;

/*static*/ void equalizeFiltBufferExp(FIXP_DBL *filtBuffer,
                                  SCHAR   *filtBuffer_e,
                                  FIXP_DBL *NrgGain,
                                  SCHAR   *NrgGain_e,
                                  int    subbands);

/*static*/ void calcNrgPerSubband(FIXP_DBL  **analysBufferReal,
                              FIXP_DBL  **analysBufferImag,
                              int       lowSubband, int highSubband,
                              int       start_pos,  int next_pos,
                              SCHAR     frameExp,
                              FIXP_DBL *nrgEst,
                              SCHAR    *nrgEst_e );

/*static*/ void calcNrgPerSfb(FIXP_DBL  **analysBufferReal,
                          FIXP_DBL  **analysBufferImag,
                          int       nSfb,
                          UCHAR    *freqBandTable,
                          int       start_pos,  int next_pos,
                          SCHAR     input_e,
                          FIXP_DBL *nrg_est,
                          SCHAR    *nrg_est_e );

/*static*/ void calcSubbandGain(FIXP_DBL  nrgRef, SCHAR nrgRef_e, ENV_CALC_NRGS* nrgs, int c,
                            FIXP_DBL  tmpNoise, SCHAR tmpNoise_e,
                            UCHAR     sinePresentFlag,
                            UCHAR     sineMapped,
                            int       noNoiseFlag);

/*static*/ void calcAvgGain(ENV_CALC_NRGS* nrgs,
                        int        lowSubband,
                        int        highSubband,
                        FIXP_DBL  *sumRef_m,
                        SCHAR     *sumRef_e,
                        FIXP_DBL  *ptrAvgGain_m,
                        SCHAR     *ptrAvgGain_e);

/*static*/ void adjustTimeSlotLC(FIXP_DBL  *ptrReal,
                           ENV_CALC_NRGS* nrgs,
                           UCHAR *ptrHarmIndex,
                           int    lowSubbands,
                           int    noSubbands,
                           int    scale_change,
                           int    noNoiseFlag,
                           int   *ptrPhaseIndex,
                           int    fCldfb);
/*static*/ void adjustTimeSlotHQ(FIXP_DBL  *ptrReal,
                           FIXP_DBL  *ptrImag,
                           HANDLE_SBR_CALCULATE_ENVELOPE h_sbr_cal_env,
                           ENV_CALC_NRGS* nrgs,
                           int    lowSubbands,
                           int    noSubbands,
                           int    scale_change,
                           FIXP_SGL smooth_ratio,
                           int    noNoiseFlag,
                           int    filtBufferNoiseShift);


/*!
  \brief     Map sine flags from bitstream to QMF bands

  The bitstream carries only 1 sine flag per band and frame.
  This function maps every sine flag from the bitstream to a specific QMF subband
  and to a specific envelope where the sine shall start.
  The result is stored in the vector sineMapped which contains one entry per
  QMF subband. The value of an entry specifies the envelope where a sine
  shall start. A value of #MAX_ENVELOPES indicates that no sine is present
  in the subband.
  The missing harmonics flags from the previous frame (harmFlagsPrev) determine
  if a sine starts at the beginning of the frame or at the transient position.
  Additionally, the flags in harmFlagsPrev are being updated by this function
  for the next frame.
*/
/*static*/ void mapSineFlags(UCHAR *freqBandTable, /*!< Band borders (there's only 1 flag per band) */
                         int nSfb,                     /*!< Number of bands in the table */
                         UCHAR *addHarmonics,           /*!< vector with 1 flag per sfb */
                         int *harmFlagsPrev,           /*!< Packed 'addHarmonics' */
                         int tranEnv,                  /*!< Transient position */
                         SCHAR *sineMapped)            /*!< Resulting vector of sine start positions for each QMF band */

{
  int i;
  int lowSubband2 = freqBandTable[0]<<1;
  int bitcount = 0;
  int oldflags = *harmFlagsPrev;
  int newflags = 0;

  /*
    Format of harmFlagsPrev:

    first word = flags for highest 16 sfb bands in use
    second word = flags for next lower 16 sfb bands (if present)
    third word = flags for lowest 16 sfb bands (if present)

    Up to MAX_FREQ_COEFFS sfb bands can be flagged for a sign.
    The lowest bit of the first word corresponds to the _highest_ sfb band in use.
    This is ensures that each flag is  mapped to the same QMF band even after a
    change of the crossover-frequency.
  */


  /* Reset the output vector first */
  FDKmemset(sineMapped, MAX_ENVELOPES,MAX_FREQ_COEFFS); /* MAX_ENVELOPES means 'no sine' */

  freqBandTable += nSfb;
  addHarmonics  += nSfb-1;

  for (i=nSfb; i!=0; i--) {
    int ui = *freqBandTable--;                 /* Upper limit of the current scale factor band. */
    int li = *freqBandTable;                   /* Lower limit of the current scale factor band. */

    if ( *addHarmonics-- ) {                   /* There is a sine in this band */

      unsigned int mask = 1 << bitcount;
      newflags |= mask;                        /* Set flag */

      /*
        If there was a sine in the last frame, let it continue from the first envelope on
        else start at the transient position.
      */
      sineMapped[(ui+li-lowSubband2) >> 1] = ( oldflags & mask ) ? 0 : tranEnv;
    }

    if ((++bitcount == 16) || i==1) {
      bitcount = 0;
      *harmFlagsPrev++ = newflags;
      oldflags = *harmFlagsPrev;               /* Fetch 16 of the old flags */
      newflags = 0;
    }
  }
}


/*!
  \brief     Reduce gain-adjustment induced aliasing for real valued filterbank.
*/
/*static*/ void
aliasingReduction(FIXP_DBL* degreeAlias,       /*!< estimated aliasing for each QMF channel */
                  ENV_CALC_NRGS* nrgs,
                  int*      useAliasReduction, /*!< synthetic sine engergy for each subband, used as flag */
                  int       noSubbands)        /*!< number of QMF channels to process */
{
  FIXP_DBL* nrgGain   = nrgs->nrgGain;          /*!< subband gains to be modified */
  SCHAR*    nrgGain_e = nrgs->nrgGain_e;        /*!< subband gains to be modified (exponents) */
  FIXP_DBL* nrgEst    = nrgs->nrgEst;           /*!< subband energy before amplification */
  SCHAR*    nrgEst_e  = nrgs->nrgEst_e;         /*!< subband energy before amplification (exponents) */
  int grouping = 0, index = 0, noGroups, k;
  int groupVector[MAX_FREQ_COEFFS];

  /* Calculate grouping*/
  for (k = 0; k < noSubbands-1; k++ ){
    if ( (degreeAlias[k + 1] != FL2FXCONST_DBL(0.0f)) && useAliasReduction[k] ) {
      if(grouping==0){
        groupVector[index++] = k;
        grouping = 1;
      }
      else{
        if(groupVector[index-1] + 3 == k){
          groupVector[index++] = k + 1;
          grouping = 0;
        }
      }
    }
    else{
      if(grouping){
        if(useAliasReduction[k])
          groupVector[index++] = k + 1;
        else
          groupVector[index++] = k;
        grouping = 0;
      }
    }
  }

  if(grouping){
    groupVector[index++] = noSubbands;
  }
  noGroups = index >> 1;


  /*Calculate new gain*/
  for (int group = 0; group < noGroups; group ++) {
    FIXP_DBL nrgOrig = FL2FXCONST_DBL(0.0f);    /* Original signal energy in current group of bands */
    SCHAR    nrgOrig_e = 0;
    FIXP_DBL nrgAmp = FL2FXCONST_DBL(0.0f);     /* Amplified signal energy in group (using current gains) */
    SCHAR    nrgAmp_e = 0;
    FIXP_DBL nrgMod = FL2FXCONST_DBL(0.0f);   /* Signal energy in group when applying modified gains */
    SCHAR    nrgMod_e = 0;
    FIXP_DBL groupGain;         /* Total energy gain in group */
    SCHAR    groupGain_e;
    FIXP_DBL compensation;      /* Compensation factor for the energy change when applying modified gains */
    SCHAR    compensation_e;

    int startGroup = groupVector[2*group];
    int stopGroup  = groupVector[2*group+1];

    /* Calculate total energy in group before and after amplification with current gains: */
    for(k = startGroup; k < stopGroup; k++){
      /* Get original band energy */
      FIXP_DBL tmp = nrgEst[k];
      SCHAR    tmp_e = nrgEst_e[k];

      FDK_add_MantExp(tmp, tmp_e, nrgOrig, nrgOrig_e, &nrgOrig, &nrgOrig_e);

      /* Multiply band energy with current gain */
      tmp = fMult(tmp,nrgGain[k]);
      tmp_e = tmp_e + nrgGain_e[k];

      FDK_add_MantExp(tmp, tmp_e, nrgAmp, nrgAmp_e, &nrgAmp, &nrgAmp_e);
    }

    /* Calculate total energy gain in group */
    FDK_divide_MantExp(nrgAmp, nrgAmp_e,
                       nrgOrig, nrgOrig_e,
                       &groupGain, &groupGain_e);

    for(k = startGroup; k < stopGroup; k++){
      FIXP_DBL tmp;
      SCHAR    tmp_e;

      FIXP_DBL alpha = degreeAlias[k];
      if (k < noSubbands - 1) {
        if (degreeAlias[k + 1] > alpha)
          alpha = degreeAlias[k + 1];
      }

      /* Modify gain depending on the degree of aliasing */
      FDK_add_MantExp( fMult(alpha,groupGain), groupGain_e,
                       fMult(/*FL2FXCONST_DBL(1.0f)*/ (FIXP_DBL)MAXVAL_DBL - alpha,nrgGain[k]), nrgGain_e[k],
                       &nrgGain[k], &nrgGain_e[k] );

      /* Apply modified gain to original energy */
      tmp = fMult(nrgGain[k],nrgEst[k]);
      tmp_e = nrgGain_e[k] + nrgEst_e[k];

      /* Accumulate energy with modified gains applied */
      FDK_add_MantExp( tmp, tmp_e,
                       nrgMod, nrgMod_e,
                       &nrgMod, &nrgMod_e );
    }

    /* Calculate compensation factor to retain the energy of the amplified signal */
    FDK_divide_MantExp(nrgAmp, nrgAmp_e,
                       nrgMod, nrgMod_e,
                       &compensation, &compensation_e);

    /* Apply compensation factor to all gains of the group */
    for(k = startGroup; k < stopGroup; k++){
      nrgGain[k] = fMult(nrgGain[k],compensation);
      nrgGain_e[k] = nrgGain_e[k] + compensation_e;
    }
  }
}


 /* Convert headroom bits to exponent */
#define SCALE2EXP(s) (15-(s))
#define EXP2SCALE(e) (15-(e))

/*!
  \brief  Apply spectral envelope to subband samples

  This function is called from sbr_dec.cpp in each frame.

  To enhance accuracy and due to the usage of tables for squareroots and
  inverse, some calculations are performed with the operands being split
  into mantissa and exponent. The variable names in the source code carry
  the suffixes <em>_m</em> and  <em>_e</em> respectively. The control data
  in #hFrameData containts envelope data which is represented by this format but
  stored in single words. (See requantizeEnvelopeData() for details). This data
  is unpacked within calculateSbrEnvelope() to follow the described suffix convention.

  The actual value (comparable to the corresponding float-variable in the
  research-implementation) of a mantissa/exponent-pair can be calculated as

  \f$ value = value\_m * 2^{value\_e} \f$

  All energies and noise levels decoded from the bitstream suit for an
  original signal magnitude of \f$\pm 32768 \f$ rather than \f$ \pm 1\f$. Therefore,
  the scale factor <em>hb_scale</em> passed into this function will be converted
  to an 'input exponent' (#input_e), which fits the internal representation.

  Before the actual processing, an exponent #adj_e for resulting adjusted
  samples is derived from the maximum reference energy.

  Then, for each envelope, the following steps are performed:

  \li Calculate energy in the signal to be adjusted. Depending on the the value of
      #interpolFreq (interpolation mode), this is either done seperately
      for each QMF-subband or for each SBR-band.
      The resulting energies are stored in #nrgEst_m[#MAX_FREQ_COEFFS] (mantissas)
      and #nrgEst_e[#MAX_FREQ_COEFFS] (exponents).
  \li Calculate gain and noise level for each subband:<br>
      \f$ gain  = \sqrt{ \frac{nrgRef}{nrgEst} \cdot (1 - noiseRatio) }
          \hspace{2cm}
          noise = \sqrt{ nrgRef \cdot noiseRatio }
      \f$<br>
      where <em>noiseRatio</em> and <em>nrgRef</em> are extracted from the
      bitstream and <em>nrgEst</em> is the subband energy before adjustment.
      The resulting gains are stored in #nrgGain_m[#MAX_FREQ_COEFFS]
      (mantissas) and #nrgGain_e[#MAX_FREQ_COEFFS] (exponents), the noise levels
      are stored in #noiseLevel_m[#MAX_FREQ_COEFFS] and #noiseLevel_e[#MAX_FREQ_COEFFS]
      (exponents).
      The sine levels are stored in #nrgSine_m[#MAX_FREQ_COEFFS]
      and #nrgSine_e[#MAX_FREQ_COEFFS].
  \li Noise limiting: The gain for each subband is limited both absolutely
      and relatively compared to the total gain over all subbands.
  \li Boost gain: Calculate and apply boost factor for each limiter band
      in order to compensate for the energy loss imposed by the limiting.
  \li Apply gains and add noise: The gains and noise levels are applied
      to all timeslots of the current envelope. A short FIR-filter (length 4
      QMF-timeslots) can be used to smooth the sudden change at the envelope borders.
      Each complex subband sample of the current timeslot is multiplied by the
      smoothed gain, then random noise with the calculated level is added.

  \note
  To reduce the stack size, some of the local arrays could be located within
  the time output buffer. Of the 512 samples temporarily available there,
  about half the size is already used by #SBR_FRAME_DATA. A pointer to the
  remaining free memory could be supplied by an additional argument to calculateSbrEnvelope()
  in sbr_dec:

  \par
  \code
    calculateSbrEnvelope (&hSbrDec->sbrScaleFactor,
                          &hSbrDec->SbrCalculateEnvelope,
                          hHeaderData,
                          hFrameData,
                          QmfBufferReal,
                          QmfBufferImag,
                          timeOutPtr + sizeof(SBR_FRAME_DATA)/sizeof(Float) + 1);
  \endcode

  \par
  Within calculateSbrEnvelope(), some pointers could be defined instead of the arrays
  #nrgRef_m, #nrgRef_e, #nrgEst_m, #nrgEst_e, #noiseLevel_m:

  \par
  \code
    fract*        nrgRef_m = timeOutPtr;
    SCHAR*        nrgRef_e = nrgRef_m + MAX_FREQ_COEFFS;
    fract*        nrgEst_m = nrgRef_e + MAX_FREQ_COEFFS;
    SCHAR*        nrgEst_e = nrgEst_m + MAX_FREQ_COEFFS;
    fract*        noiseLevel_m = nrgEst_e + MAX_FREQ_COEFFS;
  \endcode

  <br>
*/
void
calculateSbrEnvelope (QMF_SCALE_FACTOR  *sbrScaleFactor,           /*!< Scaling factors */
                      HANDLE_SBR_CALCULATE_ENVELOPE h_sbr_cal_env, /*!< Handle to struct filled by the create-function */
                      HANDLE_SBR_HEADER_DATA hHeaderData,          /*!< Static control data */
                      HANDLE_SBR_FRAME_DATA  hFrameData,           /*!< Control data of current frame */
                      FIXP_DBL **analysBufferReal,                 /*!< Real part of subband samples to be processed */
                      FIXP_DBL **analysBufferImag,                 /*!< Imag part of subband samples to be processed */
                      const int useLP,
                      FIXP_DBL *degreeAlias,                       /*!< Estimated aliasing for each QMF channel */
                      const UINT flags,
                      const int frameErrorFlag
                      )
{
  int c, i, j, envNoise = 0;
  UCHAR*   borders = hFrameData->frameInfo.borders;

  FIXP_SGL *noiseLevels       = hFrameData->sbrNoiseFloorLevel;
  HANDLE_FREQ_BAND_DATA hFreq = &hHeaderData->freqBandData;

  int lowSubband  = hFreq->lowSubband;
  int highSubband = hFreq->highSubband;
  int noSubbands  = highSubband - lowSubband;

  int    noNoiseBands = hFreq->nNfb;
  int    no_cols      = hHeaderData->numberTimeSlots * hHeaderData->timeStep;
  UCHAR  first_start  = borders[0] * hHeaderData->timeStep;

  SCHAR  sineMapped[MAX_FREQ_COEFFS];
  SCHAR  ov_adj_e = SCALE2EXP(sbrScaleFactor->ov_hb_scale);
  SCHAR  adj_e = 0;
  SCHAR  output_e;
  SCHAR  final_e = 0;

  SCHAR  maxGainLimit_e = (frameErrorFlag) ? MAX_GAIN_CONCEAL_EXP : MAX_GAIN_EXP;

  int useAliasReduction[64];
  UCHAR smooth_length = 0;

  FIXP_SGL * pIenv = hFrameData->iEnvelope;

  /*
    Extract sine flags for all QMF bands
  */
  mapSineFlags(hFreq->freqBandTable[1],
               hFreq->nSfb[1],
               hFrameData->addHarmonics,
               h_sbr_cal_env->harmFlagsPrev,
               hFrameData->frameInfo.tranEnv,
               sineMapped);


  /*
    Scan for maximum in bufferd noise levels.
    This is needed in case that we had strong noise in the previous frame
    which is smoothed into the current frame.
    The resulting exponent is used as start value for the maximum search
    in reference energies
  */
  if (!useLP)
    adj_e = h_sbr_cal_env->filtBufferNoise_e - getScalefactor(h_sbr_cal_env->filtBufferNoise, noSubbands);

  /*
    Scan for maximum reference energy to be able
    to select appropriate values for adj_e and final_e.
  */

  for (i = 0; i < hFrameData->frameInfo.nEnvelopes; i++) {
    INT maxSfbNrg_e = -FRACT_BITS+NRG_EXP_OFFSET; /* start value for maximum search */

    /* Fetch frequency resolution for current envelope: */
    for (j=hFreq->nSfb[hFrameData->frameInfo.freqRes[i]]; j!=0; j--) {
      maxSfbNrg_e = fixMax(maxSfbNrg_e,(INT)((LONG)(*pIenv++) & MASK_E));
    }
    maxSfbNrg_e -= NRG_EXP_OFFSET;

    /* Energy -> magnitude (sqrt halfens exponent) */
    maxSfbNrg_e = (maxSfbNrg_e+1) >> 1;  /* +1 to go safe (round to next higher int) */

    /* Some safety margin is needed for 2 reasons:
       - The signal energy is not equally spread over all subband samples in
         a specific sfb of an envelope (Nrg could be too high by a factor of
         envWidth * sfbWidth)
       - Smoothing can smear high gains of the previous envelope into the current
    */
    maxSfbNrg_e += 6;

    if (borders[i] < hHeaderData->numberTimeSlots)
      /* This envelope affects timeslots that belong to the output frame */
      adj_e = (maxSfbNrg_e > adj_e) ? maxSfbNrg_e : adj_e;

    if (borders[i+1] > hHeaderData->numberTimeSlots)
      /* This envelope affects timeslots after the output frame */
      final_e =  (maxSfbNrg_e > final_e) ? maxSfbNrg_e : final_e;

  }

  /*
    Calculate adjustment factors and apply them for every envelope.
  */
  pIenv = hFrameData->iEnvelope;

  for (i = 0; i < hFrameData->frameInfo.nEnvelopes; i++) {

    int k, noNoiseFlag;
    SCHAR  noise_e, input_e = SCALE2EXP(sbrScaleFactor->hb_scale);
    C_ALLOC_SCRATCH_START(pNrgs, ENV_CALC_NRGS, 1);

    /*
      Helper variables.
    */
    UCHAR start_pos = hHeaderData->timeStep * borders[i];  /* Start-position in time (subband sample) for current envelope. */
    UCHAR stop_pos = hHeaderData->timeStep * borders[i+1]; /* Stop-position in time (subband sample) for current envelope. */
    UCHAR freq_res = hFrameData->frameInfo.freqRes[i];     /* Frequency resolution for current envelope. */


    /* Always do fully initialize the temporary energy table. This prevents negative energies and extreme gain factors in
       cases where the number of limiter bands exceeds the number of subbands. The latter can be caused by undetected bit
       errors and is tested by some streams from the certification set. */
    FDKmemclear(pNrgs, sizeof(ENV_CALC_NRGS));

    /* If the start-pos of the current envelope equals the stop pos of the current
       noise envelope, increase the pointer (i.e. choose the next noise-floor).*/
    if (borders[i] == hFrameData->frameInfo.bordersNoise[envNoise+1]){
      noiseLevels += noNoiseBands;   /* The noise floor data is stored in a row [noiseFloor1 noiseFloor2...].*/
      envNoise++;
    }

    if(i==hFrameData->frameInfo.tranEnv || i==h_sbr_cal_env->prevTranEnv) /* attack */
    {
      noNoiseFlag = 1;
      if (!useLP)
        smooth_length = 0;  /* No smoothing on attacks! */
    }
    else {
      noNoiseFlag = 0;
      if (!useLP)
        smooth_length = (1 - hHeaderData->bs_data.smoothingLength) << 2;  /* can become either 0 or 4 */
    }


    /*
      Energy estimation in transposed highband.
    */
    if (hHeaderData->bs_data.interpolFreq)
      calcNrgPerSubband(analysBufferReal,
                        (useLP) ? NULL : analysBufferImag,
                        lowSubband, highSubband,
                        start_pos, stop_pos,
                        input_e,
                        pNrgs->nrgEst,
                        pNrgs->nrgEst_e);
    else
      calcNrgPerSfb(analysBufferReal,
                    (useLP) ? NULL : analysBufferImag,
                    hFreq->nSfb[freq_res],
                    hFreq->freqBandTable[freq_res],
                    start_pos, stop_pos,
                    input_e,
                    pNrgs->nrgEst,
                    pNrgs->nrgEst_e);

    /*
      Calculate subband gains
    */
    {
      UCHAR * table = hFreq->freqBandTable[freq_res];
      UCHAR * pUiNoise = &hFreq->freqBandTableNoise[1]; /*! Upper limit of the current noise floor band. */

      FIXP_SGL * pNoiseLevels = noiseLevels;

      FIXP_DBL tmpNoise = FX_SGL2FX_DBL((FIXP_SGL)((LONG)(*pNoiseLevels) & MASK_M));
      SCHAR    tmpNoise_e = (UCHAR)((LONG)(*pNoiseLevels++) & MASK_E) - NOISE_EXP_OFFSET;

      int cc = 0;
      c = 0;
      for (j = 0; j < hFreq->nSfb[freq_res]; j++) {

        FIXP_DBL refNrg   = FX_SGL2FX_DBL((FIXP_SGL)((LONG)(*pIenv) & MASK_M));
        SCHAR    refNrg_e = (SCHAR)((LONG)(*pIenv) & MASK_E) - NRG_EXP_OFFSET;

        UCHAR sinePresentFlag = 0;
        int li = table[j];
        int ui = table[j+1];

        for (k=li; k<ui; k++) {
          sinePresentFlag |= (i >= sineMapped[cc]);
          cc++;
        }

        for (k=li; k<ui; k++) {
          if (k >= *pUiNoise) {
            tmpNoise = FX_SGL2FX_DBL((FIXP_SGL)((LONG)(*pNoiseLevels) & MASK_M));
            tmpNoise_e = (SCHAR)((LONG)(*pNoiseLevels++) & MASK_E) - NOISE_EXP_OFFSET;

            pUiNoise++;
          }

          FDK_ASSERT(k >= lowSubband);

          if (useLP)
            useAliasReduction[k-lowSubband] = !sinePresentFlag;

          pNrgs->nrgSine[c] = FL2FXCONST_DBL(0.0f);
          pNrgs->nrgSine_e[c] = 0;

          calcSubbandGain(refNrg, refNrg_e, pNrgs, c,
                          tmpNoise, tmpNoise_e,
                          sinePresentFlag, i >= sineMapped[c],
                          noNoiseFlag);

          pNrgs->nrgRef[c]   = refNrg;
          pNrgs->nrgRef_e[c] = refNrg_e;

          c++;
        }
        pIenv++;
      }
    }

    /*
      Noise limiting
    */

    for (c = 0; c < hFreq->noLimiterBands; c++) {

      FIXP_DBL sumRef, boostGain, maxGain;
      FIXP_DBL accu = FL2FXCONST_DBL(0.0f);
      SCHAR   sumRef_e, boostGain_e, maxGain_e, accu_e = 0;

      calcAvgGain(pNrgs,
                  hFreq->limiterBandTable[c], hFreq->limiterBandTable[c+1],
                  &sumRef, &sumRef_e,
                  &maxGain, &maxGain_e);

      /* Multiply maxGain with limiterGain: */
      maxGain = fMult(maxGain, FDK_sbrDecoder_sbr_limGains_m[hHeaderData->bs_data.limiterGains]);
      maxGain_e += FDK_sbrDecoder_sbr_limGains_e[hHeaderData->bs_data.limiterGains];

      /* Scale mantissa of MaxGain into range between 0.5 and 1: */
      if (maxGain == FL2FXCONST_DBL(0.0f))
        maxGain_e = -FRACT_BITS;
      else {
        SCHAR charTemp = CountLeadingBits(maxGain);
        maxGain_e -= charTemp;
        maxGain  <<= (int)charTemp;
      }

      if (maxGain_e >= maxGainLimit_e) { /* upper limit (e.g. 96 dB) */
        maxGain = FL2FXCONST_DBL(0.5f);
        maxGain_e = maxGainLimit_e;
      }


      /* Every subband gain is compared to the scaled "average gain"
         and limited if necessary: */
      for (k = hFreq->limiterBandTable[c]; k < hFreq->limiterBandTable[c+1]; k++) {
        if ( (pNrgs->nrgGain_e[k] > maxGain_e) || (pNrgs->nrgGain_e[k] == maxGain_e && pNrgs->nrgGain[k]>maxGain) ) {

          FIXP_DBL noiseAmp;
          SCHAR    noiseAmp_e;

          FDK_divide_MantExp(maxGain, maxGain_e, pNrgs->nrgGain[k], pNrgs->nrgGain_e[k], &noiseAmp, &noiseAmp_e);
          pNrgs->noiseLevel[k]    = fMult(pNrgs->noiseLevel[k],noiseAmp);
          pNrgs->noiseLevel_e[k] += noiseAmp_e;
          pNrgs->nrgGain[k]       = maxGain;
          pNrgs->nrgGain_e[k]     = maxGain_e;
        }
      }

      /* -- Boost gain
        Calculate and apply boost factor for each limiter band:
        1. Check how much energy would be present when using the limited gain
        2. Calculate boost factor by comparison with reference energy
        3. Apply boost factor to compensate for the energy loss due to limiting
      */
      for (k = hFreq->limiterBandTable[c]; k < hFreq->limiterBandTable[c + 1]; k++) {

        /* 1.a  Add energy of adjusted signal (using preliminary gain) */
        FIXP_DBL  tmp   = fMult(pNrgs->nrgGain[k],pNrgs->nrgEst[k]);
        SCHAR     tmp_e = pNrgs->nrgGain_e[k] + pNrgs->nrgEst_e[k];
        FDK_add_MantExp(tmp, tmp_e, accu, accu_e, &accu, &accu_e);

        /* 1.b  Add sine energy (if present) */
        if(pNrgs->nrgSine[k] != FL2FXCONST_DBL(0.0f)) {
          FDK_add_MantExp(pNrgs->nrgSine[k], pNrgs->nrgSine_e[k], accu, accu_e, &accu, &accu_e);
        }
        else {
          /* 1.c  Add noise energy (if present) */
          if(noNoiseFlag == 0) {
            FDK_add_MantExp(pNrgs->noiseLevel[k], pNrgs->noiseLevel_e[k], accu, accu_e, &accu, &accu_e);
          }
        }
      }

      /* 2.a  Calculate ratio of wanted energy and accumulated energy */
      if (accu == (FIXP_DBL)0) { /* If divisor is 0, limit quotient to +4 dB */
        boostGain = FL2FXCONST_DBL(0.6279716f);
        boostGain_e = 2;
      } else {
        INT div_e;
        boostGain = fDivNorm(sumRef, accu, &div_e);
        boostGain_e = sumRef_e - accu_e + div_e;
      }


      /* 2.b Result too high? --> Limit the boost factor to +4 dB */
      if((boostGain_e  > 3) ||
         (boostGain_e == 2 && boostGain > FL2FXCONST_DBL(0.6279716f)) ||
         (boostGain_e == 3 && boostGain > FL2FXCONST_DBL(0.3139858f)) )
      {
        boostGain = FL2FXCONST_DBL(0.6279716f);
        boostGain_e = 2;
      }
      /* 3.  Multiply all signal components with the boost factor */
      for (k = hFreq->limiterBandTable[c]; k < hFreq->limiterBandTable[c + 1]; k++) {
        pNrgs->nrgGain[k]   = fMultDiv2(pNrgs->nrgGain[k],boostGain);
        pNrgs->nrgGain_e[k] = pNrgs->nrgGain_e[k] + boostGain_e + 1;

        pNrgs->nrgSine[k]   = fMultDiv2(pNrgs->nrgSine[k],boostGain);
        pNrgs->nrgSine_e[k] = pNrgs->nrgSine_e[k] + boostGain_e + 1;

        pNrgs->noiseLevel[k]   = fMultDiv2(pNrgs->noiseLevel[k],boostGain);
        pNrgs->noiseLevel_e[k] = pNrgs->noiseLevel_e[k] + boostGain_e + 1;
      }
    }
    /* End of noise limiting */

    if (useLP)
      aliasingReduction(degreeAlias+lowSubband,
                        pNrgs,
                        useAliasReduction,
                        noSubbands);

    /* For the timeslots within the range for the output frame,
       use the same scale for the noise levels.
       Drawback: If the envelope exceeds the frame border, the noise levels
                 will have to be rescaled later to fit final_e of
                 the gain-values.
    */
    noise_e = (start_pos < no_cols) ? adj_e : final_e;

    /*
      Convert energies to amplitude levels
    */
    for (k=0; k<noSubbands; k++) {
      FDK_sqrt_MantExp(&pNrgs->nrgSine[k],    &pNrgs->nrgSine_e[k],    &noise_e);
      FDK_sqrt_MantExp(&pNrgs->nrgGain[k],    &pNrgs->nrgGain_e[k],    &pNrgs->nrgGain_e[k]);
      FDK_sqrt_MantExp(&pNrgs->noiseLevel[k], &pNrgs->noiseLevel_e[k], &noise_e);
    }



    /*
      Apply calculated gains and adaptive noise
    */

    /* assembleHfSignals() */
    {
      int scale_change, sc_change;
      FIXP_SGL smooth_ratio;
      int filtBufferNoiseShift=0;

      /* Initialize smoothing buffers with the first valid values */
      if (h_sbr_cal_env->startUp)
      {
        if (!useLP) {
          h_sbr_cal_env->filtBufferNoise_e = noise_e;

          FDKmemcpy(h_sbr_cal_env->filtBuffer_e,    pNrgs->nrgGain_e,  noSubbands*sizeof(SCHAR));
          FDKmemcpy(h_sbr_cal_env->filtBufferNoise, pNrgs->noiseLevel, noSubbands*sizeof(FIXP_DBL));
          FDKmemcpy(h_sbr_cal_env->filtBuffer,      pNrgs->nrgGain,    noSubbands*sizeof(FIXP_DBL));

        }
        h_sbr_cal_env->startUp = 0;
      }

      if (!useLP) {

        equalizeFiltBufferExp(h_sbr_cal_env->filtBuffer,    /* buffered */
                              h_sbr_cal_env->filtBuffer_e,  /* buffered */
                              pNrgs->nrgGain,               /* current  */
                              pNrgs->nrgGain_e,             /* current  */
                              noSubbands);

        /* Adapt exponent of buffered noise levels to the current exponent
           so they can easily be smoothed */
        if((h_sbr_cal_env->filtBufferNoise_e - noise_e)>=0) {
          int shift = fixMin(DFRACT_BITS-1,(int)(h_sbr_cal_env->filtBufferNoise_e - noise_e));
          for (k=0; k<noSubbands; k++)
            h_sbr_cal_env->filtBufferNoise[k] <<= shift;
        }
        else {
          int shift = fixMin(DFRACT_BITS-1,-(int)(h_sbr_cal_env->filtBufferNoise_e - noise_e));
          for (k=0; k<noSubbands; k++)
            h_sbr_cal_env->filtBufferNoise[k] >>= shift;
        }

        h_sbr_cal_env->filtBufferNoise_e = noise_e;
      }

      /* find best scaling! */
      scale_change = -(DFRACT_BITS-1);
      for(k=0;k<noSubbands;k++) {
          scale_change = fixMax(scale_change,(int)pNrgs->nrgGain_e[k]);
      }
      sc_change = (start_pos<no_cols)? adj_e - input_e : final_e - input_e;

      if ((scale_change-sc_change+1)<0)
          scale_change-=(scale_change-sc_change+1);

      scale_change = (scale_change-sc_change)+1;

      for(k=0;k<noSubbands;k++) {
          int sc = scale_change-pNrgs->nrgGain_e[k] + (sc_change-1);
          pNrgs->nrgGain[k]  >>= sc;
          pNrgs->nrgGain_e[k] += sc;
      }

      if (!useLP) {
        for(k=0;k<noSubbands;k++) {
          int sc = scale_change-h_sbr_cal_env->filtBuffer_e[k] + (sc_change-1);
          h_sbr_cal_env->filtBuffer[k] >>= sc;
        }
      }

      for (j = start_pos; j < stop_pos; j++)
      {
        /* This timeslot is located within the first part of the processing buffer
           and will be fed into the QMF-synthesis for the current frame.
               adj_e - input_e
           This timeslot will not yet be fed into the QMF so we do not care
           about the adj_e.
               sc_change = final_e - input_e
        */
        if ( (j==no_cols) && (start_pos<no_cols) )
        {
          int shift = (int) (noise_e - final_e);
          if (!useLP)
            filtBufferNoiseShift = shift;               /* shifting of h_sbr_cal_env->filtBufferNoise[k] will be applied in function adjustTimeSlotHQ() */
          if (shift>=0) {
            shift = fixMin(DFRACT_BITS-1,shift);
            for (k=0; k<noSubbands; k++) {
              pNrgs->nrgSine[k] <<= shift;
              pNrgs->noiseLevel[k]  <<= shift;
              /*
              if (!useLP)
                h_sbr_cal_env->filtBufferNoise[k]  <<= shift;
              */
            }
          }
          else {
            shift = fixMin(DFRACT_BITS-1,-shift);
            for (k=0; k<noSubbands; k++) {
              pNrgs->nrgSine[k] >>= shift;
              pNrgs->noiseLevel[k]  >>= shift;
              /*
              if (!useLP)
                h_sbr_cal_env->filtBufferNoise[k]  >>= shift;
              */
            }
          }

          /* update noise scaling */
          noise_e = final_e;
          if (!useLP)
            h_sbr_cal_env->filtBufferNoise_e = noise_e;  /* scaling value unused! */

          /* update gain buffer*/
          sc_change -= (final_e - input_e);

          if (sc_change<0) {
            for(k=0;k<noSubbands;k++) {
                pNrgs->nrgGain[k]  >>= -sc_change;
                pNrgs->nrgGain_e[k] += -sc_change;
            }
            if (!useLP) {
              for(k=0;k<noSubbands;k++) {
                    h_sbr_cal_env->filtBuffer[k] >>= -sc_change;
              }
            }
          } else {
            scale_change+=sc_change;
          }

        } // if

        if (!useLP) {

          /* Prevent the smoothing filter from running on constant levels */
          if (j-start_pos < smooth_length)
            smooth_ratio = FDK_sbrDecoder_sbr_smoothFilter[j-start_pos];

          else
            smooth_ratio = FL2FXCONST_SGL(0.0f);

          adjustTimeSlotHQ(&analysBufferReal[j][lowSubband],
                           &analysBufferImag[j][lowSubband],
                           h_sbr_cal_env,
                           pNrgs,
                           lowSubband,
                           noSubbands,
                           scale_change,
                           smooth_ratio,
                           noNoiseFlag,
                           filtBufferNoiseShift);
        }
        else
        {
          adjustTimeSlotLC(&analysBufferReal[j][lowSubband],
                           pNrgs,
                          &h_sbr_cal_env->harmIndex,
                           lowSubband,
                           noSubbands,
                           scale_change,
                           noNoiseFlag,
                          &h_sbr_cal_env->phaseIndex,
                           (flags & SBRDEC_ELD_GRID));
        }
      } // for

      if (!useLP) {
        /* Update time-smoothing-buffers for gains and noise levels
           The gains and the noise values of the current envelope are copied into the buffer.
           This has to be done at the end of each envelope as the values are required for
           a smooth transition to the next envelope. */
        FDKmemcpy(h_sbr_cal_env->filtBuffer,      pNrgs->nrgGain,    noSubbands*sizeof(FIXP_DBL));
        FDKmemcpy(h_sbr_cal_env->filtBuffer_e,    pNrgs->nrgGain_e,  noSubbands*sizeof(SCHAR));
        FDKmemcpy(h_sbr_cal_env->filtBufferNoise, pNrgs->noiseLevel, noSubbands*sizeof(FIXP_DBL));
      }

    }
    C_ALLOC_SCRATCH_END(pNrgs, ENV_CALC_NRGS, 1);
  }

  /* Rescale output samples */
  {
    FIXP_DBL maxVal;
    int ov_reserve, reserve;

    /* Determine headroom in old adjusted samples */
    maxVal = maxSubbandSample( analysBufferReal,
                              (useLP) ? NULL : analysBufferImag,
                               lowSubband,
                               highSubband,
                               0,
                               first_start);

    ov_reserve = fNorm(maxVal);

    /* Determine headroom in new adjusted samples */
    maxVal = maxSubbandSample( analysBufferReal,
                               (useLP) ? NULL : analysBufferImag,
                               lowSubband,
                               highSubband,
                               first_start,
                               no_cols);

    reserve = fNorm(maxVal);

    /* Determine common output exponent */
    if (ov_adj_e - ov_reserve  >  adj_e - reserve ) /* set output_e to the maximum */
      output_e = ov_adj_e - ov_reserve;
    else
      output_e = adj_e - reserve;

    /* Rescale old samples */
    rescaleSubbandSamples( analysBufferReal,
                           (useLP) ? NULL : analysBufferImag,
                           lowSubband, highSubband,
                           0, first_start,
                           ov_adj_e - output_e);

    /* Rescale new samples */
    rescaleSubbandSamples( analysBufferReal,
                           (useLP) ? NULL : analysBufferImag,
                           lowSubband, highSubband,
                           first_start, no_cols,
                           adj_e - output_e);
  }

  /* Update hb_scale */
  sbrScaleFactor->hb_scale = EXP2SCALE(output_e);

  /* Save the current final exponent for the next frame: */
  sbrScaleFactor->ov_hb_scale = EXP2SCALE(final_e);


  /* We need to remeber to the next frame that the transient
     will occur in the first envelope (if tranEnv == nEnvelopes). */
  if(hFrameData->frameInfo.tranEnv == hFrameData->frameInfo.nEnvelopes)
    h_sbr_cal_env->prevTranEnv = 0;
  else
    h_sbr_cal_env->prevTranEnv = -1;

}


/*!
  \brief   Create envelope instance

  Must be called once for each channel before calculateSbrEnvelope() can be used.

  \return  errorCode, 0 if successful
*/
SBR_ERROR
createSbrEnvelopeCalc (HANDLE_SBR_CALCULATE_ENVELOPE hs,   /*!< pointer to envelope instance */
                       HANDLE_SBR_HEADER_DATA hHeaderData, /*!< static SBR control data, initialized with defaults */
                       const int chan,                     /*!< Channel for which to assign buffers */
                       const UINT flags)
{
  SBR_ERROR err = SBRDEC_OK;
  int i;

  /* Clear previous missing harmonics flags */
  for (i=0; i<(MAX_FREQ_COEFFS+15)>>4; i++) {
    hs->harmFlagsPrev[i] = 0;
  }
  hs->harmIndex = 0;

  /*
    Setup pointers for time smoothing.
    The buffer itself will be initialized later triggered by the startUp-flag.
  */
  hs->prevTranEnv = -1;


  /* initialization */
  resetSbrEnvelopeCalc(hs);

  if (chan==0) { /* do this only once */
    err = resetFreqBandTables(hHeaderData, flags);
  }

  return err;
}

/*!
  \brief   Create envelope instance

  Must be called once for each channel before calculateSbrEnvelope() can be used.

  \return  errorCode, 0 if successful
*/
int
deleteSbrEnvelopeCalc (HANDLE_SBR_CALCULATE_ENVELOPE hs)
{
  return 0;
}


/*!
  \brief   Reset envelope instance

  This function must be called for each channel on a change of configuration.
  Note that resetFreqBandTables should also be called in this case.

  \return  errorCode, 0 if successful
*/
void
resetSbrEnvelopeCalc (HANDLE_SBR_CALCULATE_ENVELOPE hCalEnv) /*!< pointer to envelope instance */
{
  hCalEnv->phaseIndex = 0;

  /* Noise exponent needs to be reset because the output exponent for the next frame depends on it */
  hCalEnv->filtBufferNoise_e = 0;

  hCalEnv->startUp = 1;
}


/*!
  \brief  Equalize exponents of the buffered gain values and the new ones

  After equalization of exponents, the FIR-filter addition for smoothing
  can be performed.
  This function is called once for each envelope before adjusting.
*/
/*static*/ void equalizeFiltBufferExp(FIXP_DBL *filtBuffer,     /*!< bufferd gains */
                                  SCHAR    *filtBuffer_e,   /*!< exponents of bufferd gains */
                                  FIXP_DBL *nrgGain,        /*!< gains for current envelope */
                                  SCHAR    *nrgGain_e,      /*!< exponents of gains for current envelope */
                                  int       subbands)       /*!< Number of QMF subbands */
{
  int   band;
  int  diff;

  for (band=0; band<subbands; band++){
    diff = (int) (nrgGain_e[band] - filtBuffer_e[band]);
    if (diff>0) {
      filtBuffer[band] >>= diff;   /* Compensate for the scale change by shifting the mantissa. */
      filtBuffer_e[band] += diff;  /* New gain is bigger, use its exponent */
    }
    else if (diff<0) {
      /* The buffered gains seem to be larger, but maybe there
         are some unused bits left in the mantissa */

      int reserve = CntLeadingZeros(fixp_abs(filtBuffer[band]))-1;

      if ((-diff) <= reserve) {
        /* There is enough space in the buffered mantissa so
           that we can take the new exponent as common.
        */
        filtBuffer[band] <<= (-diff);
        filtBuffer_e[band] += diff;  /* becomes equal to *ptrNewExp */
      }
      else {
        filtBuffer[band] <<= reserve;   /* Shift the mantissa as far as possible: */
        filtBuffer_e[band] -= reserve;  /* Compensate in the exponent: */

        /* For the remaining difference, change the new gain value */
        diff = fixMin(-(reserve + diff),DFRACT_BITS-1);
        nrgGain[band] >>= diff;
        nrgGain_e[band] += diff;
      }
    }
  }
}

/*!
  \brief  Shift left the mantissas of all subband samples
          in the giventime and frequency range by the specified number of bits.

  This function is used to rescale the audio data in the overlap buffer
  which has already been envelope adjusted with the last frame.
*/
void rescaleSubbandSamples(FIXP_DBL ** re,   /*!< Real part of input and output subband samples */
                           FIXP_DBL ** im,   /*!< Imaginary part of input and output subband samples */
                           int lowSubband,   /*!< Begin of frequency range to process */
                           int highSubband,  /*!< End of frequency range to process */
                           int start_pos,    /*!< Begin of time rage (QMF-timeslot) */
                           int next_pos,     /*!< End of time rage (QMF-timeslot) */
                           int shift)        /*!< number of bits to shift */
{
  int width = highSubband-lowSubband;

  if ( (width > 0) && (shift!=0) ) {
    if (im!=NULL) {
      for (int l=start_pos; l<next_pos; l++) {
          scaleValues(&re[l][lowSubband], width, shift);
          scaleValues(&im[l][lowSubband], width, shift);
      }
    } else
    {
      for (int l=start_pos; l<next_pos; l++) {
          scaleValues(&re[l][lowSubband], width, shift);
      }
    }
  }
}


/*!
  \brief   Determine headroom for shifting

  Determine by how much the spectrum can be shifted left
  for better accuracy in later processing.

  \return  Number of free bits in the biggest spectral value
*/

FIXP_DBL maxSubbandSample( FIXP_DBL ** re,   /*!< Real part of input and output subband samples */
                           FIXP_DBL ** im,   /*!< Real part of input and output subband samples */
                           int lowSubband,   /*!< Begin of frequency range to process */
                           int highSubband,  /*!< Number of QMF bands to process */
                           int start_pos,    /*!< Begin of time rage (QMF-timeslot) */
                           int next_pos      /*!< End of time rage (QMF-timeslot) */
                          )
{
  FIXP_DBL maxVal = FL2FX_DBL(0.0f);
  unsigned int width = highSubband - lowSubband;

  FDK_ASSERT(width <= (64));

  if ( width > 0 ) {
    if (im!=NULL) 
    {
      for (int l=start_pos; l<next_pos; l++) 
      {
#ifdef FUNCTION_FDK_get_maxval
        maxVal = FDK_get_maxval(maxVal, &re[l][lowSubband], &im[l][lowSubband], width);
#else
        int k=width;
        FIXP_DBL *reTmp = &re[l][lowSubband];
        FIXP_DBL *imTmp = &im[l][lowSubband];
        do{
          FIXP_DBL tmp1 = *(reTmp++);
          FIXP_DBL tmp2 = *(imTmp++);
          maxVal |= (FIXP_DBL)((LONG)(tmp1)^((LONG)tmp1>>(DFRACT_BITS-1)));
          maxVal |= (FIXP_DBL)((LONG)(tmp2)^((LONG)tmp2>>(DFRACT_BITS-1)));
        } while(--k!=0);
#endif
      }
    } else
    {
      for (int l=start_pos; l<next_pos; l++) {
        int k=width;
        FIXP_DBL *reTmp = &re[l][lowSubband];
        do{
          FIXP_DBL tmp = *(reTmp++);
          maxVal |= (FIXP_DBL)((LONG)(tmp)^((LONG)tmp>>(DFRACT_BITS-1)));
        }while(--k!=0);
      }
    }
  }

  return(maxVal);
}

#define SHIFT_BEFORE_SQUARE (3) /* (7/2) */
/*!<
  If the accumulator does not provide enough overflow bits or
  does not provide a high dynamic range, the below energy calculation
  requires an additional shift operation for each sample.
  On the other hand, doing the shift allows using a single-precision
  multiplication for the square (at least 16bit x 16bit).
  For even values of OVRFLW_BITS (0, 2, 4, 6), saturated arithmetic
  is required for the energy accumulation.
  Theoretically, the sample-squares can sum up to a value of 76,
  requiring 7 overflow bits. However since such situations are *very*
  rare, accu can be limited to 64.
  In case native saturated arithmetic is not available, overflows
  can be prevented by replacing the above #define by
    #define SHIFT_BEFORE_SQUARE ((8 - OVRFLW_BITS) / 2)
  which will result in slightly reduced accuracy.
*/

/*!
  \brief  Estimates the mean energy of each filter-bank channel for the
          duration of the current envelope

  This function is used when interpolFreq is true.
*/
/*static*/ void calcNrgPerSubband(FIXP_DBL  **analysBufferReal, /*!< Real part of subband samples */
                              FIXP_DBL  **analysBufferImag, /*!< Imaginary part of subband samples */
                              int       lowSubband,           /*!< Begin of the SBR frequency range */
                              int       highSubband,          /*!< High end of the SBR frequency range */
                              int       start_pos,            /*!< First QMF-slot of current envelope */
                              int       next_pos,             /*!< Last QMF-slot of current envelope + 1 */
                              SCHAR     frameExp,             /*!< Common exponent for all input samples */
                              FIXP_DBL *nrgEst,               /*!< resulting Energy (0..1) */
                              SCHAR    *nrgEst_e )            /*!< Exponent of resulting Energy */
{
  FIXP_SGL invWidth;
  SCHAR  preShift;
  SCHAR  shift;
  FIXP_DBL sum;
  int k,l;

  /* Divide by width of envelope later: */
  invWidth = FX_DBL2FX_SGL(GetInvInt(next_pos - start_pos));
  /* The common exponent needs to be doubled because all mantissas are squared: */
  frameExp = frameExp << 1;

  for (k=lowSubband; k<highSubband; k++) {
    FIXP_DBL  bufferReal[(((1024)/(32))+(6))];
    FIXP_DBL  bufferImag[(((1024)/(32))+(6))];
    FIXP_DBL maxVal = FL2FX_DBL(0.0f);

    if (analysBufferImag!=NULL)
    {
      for (l=start_pos;l<next_pos;l++) 
      {
        bufferImag[l] = analysBufferImag[l][k];
        maxVal |= (FIXP_DBL)((LONG)(bufferImag[l])^((LONG)bufferImag[l]>>(DFRACT_BITS-1)));
        bufferReal[l] = analysBufferReal[l][k];
        maxVal |= (FIXP_DBL)((LONG)(bufferReal[l])^((LONG)bufferReal[l]>>(DFRACT_BITS-1)));
      }
    }
    else
    {
      for (l=start_pos;l<next_pos;l++)
      {
        bufferReal[l] = analysBufferReal[l][k];
        maxVal |= (FIXP_DBL)((LONG)(bufferReal[l])^((LONG)bufferReal[l]>>(DFRACT_BITS-1)));
      }
    }

    if (maxVal!=FL2FXCONST_DBL(0.f)) {


      /* If the accu does not provide enough overflow bits, we cannot
         shift the samples up to the limit.
         Instead, keep up to 3 free bits in each sample, i.e. up to
         6 bits after calculation of square.
         Please note the comment on saturated arithmetic above!
      */
      FIXP_DBL accu = FL2FXCONST_DBL(0.0f);
      preShift = CntLeadingZeros(maxVal)-1;
      preShift -= SHIFT_BEFORE_SQUARE;

      if (preShift>=0) {
        if (analysBufferImag!=NULL) {
          for (l=start_pos; l<next_pos; l++) {
            FIXP_DBL temp1 = bufferReal[l] << (int)preShift;
            FIXP_DBL temp2 = bufferImag[l] << (int)preShift;
            accu = fPow2AddDiv2(accu, temp1);
            accu = fPow2AddDiv2(accu, temp2);
          }
        } else
        {
          for (l=start_pos; l<next_pos; l++) {
            FIXP_DBL temp = bufferReal[l] << (int)preShift;
            accu = fPow2AddDiv2(accu, temp);
          }
        }
      }
      else {    /* if negative shift value */
        int negpreShift = -preShift;
        if (analysBufferImag!=NULL) {
          for (l=start_pos; l<next_pos; l++) {
            FIXP_DBL temp1 = bufferReal[l] >> (int)negpreShift;
            FIXP_DBL temp2 = bufferImag[l] >> (int)negpreShift;
            accu = fPow2AddDiv2(accu, temp1);
            accu = fPow2AddDiv2(accu, temp2);
          }
        } else
        {
          for (l=start_pos; l<next_pos; l++) {
            FIXP_DBL temp = bufferReal[l] >> (int)negpreShift;
            accu = fPow2AddDiv2(accu, temp);
          }
        }
      }
      accu <<= 1;

      /* Convert double precision to Mantissa/Exponent: */
      shift = fNorm(accu);
      sum = accu << (int)shift;

      /* Divide by width of envelope and apply frame scale: */
      *nrgEst++ = fMult(sum, invWidth);
      shift += 2 * preShift;
      if (analysBufferImag!=NULL)
        *nrgEst_e++ = frameExp - shift;
      else
        *nrgEst_e++ = frameExp - shift + 1;  /* +1 due to missing imag. part */
    } /* maxVal!=0 */
    else {

      /* Prevent a zero-mantissa-number from being misinterpreted
         due to its exponent. */
      *nrgEst++ = FL2FXCONST_DBL(0.0f);
      *nrgEst_e++ = 0;
    }
  }
}

/*!
  \brief   Estimates the mean energy of each Scale factor band for the
           duration of the current envelope.

  This function is used when interpolFreq is false.
*/
/*static*/ void calcNrgPerSfb(FIXP_DBL  **analysBufferReal,  /*!< Real part of subband samples */
                          FIXP_DBL  **analysBufferImag,  /*!< Imaginary part of subband samples */
                          int       nSfb,                /*!< Number of scale factor bands */
                          UCHAR    *freqBandTable,       /*!< First Subband for each Sfb */
                          int       start_pos,           /*!< First QMF-slot of current envelope */
                          int       next_pos,            /*!< Last QMF-slot of current envelope + 1 */
                          SCHAR     input_e,             /*!< Common exponent for all input samples */
                          FIXP_DBL *nrgEst,              /*!< resulting Energy (0..1) */
                          SCHAR    *nrgEst_e )           /*!< Exponent of resulting Energy */
{
  FIXP_SGL  invWidth;
  FIXP_DBL  temp;
  SCHAR  preShift;
  SCHAR   shift, sum_e;
  FIXP_DBL  sum;

  int j,k,l,li,ui;
  FIXP_DBL sumAll, sumLine; /* Single precision would be sufficient,
                             but overflow bits are required for accumulation */

  /* Divide by width of envelope later: */
  invWidth = FX_DBL2FX_SGL(GetInvInt(next_pos - start_pos));
  /* The common exponent needs to be doubled because all mantissas are squared: */
  input_e = input_e << 1;

  for(j=0; j<nSfb; j++) {
    li = freqBandTable[j];
    ui = freqBandTable[j+1];

    FIXP_DBL maxVal = maxSubbandSample( analysBufferReal,
                                        analysBufferImag,
                                        li,
                                        ui,
                                        start_pos,
                                        next_pos );

    if (maxVal!=FL2FXCONST_DBL(0.f)) {

      preShift = CntLeadingZeros(maxVal)-1;

      /* If the accu does not provide enough overflow bits, we cannot
         shift the samples up to the limit.
         Instead, keep up to 3 free bits in each sample, i.e. up to
         6 bits after calculation of square.
         Please note the comment on saturated arithmetic above!
      */
      preShift -= SHIFT_BEFORE_SQUARE;

      sumAll = FL2FXCONST_DBL(0.0f);


      for (k=li; k<ui; k++) {

        sumLine = FL2FXCONST_DBL(0.0f);

        if (analysBufferImag!=NULL) {
          if (preShift>=0) {
            for (l=start_pos; l<next_pos; l++) {
              temp   = analysBufferReal[l][k] << (int)preShift;
              sumLine += fPow2Div2(temp);
              temp   = analysBufferImag[l][k] << (int)preShift;
              sumLine += fPow2Div2(temp);

            }
          } else {
            for (l=start_pos; l<next_pos; l++) {
              temp   = analysBufferReal[l][k] >> -(int)preShift;
              sumLine += fPow2Div2(temp);
              temp   = analysBufferImag[l][k] >> -(int)preShift;
              sumLine += fPow2Div2(temp);
            }
          }
        } else
        {
          if (preShift>=0) {
            for (l=start_pos; l<next_pos; l++) {
              temp   = analysBufferReal[l][k] << (int)preShift;
              sumLine += fPow2Div2(temp);
            }
          } else {
            for (l=start_pos; l<next_pos; l++) {
              temp   = analysBufferReal[l][k] >> -(int)preShift;
              sumLine += fPow2Div2(temp);
            }
          }
        }

        /* The number of QMF-channels per SBR bands may be up to 15.
           Shift right to avoid overflows in sum over all channels. */
        sumLine = sumLine >> (4-1);
        sumAll  += sumLine;
      }

      /* Convert double precision to Mantissa/Exponent: */
      shift = fNorm(sumAll);
      sum = sumAll << (int)shift;

      /* Divide by width of envelope: */
      sum = fMult(sum,invWidth);

      /* Divide by width of Sfb: */
      sum = fMult(sum, FX_DBL2FX_SGL(GetInvInt(ui-li)));

      /* Set all Subband energies in the Sfb to the average energy: */
      if (analysBufferImag!=NULL)
        sum_e = input_e + 4 - shift;  /* -4 to compensate right-shift */
      else
        sum_e = input_e + 4 + 1 - shift;  /* -4 to compensate right-shift; +1 due to missing imag. part */

      sum_e -= 2 * preShift;
    } /* maxVal!=0 */
    else {

      /* Prevent a zero-mantissa-number from being misinterpreted
         due to its exponent. */
      sum = FL2FXCONST_DBL(0.0f);
      sum_e = 0;
    }

    for (k=li; k<ui; k++)
    {
      *nrgEst++   = sum;
      *nrgEst_e++ = sum_e;
    }
  }
}


/*!
  \brief  Calculate gain, noise, and additional sine level for one subband.

  The resulting energy gain is given by mantissa and exponent.
*/
/*static*/ void calcSubbandGain(FIXP_DBL  nrgRef,            /*!< Reference Energy according to envelope data */
                            SCHAR     nrgRef_e,          /*!< Reference Energy according to envelope data (exponent) */
                            ENV_CALC_NRGS* nrgs,
                            int       i,
                            FIXP_DBL  tmpNoise,          /*!< Relative noise level */
                            SCHAR     tmpNoise_e,        /*!< Relative noise level (exponent) */
                            UCHAR     sinePresentFlag,   /*!< Indicates if sine is present on band */
                            UCHAR     sineMapped,        /*!< Indicates if sine must be added */
                            int       noNoiseFlag)       /*!< Flag to suppress noise addition */
{
  FIXP_DBL  nrgEst          = nrgs->nrgEst[i];            /*!< Energy in transposed signal */
  SCHAR     nrgEst_e        = nrgs->nrgEst_e[i];          /*!< Energy in transposed signal (exponent) */
  FIXP_DBL *ptrNrgGain      = &nrgs->nrgGain[i];          /*!< Resulting energy gain */
  SCHAR    *ptrNrgGain_e    = &nrgs->nrgGain_e[i];        /*!< Resulting energy gain (exponent) */
  FIXP_DBL *ptrNoiseLevel   = &nrgs->noiseLevel[i];       /*!< Resulting absolute noise energy */
  SCHAR    *ptrNoiseLevel_e = &nrgs->noiseLevel_e[i];     /*!< Resulting absolute noise energy (exponent) */
  FIXP_DBL *ptrNrgSine      = &nrgs->nrgSine[i];          /*!< Additional sine energy */
  SCHAR    *ptrNrgSine_e    = &nrgs->nrgSine_e[i];        /*!< Additional sine energy (exponent) */

  FIXP_DBL a, b, c;
  SCHAR    a_e, b_e, c_e;

  /*
     This addition of 1 prevents divisions by zero in the reference code.
     For very small energies in nrgEst, it prevents the gains from becoming
     very high which could cause some trouble due to the smoothing.
  */
  b_e = (int)(nrgEst_e - 1);
  if (b_e>=0) {
    nrgEst = (FL2FXCONST_DBL(0.5f) >> (INT)fixMin(b_e+1,DFRACT_BITS-1)) + (nrgEst >> 1);
    nrgEst_e += 1;  /* shift by 1 bit to avoid overflow */

  } else {
    nrgEst = (nrgEst >> (INT)(fixMin(-b_e+1,DFRACT_BITS-1))) + (FL2FXCONST_DBL(0.5f) >> 1);
    nrgEst_e = 2;  /* shift by 1 bit to avoid overflow */
  }

  /*  A = NrgRef * TmpNoise */
  a = fMult(nrgRef,tmpNoise);
  a_e = nrgRef_e + tmpNoise_e;

  /*  B = 1 + TmpNoise */
  b_e = (int)(tmpNoise_e - 1);
  if (b_e>=0) {
    b = (FL2FXCONST_DBL(0.5f) >> (INT)fixMin(b_e+1,DFRACT_BITS-1)) + (tmpNoise >> 1);
    b_e = tmpNoise_e + 1;  /* shift by 1 bit to avoid overflow */
  } else {
    b = (tmpNoise >> (INT)(fixMin(-b_e+1,DFRACT_BITS-1))) + (FL2FXCONST_DBL(0.5f) >> 1);
    b_e = 2;  /* shift by 1 bit to avoid overflow */
  }

  /*  noiseLevel = A / B = (NrgRef * TmpNoise) / (1 + TmpNoise) */
  FDK_divide_MantExp( a,  a_e,
                      b,  b_e,
                      ptrNoiseLevel, ptrNoiseLevel_e);

  if (sinePresentFlag) {

    /*  C = (1 + TmpNoise) * NrgEst */
    c = fMult(b,nrgEst);
    c_e = b_e + nrgEst_e;

    /*  gain = A / C = (NrgRef * TmpNoise) / (1 + TmpNoise) * NrgEst */
    FDK_divide_MantExp( a,  a_e,
                        c,  c_e,
                        ptrNrgGain, ptrNrgGain_e);

    if (sineMapped) {

      /*  sineLevel = nrgRef/ (1 + TmpNoise) */
      FDK_divide_MantExp( nrgRef,  nrgRef_e,
                          b,  b_e,
                          ptrNrgSine, ptrNrgSine_e);
    }
  }
  else {
    if (noNoiseFlag) {
      /*  B = NrgEst */
      b = nrgEst;
      b_e = nrgEst_e;
    }
    else {
      /*  B = NrgEst * (1 + TmpNoise) */
      b = fMult(b,nrgEst);
      b_e = b_e + nrgEst_e;
    }


    /*  gain = nrgRef / B */
    FDK_divide_MantExp( nrgRef,  nrgRef_e,
                        b,  b_e,
                        ptrNrgGain, ptrNrgGain_e);
  }
}


/*!
  \brief  Calculate "average gain" for the specified subband range.

  This is rather a gain of the average magnitude than the average
  of gains!
  The result is used as a relative limit for all gains within the
  current "limiter band" (a certain frequency range).
*/
/*static*/ void calcAvgGain(ENV_CALC_NRGS* nrgs,
                        int        lowSubband,    /*!< Begin of the limiter band */
                        int        highSubband,   /*!< High end of the limiter band */
                        FIXP_DBL  *ptrSumRef,
                        SCHAR     *ptrSumRef_e,
                        FIXP_DBL  *ptrAvgGain,  /*!< Resulting overall gain (mantissa) */
                        SCHAR     *ptrAvgGain_e)  /*!< Resulting overall gain (exponent) */
{
  FIXP_DBL  *nrgRef   = nrgs->nrgRef;       /*!< Reference Energy according to envelope data */
  SCHAR     *nrgRef_e = nrgs->nrgRef_e;     /*!< Reference Energy according to envelope data (exponent) */
  FIXP_DBL  *nrgEst   = nrgs->nrgEst;       /*!< Energy in transposed signal */
  SCHAR     *nrgEst_e = nrgs->nrgEst_e;     /*!< Energy in transposed signal (exponent) */

  FIXP_DBL sumRef = 1;
  FIXP_DBL sumEst = 1;
  SCHAR    sumRef_e = -FRACT_BITS;
  SCHAR    sumEst_e = -FRACT_BITS;
  int      k;

  for (k=lowSubband; k<highSubband; k++){
    /* Add nrgRef[k] to sumRef: */
    FDK_add_MantExp( sumRef, sumRef_e,
                     nrgRef[k], nrgRef_e[k],
                     &sumRef, &sumRef_e );

    /* Add nrgEst[k] to sumEst: */
    FDK_add_MantExp( sumEst, sumEst_e,
                     nrgEst[k], nrgEst_e[k],
                     &sumEst, &sumEst_e );
  }

  FDK_divide_MantExp(sumRef, sumRef_e,
                     sumEst, sumEst_e,
                     ptrAvgGain, ptrAvgGain_e);

  *ptrSumRef = sumRef;
  *ptrSumRef_e = sumRef_e;
}


/*!
  \brief   Amplify one timeslot of the signal with the calculated gains
           and add the noisefloor.
*/

/*static*/ void adjustTimeSlotLC(FIXP_DBL *ptrReal,       /*!< Subband samples to be adjusted, real part */
                             ENV_CALC_NRGS* nrgs,
                             UCHAR    *ptrHarmIndex,  /*!< Harmonic index */
                             int       lowSubband,    /*!< Lowest QMF-channel in the currently used SBR range. */
                             int       noSubbands,    /*!< Number of QMF subbands */
                             int       scale_change,  /*!< Number of bits to shift adjusted samples */
                             int       noNoiseFlag,   /*!< Flag to suppress noise addition */
                             int      *ptrPhaseIndex, /*!< Start index to random number array */
                             int       fCldfb)        /*!< CLDFB 80 flag */
{
  FIXP_DBL *pGain       = nrgs->nrgGain;     /*!< Gains of current envelope */
  FIXP_DBL *pNoiseLevel = nrgs->noiseLevel;  /*!< Noise levels of current envelope */
  FIXP_DBL *pSineLevel  = nrgs->nrgSine;     /*!< Sine levels */

  int    k;
  int    index = *ptrPhaseIndex;
  UCHAR  harmIndex = *ptrHarmIndex;
  UCHAR  freqInvFlag = (lowSubband & 1);
  FIXP_DBL  signalReal, sineLevel, sineLevelNext, sineLevelPrev;
  int    tone_count = 0;
  int    sineSign = 1;

  #define C1   ((FIXP_SGL)FL2FXCONST_SGL(2.f*0.00815f))
  #define C1_CLDFB ((FIXP_SGL)FL2FXCONST_SGL(2.f*0.16773f))

  /*
    First pass for k=0 pulled out of the loop:
  */

  index = (index + 1) & (SBR_NF_NO_RANDOM_VAL - 1);

  /*
    The next multiplication constitutes the actual envelope adjustment
    of the signal and should be carried out with full accuracy
    (supplying #FRACT_BITS valid bits).
  */
  signalReal    = fMultDiv2(*ptrReal,*pGain++) << ((int)scale_change);
  sineLevel     = *pSineLevel++;
  sineLevelNext = (noSubbands > 1) ? pSineLevel[0] : FL2FXCONST_DBL(0.0f);

  if (sineLevel!=FL2FXCONST_DBL(0.0f)) tone_count++;

  else if (!noNoiseFlag)
        /* Add noisefloor to the amplified signal */
        signalReal += (fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], pNoiseLevel[0])<<4);

  if (fCldfb) {

    if (!(harmIndex&0x1)) {
      /* harmIndex 0,2 */
      signalReal += (harmIndex&0x2) ? -sineLevel : sineLevel;
      *ptrReal++ = signalReal;
    }
    else {
      /* harmIndex 1,3 in combination with freqInvFlag */
      int shift = (int) (scale_change+1);
      shift = (shift>=0) ? fixMin(DFRACT_BITS-1,shift) : fixMax(-(DFRACT_BITS-1),shift);

      FIXP_DBL tmp1 = scaleValue( fMultDiv2(C1_CLDFB, sineLevel), -shift );

      FIXP_DBL tmp2 = fMultDiv2(C1_CLDFB, sineLevelNext);


      /* save switch and compare operations and reduce to XOR statement */
      if ( ((harmIndex>>1)&0x1)^freqInvFlag) {
          *(ptrReal-1) += tmp1;
          signalReal   -= tmp2;
      } else {
          *(ptrReal-1) -= tmp1;
          signalReal   += tmp2;
      }
      *ptrReal++ = signalReal;
      freqInvFlag = !freqInvFlag;
    }

  } else
  {
    if (!(harmIndex&0x1)) {
      /* harmIndex 0,2 */
      signalReal += (harmIndex&0x2) ? -sineLevel : sineLevel;
      *ptrReal++ = signalReal;
    }
    else {
      /* harmIndex 1,3 in combination with freqInvFlag */
      int shift = (int) (scale_change+1);
      shift = (shift>=0) ? fixMin(DFRACT_BITS-1,shift) : fixMax(-(DFRACT_BITS-1),shift);

      FIXP_DBL tmp1 = (shift>=0) ? ( fMultDiv2(C1, sineLevel) >> shift )
                                 : ( fMultDiv2(C1, sineLevel) << (-shift) );
      FIXP_DBL tmp2 = fMultDiv2(C1, sineLevelNext);


      /* save switch and compare operations and reduce to XOR statement */
      if ( ((harmIndex>>1)&0x1)^freqInvFlag) {
          *(ptrReal-1) += tmp1;
          signalReal   -= tmp2;
      } else {
          *(ptrReal-1) -= tmp1;
          signalReal   += tmp2;
      }
      *ptrReal++ = signalReal;
      freqInvFlag = !freqInvFlag;
    }
  }

  pNoiseLevel++;

  if ( noSubbands > 2 ) {
    if (!(harmIndex&0x1)) {
      /* harmIndex 0,2 */
      if(!harmIndex) 
      {
        sineSign = 0;
      }

      for (k=noSubbands-2; k!=0; k--) {
        FIXP_DBL sinelevel = *pSineLevel++;
        index++;
        if (((signalReal = (sineSign ? -sinelevel : sinelevel)) == FL2FXCONST_DBL(0.0f))  && !noNoiseFlag) 
        {
          /* Add noisefloor to the amplified signal */
          index &= (SBR_NF_NO_RANDOM_VAL - 1);
          signalReal += (fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], pNoiseLevel[0])<<4);
        }
        
        /* The next multiplication constitutes the actual envelope adjustment of the signal. */
        signalReal += fMultDiv2(*ptrReal,*pGain++) << ((int)scale_change);

        pNoiseLevel++;
        *ptrReal++ = signalReal;
      } /* for ... */
    }
    else {
      /* harmIndex 1,3 in combination with freqInvFlag */
      if (harmIndex==1) freqInvFlag = !freqInvFlag;

      for (k=noSubbands-2; k!=0; k--) {
        index++;
        /* The next multiplication constitutes the actual envelope adjustment of the signal. */
        signalReal = fMultDiv2(*ptrReal,*pGain++) << ((int)scale_change);

        if (*pSineLevel++!=FL2FXCONST_DBL(0.0f)) tone_count++;
        else if (!noNoiseFlag) {
          /* Add noisefloor to the amplified signal */
          index &= (SBR_NF_NO_RANDOM_VAL - 1);
          signalReal += (fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], pNoiseLevel[0])<<4);
        }

        pNoiseLevel++;

        if (tone_count <= 16) {
          FIXP_DBL addSine = fMultDiv2((pSineLevel[-2] - pSineLevel[0]), C1);
          signalReal += (freqInvFlag) ? (-addSine) : (addSine);
        }

        *ptrReal++ = signalReal;
        freqInvFlag = !freqInvFlag;
      } /* for ... */
    }
  }

  if (noSubbands > -1) {
    index++;
    /* The next multiplication constitutes the actual envelope adjustment of the signal. */
    signalReal    = fMultDiv2(*ptrReal,*pGain) << ((int)scale_change);
    sineLevelPrev = fMultDiv2(pSineLevel[-1],FL2FX_SGL(0.0163f));
    sineLevel     = pSineLevel[0];

    if (pSineLevel[0]!=FL2FXCONST_DBL(0.0f)) tone_count++;
    else if (!noNoiseFlag) {
        /* Add noisefloor to the amplified signal */
        index &= (SBR_NF_NO_RANDOM_VAL - 1);
        signalReal = signalReal + (fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], pNoiseLevel[0])<<4);
    }

    if (!(harmIndex&0x1)) {
      /* harmIndex 0,2 */
      *ptrReal = signalReal + ( (sineSign) ? -sineLevel : sineLevel);
    }
    else {
      /* harmIndex 1,3 in combination with freqInvFlag */
      if(tone_count <= 16){
        if (freqInvFlag) {
          *ptrReal++   = signalReal - sineLevelPrev;
          if (noSubbands + lowSubband < 63)
            *ptrReal = *ptrReal + fMultDiv2(C1, sineLevel);
        }
        else {
          *ptrReal++ = signalReal + sineLevelPrev;
          if (noSubbands + lowSubband < 63)
            *ptrReal = *ptrReal - fMultDiv2(C1, sineLevel);
        }
      }
      else *ptrReal = signalReal;
    }
  }
  *ptrHarmIndex = (harmIndex + 1) & 3;
  *ptrPhaseIndex = index & (SBR_NF_NO_RANDOM_VAL - 1);
}
void adjustTimeSlotHQ(FIXP_DBL *RESTRICT ptrReal,           /*!< Subband samples to be adjusted, real part */
                      FIXP_DBL *RESTRICT ptrImag,               /*!< Subband samples to be adjusted, imag part */
                      HANDLE_SBR_CALCULATE_ENVELOPE h_sbr_cal_env,
                      ENV_CALC_NRGS* nrgs,
                      int       lowSubband,            /*!< Lowest QMF-channel in the currently used SBR range. */
                      int       noSubbands,            /*!< Number of QMF subbands */
                      int       scale_change,          /*!< Number of bits to shift adjusted samples */
                      FIXP_SGL  smooth_ratio,          /*!< Impact of last envelope */
                      int       noNoiseFlag,           /*!< Start index to random number array */
                      int       filtBufferNoiseShift)  /*!< Shift factor of filtBufferNoise */
{

  FIXP_DBL *RESTRICT gain       = nrgs->nrgGain;        /*!< Gains of current envelope */
  FIXP_DBL *RESTRICT noiseLevel = nrgs->noiseLevel;     /*!< Noise levels of current envelope */
  FIXP_DBL *RESTRICT pSineLevel = nrgs->nrgSine;        /*!< Sine levels */

  FIXP_DBL *RESTRICT filtBuffer      = h_sbr_cal_env->filtBuffer;      /*!< Gains of last envelope */
  FIXP_DBL *RESTRICT filtBufferNoise = h_sbr_cal_env->filtBufferNoise; /*!< Noise levels of last envelope */
  UCHAR    *RESTRICT ptrHarmIndex    =&h_sbr_cal_env->harmIndex;       /*!< Harmonic index */
  int      *RESTRICT ptrPhaseIndex   =&h_sbr_cal_env->phaseIndex;      /*!< Start index to random number array */

  int    k;
  FIXP_DBL signalReal, signalImag;
  FIXP_DBL noiseReal,  noiseImag;
  FIXP_DBL  smoothedGain, smoothedNoise;
  FIXP_SGL direct_ratio = /*FL2FXCONST_SGL(1.0f) */ (FIXP_SGL)MAXVAL_SGL - smooth_ratio;
  int    index = *ptrPhaseIndex;
  UCHAR   harmIndex = *ptrHarmIndex;
  register int freqInvFlag = (lowSubband & 1);
  FIXP_DBL sineLevel;
  int shift;

  *ptrPhaseIndex = (index+noSubbands) & (SBR_NF_NO_RANDOM_VAL - 1);
  *ptrHarmIndex = (harmIndex + 1) & 3;

  /*
    Possible optimization:
    smooth_ratio and harmIndex stay constant during the loop.
    It might be faster to include a separate loop in each path.

    the check for smooth_ratio is now outside the loop and the workload
    of the whole function decreased by about 20 %
  */

  filtBufferNoiseShift += 1;      /* due to later use of fMultDiv2 instead of fMult */
  if (filtBufferNoiseShift<0)
    shift = fixMin(DFRACT_BITS-1,-filtBufferNoiseShift);
  else
    shift = fixMin(DFRACT_BITS-1, filtBufferNoiseShift);

  if (smooth_ratio > FL2FXCONST_SGL(0.0f)) {

    for (k=0; k<noSubbands; k++) {
      /*
        Smoothing: The old envelope has been bufferd and a certain ratio
        of the old gains and noise levels is used.
      */

      smoothedGain = fMult(smooth_ratio,filtBuffer[k]) +
                     fMult(direct_ratio,gain[k]);

      if (filtBufferNoiseShift<0) {
        smoothedNoise = (fMultDiv2(smooth_ratio,filtBufferNoise[k])>>shift) +
                         fMult(direct_ratio,noiseLevel[k]);
      }
      else {
        smoothedNoise = (fMultDiv2(smooth_ratio,filtBufferNoise[k])<<shift) +
                         fMult(direct_ratio,noiseLevel[k]);
      }

      /*
        The next 2 multiplications constitute the actual envelope adjustment
        of the signal and should be carried out with full accuracy
        (supplying #DFRACT_BITS valid bits).
      */
      signalReal = fMultDiv2(*ptrReal,smoothedGain)<<((int)scale_change);
      signalImag = fMultDiv2(*ptrImag,smoothedGain)<<((int)scale_change);

      index++;

      if (pSineLevel[k] != FL2FXCONST_DBL(0.0f)) {
        sineLevel = pSineLevel[k];

        switch(harmIndex) {
        case 0:
          *ptrReal++ = (signalReal + sineLevel);
          *ptrImag++ = (signalImag);
          break;
        case 2:
          *ptrReal++ = (signalReal - sineLevel);
          *ptrImag++ = (signalImag);
          break;
        case 1:
          *ptrReal++ = (signalReal);
          if (freqInvFlag)
            *ptrImag++ = (signalImag - sineLevel);
          else
            *ptrImag++ = (signalImag + sineLevel);
          break;
        case 3:
          *ptrReal++ = signalReal;
          if (freqInvFlag)
            *ptrImag++ = (signalImag + sineLevel);
          else
            *ptrImag++ = (signalImag - sineLevel);
          break;
        }
      }
      else {
        if (noNoiseFlag) {
          /* Just the amplified signal is saved */
          *ptrReal++ = (signalReal);
          *ptrImag++ = (signalImag);
        }
        else {
          /* Add noisefloor to the amplified signal */
          index &= (SBR_NF_NO_RANDOM_VAL - 1);
          noiseReal = fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], smoothedNoise)<<4;
          noiseImag = fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][1], smoothedNoise)<<4;
          *ptrReal++ = (signalReal + noiseReal);
          *ptrImag++ = (signalImag + noiseImag);
        }
      }
      freqInvFlag ^= 1;
    }

  }
  else 
  {
    for (k=0; k<noSubbands; k++) 
    {
      smoothedGain  = gain[k];
      signalReal = fMultDiv2(*ptrReal, smoothedGain) << scale_change;
      signalImag = fMultDiv2(*ptrImag, smoothedGain) << scale_change;

      index++;

      if ((sineLevel = pSineLevel[k]) != FL2FXCONST_DBL(0.0f)) 
      {
        switch (harmIndex) 
        {
        case 0:
          signalReal += sineLevel;
          break;
        case 1:
          if (freqInvFlag)
            signalImag -= sineLevel;
          else
            signalImag += sineLevel;
          break;
        case 2:
          signalReal -= sineLevel;
          break;
        case 3:
          if (freqInvFlag)
            signalImag += sineLevel;
          else
            signalImag -= sineLevel;
          break;
        }
      }
      else 
      {
        if (noNoiseFlag == 0)
        {
          /* Add noisefloor to the amplified signal */
          smoothedNoise = noiseLevel[k];
          index &= (SBR_NF_NO_RANDOM_VAL - 1);
          noiseReal = fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][0], smoothedNoise);
          noiseImag = fMultDiv2(FDK_sbrDecoder_sbr_randomPhase[index][1], smoothedNoise);
          signalReal += noiseReal<<4;
          signalImag += noiseImag<<4;
        }
      }
      *ptrReal++ = signalReal;
      *ptrImag++ = signalImag;

      freqInvFlag ^= 1;
    }
  }
}


/*!
  \brief   Reset limiter bands.

  Build frequency band table for the gain limiter dependent on
  the previously generated transposer patch areas.

  \return  SBRDEC_OK if ok,  SBRDEC_UNSUPPORTED_CONFIG on error
*/
SBR_ERROR
ResetLimiterBands ( UCHAR *limiterBandTable,   /*!< Resulting band borders in QMF channels */
                    UCHAR *noLimiterBands,     /*!< Resulting number of limiter band */
                    UCHAR *freqBandTable,      /*!< Table with possible band borders */
                    int noFreqBands,                   /*!< Number of bands in freqBandTable */
                    const PATCH_PARAM *patchParam,     /*!< Transposer patch parameters */
                    int noPatches,                     /*!< Number of transposer patches */
                    int limiterBands)                  /*!< Selected 'band density' from bitstream */
{
  int i, k, isPatchBorder[2], loLimIndex, hiLimIndex, tempNoLim, nBands;
  UCHAR workLimiterBandTable[MAX_FREQ_COEFFS / 2 + MAX_NUM_PATCHES + 1];
  int patchBorders[MAX_NUM_PATCHES + 1];
  int kx, k2;
  FIXP_DBL temp;

  int lowSubband = freqBandTable[0];
  int highSubband = freqBandTable[noFreqBands];

  /* 1 limiter band. */
  if(limiterBands == 0) {
    limiterBandTable[0] = 0;
    limiterBandTable[1] = highSubband - lowSubband;
    nBands = 1;
  } else {
    for (i = 0; i < noPatches; i++) {
      patchBorders[i] = patchParam[i].guardStartBand - lowSubband;
    }
    patchBorders[i] = highSubband - lowSubband;

    /* 1.2, 2, or 3 limiter bands/octave plus bandborders at patchborders. */
    for (k = 0; k <= noFreqBands; k++) {
      workLimiterBandTable[k] = freqBandTable[k] - lowSubband;
    }
    for (k = 1; k < noPatches; k++) {
      workLimiterBandTable[noFreqBands + k] = patchBorders[k];
    }

    tempNoLim = nBands = noFreqBands + noPatches - 1;
    shellsort(workLimiterBandTable, tempNoLim + 1);

    loLimIndex = 0;
    hiLimIndex = 1;


    while (hiLimIndex <= tempNoLim) {
      k2 = workLimiterBandTable[hiLimIndex] + lowSubband;
      kx = workLimiterBandTable[loLimIndex] + lowSubband;

      temp = FX_SGL2FX_DBL(FDK_getNumOctavesDiv8(kx,k2)); /* Number of octaves */
      temp = fMult(temp, FDK_sbrDecoder_sbr_limiterBandsPerOctaveDiv4[limiterBands]);

      if (temp < FL2FXCONST_DBL (0.49f)>>5) {
        if (workLimiterBandTable[hiLimIndex] == workLimiterBandTable[loLimIndex]) {
          workLimiterBandTable[hiLimIndex] = highSubband;
          nBands--;
          hiLimIndex++;
          continue;
        }
        isPatchBorder[0] = isPatchBorder[1] = 0;
        for (k = 0; k <= noPatches; k++) {
          if (workLimiterBandTable[hiLimIndex] == patchBorders[k]) {
            isPatchBorder[1] = 1;
            break;
          }
        }
        if (!isPatchBorder[1]) {
          workLimiterBandTable[hiLimIndex] = highSubband;
          nBands--;
          hiLimIndex++;
          continue;
        }
        for (k = 0; k <= noPatches; k++) {
          if (workLimiterBandTable[loLimIndex] == patchBorders[k]) {
            isPatchBorder[0] = 1;
            break;
          }
        }
        if (!isPatchBorder[0]) {
          workLimiterBandTable[loLimIndex] = highSubband;
          nBands--;
        }
      }
      loLimIndex = hiLimIndex;
      hiLimIndex++;

    }
    shellsort(workLimiterBandTable, tempNoLim + 1);

    /* Test if algorithm exceeded maximum allowed limiterbands */
    if( nBands > MAX_NUM_LIMITERS || nBands <= 0) {
      return SBRDEC_UNSUPPORTED_CONFIG;
    }

    /* Copy limiterbands from working buffer into final destination */
    for (k = 0; k <= nBands; k++) {
      limiterBandTable[k] = workLimiterBandTable[k];
    }
  }
  *noLimiterBands = nBands;

  return SBRDEC_OK;
}