aboutsummaryrefslogtreecommitdiffstats
path: root/libAACdec/src/aacdec_hcrs.cpp
blob: c0b2173f48821baef185f8d611ea9b4cb0259c67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
/* -----------------------------------------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

� Copyright  1995 - 2013 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
  All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
of the MPEG specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
individually for the purpose of encoding or decoding bit streams in products that are compliant with
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
software may already be covered under those patent licenses when it is used for those licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
applications information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification, are permitted without
payment of copyright license fees provided that you satisfy the following conditions:

You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation and/or other materials
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived from this library without
prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
and the date of any change. For modified versions of the FDK AAC Codec, the term
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
respect to this software.

You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
or business interruption, however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of this software, even if
advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------------------------------------- */

/*****************************  MPEG-4 AAC Decoder  ***************************

   Author(s):   Robert Weidner (DSP Solutions)
   Description: HCR Decoder: Prepare decoding of non-PCWs, segmentation- and
                bitfield-handling, HCR-Statemachine

*******************************************************************************/

#include "aacdec_hcrs.h"


#include "aacdec_hcr.h"

#include "aacdec_hcr_bit.h"
#include "aac_rom.h"
#include "aac_ram.h"


static UINT InitSegmentBitfield(UINT   *pNumSegment,
                                SCHAR  *pRemainingBitsInSegment,
                                UINT   *pSegmentBitfield,
                                UCHAR  *pNumWordForBitfield,
                                USHORT *pNumBitValidInLastWord);

static void InitNonPCWSideInformationForCurrentSet(H_HCR_INFO pHcr);

static INT ModuloValue(INT input, INT bufferlength);

static void ClearBitFromBitfield(STATEFUNC *ptrState,
                                 UINT   offset,
                                 UINT  *pBitfield);


/*---------------------------------------------------------------------------------------------
     description: This function decodes all non-priority codewords (non-PCWs) by using a
                  state-machine.
-------------------------------------------------------------------------------------------- */
void  DecodeNonPCWs(HANDLE_FDK_BITSTREAM bs, H_HCR_INFO pHcr)
{
  UINT    numValidSegment;
  INT     segmentOffset;
  INT     codewordOffsetBase;
  INT     codewordOffset;
  UINT    trial;

  UINT   *pNumSegment;
  SCHAR  *pRemainingBitsInSegment;
  UINT   *pSegmentBitfield;
  UCHAR  *pNumWordForBitfield;
  USHORT *pNumBitValidInLastWord;
  UINT   *pCodewordBitfield;
  INT     bitfieldWord;
  INT     bitInWord;
  UINT    tempWord;
  UINT    interMediateWord;
  INT     tempBit;
  INT     carry;

  UINT    numCodeword;
  UCHAR   numSet;
  UCHAR   currentSet;
  UINT    codewordInSet;
  UINT    remainingCodewordsInSet;
  SCHAR  *pSta;
  UINT    ret;

  pNumSegment             = &(pHcr->segmentInfo.numSegment);
  pRemainingBitsInSegment =   pHcr->segmentInfo.pRemainingBitsInSegment;
  pSegmentBitfield        =   pHcr->segmentInfo.pSegmentBitfield;
  pNumWordForBitfield     = &(pHcr->segmentInfo.numWordForBitfield);
  pNumBitValidInLastWord  = &(pHcr->segmentInfo.pNumBitValidInLastWord);
  pSta                    =   pHcr->nonPcwSideinfo.pSta;

  numValidSegment = InitSegmentBitfield(pNumSegment,
                                        pRemainingBitsInSegment,
                                        pSegmentBitfield,
                                        pNumWordForBitfield,
                                        pNumBitValidInLastWord);

  if ( numValidSegment != 0 ) {
    numCodeword = pHcr->sectionInfo.numCodeword;
    numSet = ((numCodeword - 1) / *pNumSegment) + 1;


    pHcr->segmentInfo.readDirection = FROM_RIGHT_TO_LEFT;

    /* Process sets subsequently */
    for ( currentSet = 1; currentSet < numSet ; currentSet++ ) {



      /* step 1 */
      numCodeword -= *pNumSegment;                            /* number of remaining non PCWs [for all sets] */
      if ( numCodeword < *pNumSegment ) {
        codewordInSet = numCodeword;                          /* for last set */
      }
      else {
        codewordInSet = *pNumSegment;                         /* for all sets except last set */
      }

      /* step 2 */
      /* prepare array 'CodewordBitfield'; as much ones are written from left in all words, as much decodedCodewordInSetCounter nonPCWs exist in this set */
      tempWord = 0xFFFFFFFF;
      pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;

      for ( bitfieldWord = *pNumWordForBitfield; bitfieldWord !=0; bitfieldWord-- ) { /* loop over all used words */
        if ( codewordInSet > NUMBER_OF_BIT_IN_WORD ) {        /* more codewords than number of bits => fill ones */
          /* fill a whole word with ones */
          *pCodewordBitfield++ = tempWord;
          codewordInSet -= NUMBER_OF_BIT_IN_WORD;             /* subtract number of bits */
        }
        else {
          /* prepare last tempWord */
          for (remainingCodewordsInSet = codewordInSet; remainingCodewordsInSet < NUMBER_OF_BIT_IN_WORD ; remainingCodewordsInSet++ ) {
            tempWord = tempWord & ~(1 << (NUMBER_OF_BIT_IN_WORD-1-remainingCodewordsInSet)); /* set a zero at bit number (NUMBER_OF_BIT_IN_WORD-1-i) in tempWord */
          }
          *pCodewordBitfield++ = tempWord;
          tempWord = 0x00000000;
        }
      }
      pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;

      /* step 3 */
      /* build non-PCW sideinfo for each non-PCW of the current set */
      InitNonPCWSideInformationForCurrentSet(pHcr);

      /* step 4 */
      /* decode all non-PCWs belonging to this set */

      /* loop over trials */
      codewordOffsetBase = 0;
      for ( trial = *pNumSegment; trial > 0; trial-- ) {

        /* loop over number of words in bitfields */
        segmentOffset = 0;                                       /* start at zero in every segment */
        pHcr->segmentInfo.segmentOffset = segmentOffset;         /* store in structure for states */
        codewordOffset = codewordOffsetBase;
        pHcr->nonPcwSideinfo.codewordOffset = codewordOffset;    /* store in structure for states */

        for ( bitfieldWord=0; bitfieldWord < *pNumWordForBitfield; bitfieldWord++ ) {

          /* derive tempWord with bitwise and */
          tempWord = pSegmentBitfield[bitfieldWord] & pCodewordBitfield[bitfieldWord];

          /* if tempWord is not zero, decode something */
          if ( tempWord != 0 ) {


            /* loop over all bits in tempWord; start state machine if & is true */
            for ( bitInWord = NUMBER_OF_BIT_IN_WORD; bitInWord > 0; bitInWord-- ) {

              interMediateWord = ((UINT)1 << (bitInWord-1) );
              if ( ( tempWord & interMediateWord ) == interMediateWord ) {

                /* get state and start state machine */
                pHcr->nonPcwSideinfo.pState = aStateConstant2State[pSta[codewordOffset]];

                while(pHcr->nonPcwSideinfo.pState) {
                  ret = ((STATEFUNC) pHcr->nonPcwSideinfo.pState)(bs, pHcr);
#if STATE_MACHINE_ERROR_CHECK
                  if ( ret != 0 ) {
                    return;
                  }
#endif
                }
              }

              /* update both offsets */
              segmentOffset += 1;                                             /* add NUMBER_OF_BIT_IN_WORD times one */
              pHcr->segmentInfo.segmentOffset = segmentOffset;
              codewordOffset += 1;                                            /* add NUMBER_OF_BIT_IN_WORD times one */
              codewordOffset = ModuloValue(codewordOffset,*pNumSegment);      /* index of the current codeword lies within modulo range */
              pHcr->nonPcwSideinfo.codewordOffset = codewordOffset;
            }
          }
          else {
            segmentOffset += NUMBER_OF_BIT_IN_WORD;                           /* add NUMBER_OF_BIT_IN_WORD at once */
            pHcr->segmentInfo.segmentOffset = segmentOffset;
            codewordOffset += NUMBER_OF_BIT_IN_WORD;                          /* add NUMBER_OF_BIT_IN_WORD at once */
            codewordOffset = ModuloValue(codewordOffset,*pNumSegment);        /* index of the current codeword lies within modulo range */
            pHcr->nonPcwSideinfo.codewordOffset = codewordOffset;
          }
        } /* end of bitfield word loop */

        /* decrement codeword - pointer */
        codewordOffsetBase -= 1;
        codewordOffsetBase = ModuloValue(codewordOffsetBase,*pNumSegment);    /* index of the current codeword base lies within modulo range */

        /* rotate numSegment bits in codewordBitfield */
        /* rotation of *numSegment bits in bitfield of codewords (circle-rotation) */
        /* get last valid bit */
        tempBit = pCodewordBitfield[*pNumWordForBitfield-1] & (1 << (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord));
        tempBit = tempBit >> (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord);

        /* write zero into place where tempBit was fetched from */
        pCodewordBitfield[*pNumWordForBitfield-1] = pCodewordBitfield[*pNumWordForBitfield-1] & ~(1 << (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord));

        /* rotate last valid word */
        pCodewordBitfield[*pNumWordForBitfield-1] = pCodewordBitfield[*pNumWordForBitfield-1] >> 1;

        /* transfare carry bit 0 from current word into bitposition 31 from next word and rotate current word */
        for ( bitfieldWord = *pNumWordForBitfield-2; bitfieldWord > -1 ; bitfieldWord-- ) {
          /* get carry (=bit at position 0) from current word */
          carry = pCodewordBitfield[bitfieldWord] & 1;

          /* put the carry bit at position 31 into word right from current word */
          pCodewordBitfield[bitfieldWord+1] = pCodewordBitfield[bitfieldWord+1] | (carry << (NUMBER_OF_BIT_IN_WORD-1));

          /* shift current word */
          pCodewordBitfield[bitfieldWord] = pCodewordBitfield[bitfieldWord] >> 1;
        }

        /* put tempBit into free bit-position 31 from first word */
        pCodewordBitfield[0] = pCodewordBitfield[0] | (tempBit << (NUMBER_OF_BIT_IN_WORD-1));

      } /* end of trial loop */

      /* toggle read direction */
      pHcr->segmentInfo.readDirection = ToggleReadDirection(pHcr->segmentInfo.readDirection);

    }
    /* end of set loop */

    /* all non-PCWs of this spectrum are decoded */
  }

  /* all PCWs and all non PCWs are decoded. They are unbacksorted in output buffer. Here is the Interface with comparing QSCs to asm decoding */
}


/*---------------------------------------------------------------------------------------------
     description:   This function prepares the bitfield used for the
                    segments. The list is set up once to be used in all following sets. If a
                    segment is decoded empty, the according bit from the Bitfield is removed.
-----------------------------------------------------------------------------------------------
        return:     numValidSegment = the number of valid segments
-------------------------------------------------------------------------------------------- */
static UINT InitSegmentBitfield(UINT   *pNumSegment,
                                SCHAR  *pRemainingBitsInSegment,
                                UINT   *pSegmentBitfield,
                                UCHAR  *pNumWordForBitfield,
                                USHORT *pNumBitValidInLastWord)
{
  SHORT   i;
  USHORT  r;
  UCHAR   bitfieldWord;
  UINT    tempWord;
  USHORT  numValidSegment;

  *pNumWordForBitfield = ((*pNumSegment-1) >> THIRTYTWO_LOG_DIV_TWO_LOG) + 1;

  /* loop over all words, which are completely used or only partial */
  /* bit in pSegmentBitfield is zero if segment is empty; bit in pSegmentBitfield is one if segment is not empty */
  numValidSegment = 0;
  *pNumBitValidInLastWord = *pNumSegment;

  /* loop over words */
  for ( bitfieldWord=0; bitfieldWord < *pNumWordForBitfield - 1; bitfieldWord++ ) {
    tempWord = 0xFFFFFFFF;                                                  /* set ones */
    r = bitfieldWord << THIRTYTWO_LOG_DIV_TWO_LOG;
    for ( i=0; i < NUMBER_OF_BIT_IN_WORD; i++) {
      if ( pRemainingBitsInSegment[r + i] == 0 ) {
        tempWord = tempWord & ~(1 << (NUMBER_OF_BIT_IN_WORD-1-i));          /* set a zero at bit number (NUMBER_OF_BIT_IN_WORD-1-i) in tempWord */
      }
      else {
        numValidSegment += 1;                                               /* count segments which are not empty */
      }
    }
    pSegmentBitfield[bitfieldWord] = tempWord;                              /* store result */
    *pNumBitValidInLastWord -= NUMBER_OF_BIT_IN_WORD;                       /* calculate number of zeros on LSB side in the last word */
  }


  /* calculate last word: prepare special tempWord */
  tempWord = 0xFFFFFFFF;
  for ( i=0; i < ( NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord ); i++ ) {
    tempWord = tempWord & ~(1 << i);                                        /* clear bit i in tempWord */
  }

  /* calculate last word */
  r = bitfieldWord << THIRTYTWO_LOG_DIV_TWO_LOG;
  for ( i=0; i<*pNumBitValidInLastWord; i++) {
    if ( pRemainingBitsInSegment[r + i] == 0 ) {
      tempWord = tempWord & ~(1 << (NUMBER_OF_BIT_IN_WORD-1-i));            /* set a zero at bit number (NUMBER_OF_BIT_IN_WORD-1-i) in tempWord */
    }
    else {
      numValidSegment += 1;                                                 /* count segments which are not empty */
    }
  }
  pSegmentBitfield[bitfieldWord] = tempWord;                                /* store result */



  return numValidSegment;
}


/*---------------------------------------------------------------------------------------------
  description:  This function sets up sideinfo for the non-PCW decoder (for the current set).
---------------------------------------------------------------------------------------------*/
static void InitNonPCWSideInformationForCurrentSet(H_HCR_INFO pHcr)
{
  USHORT     i,k;
  UCHAR      codebookDim;
  UINT       startNode;

  UCHAR     *pCodebook                           =   pHcr->nonPcwSideinfo.pCodebook;
  UINT      *iNode                               =   pHcr->nonPcwSideinfo.iNode;
  UCHAR     *pCntSign                            =   pHcr->nonPcwSideinfo.pCntSign;
  USHORT    *iResultPointer                      =   pHcr->nonPcwSideinfo.iResultPointer;
  UINT      *pEscapeSequenceInfo                 =   pHcr->nonPcwSideinfo.pEscapeSequenceInfo;
  SCHAR     *pSta                                =   pHcr->nonPcwSideinfo.pSta;
  USHORT    *pNumExtendedSortedCodewordInSection =   pHcr->sectionInfo.pNumExtendedSortedCodewordInSection;
  int        numExtendedSortedCodewordInSectionIdx =   pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx;
  UCHAR     *pExtendedSortedCodebook             =   pHcr->sectionInfo.pExtendedSortedCodebook;
  int        extendedSortedCodebookIdx           =   pHcr->sectionInfo.extendedSortedCodebookIdx;
  USHORT    *pNumExtendedSortedSectionsInSets    =   pHcr->sectionInfo.pNumExtendedSortedSectionsInSets;
  int        numExtendedSortedSectionsInSetsIdx  =   pHcr->sectionInfo.numExtendedSortedSectionsInSetsIdx;
  FIXP_DBL  *pQuantizedSpectralCoefficients      =   SPEC_LONG(pHcr->decInOut.pQuantizedSpectralCoefficientsBase);
  int        quantizedSpectralCoefficientsIdx    =   pHcr->decInOut.quantizedSpectralCoefficientsIdx;
  const UCHAR     *pCbDimension                  =   pHcr->tableInfo.pCbDimension;
  int iterationCounter = 0;

  /* loop over number of extended sorted sections in the current set so all codewords sideinfo variables within this set can be prepared for decoding */
  for ( i=pNumExtendedSortedSectionsInSets[numExtendedSortedSectionsInSetsIdx]; i != 0; i-- ) {

    codebookDim = pCbDimension[pExtendedSortedCodebook[extendedSortedCodebookIdx]];
    startNode   = *aHuffTable[pExtendedSortedCodebook[extendedSortedCodebookIdx]];
    
    for ( k = pNumExtendedSortedCodewordInSection[numExtendedSortedCodewordInSectionIdx]; k != 0; k-- ) {
      iterationCounter++;
      if (iterationCounter > (1024>>2)) {
        return;
      }
      *pSta++                 = aCodebook2StartInt[pExtendedSortedCodebook[extendedSortedCodebookIdx]];
      *pCodebook++            = pExtendedSortedCodebook[extendedSortedCodebookIdx];
      *iNode++                = startNode;
      *pCntSign++             = 0;
      *iResultPointer++       = quantizedSpectralCoefficientsIdx;
      *pEscapeSequenceInfo++  = 0;
      quantizedSpectralCoefficientsIdx += codebookDim;                     /* update pointer by codebookDim --> point to next starting value for writing out */
      if (quantizedSpectralCoefficientsIdx >= 1024) {
        return;
      }
    }
    numExtendedSortedCodewordInSectionIdx++;                               /* inc ptr for next ext sort sec in current set */
    extendedSortedCodebookIdx++;                                           /* inc ptr for next ext sort sec in current set */
    if (numExtendedSortedCodewordInSectionIdx >= (MAX_SFB_HCR+MAX_HCR_SETS) || extendedSortedCodebookIdx >= (MAX_SFB_HCR+MAX_HCR_SETS)) {
      return;
    }
  }
  numExtendedSortedSectionsInSetsIdx++;                                    /* inc ptr for next set of non-PCWs */
  if (numExtendedSortedCodewordInSectionIdx >= (MAX_SFB_HCR+MAX_HCR_SETS)) {
    return;
  }

  /* Write back indexes */
  pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx = numExtendedSortedCodewordInSectionIdx;
  pHcr->sectionInfo.extendedSortedCodebookIdx = extendedSortedCodebookIdx;
  pHcr->sectionInfo.numExtendedSortedSectionsInSetsIdx = numExtendedSortedSectionsInSetsIdx;
  pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx = numExtendedSortedCodewordInSectionIdx;
  pHcr->decInOut.quantizedSpectralCoefficientsIdx = quantizedSpectralCoefficientsIdx;
}


/*---------------------------------------------------------------------------------------------
     description: This function returns the input value if the value is in the
                  range of bufferlength. If <input> is smaller, one bufferlength is added,
                  if <input> is bigger one bufferlength is subtracted.
-----------------------------------------------------------------------------------------------
        return:   modulo result
-------------------------------------------------------------------------------------------- */
static INT ModuloValue(INT input, INT bufferlength)
{
  if ( input > (bufferlength - 1) ) {
    return (input - bufferlength);
  }
  if ( input < 0 ) {
    return (input + bufferlength);
  }
  return input;
}


/*---------------------------------------------------------------------------------------------
     description: This function clears a bit from current bitfield and
                  switches off the statemachine.

                  A bit is cleared in two cases:
                  a) a codeword is decoded, then a bit is cleared in codeword bitfield
                  b) a segment is decoded empty, then a bit is cleared in segment bitfield
-------------------------------------------------------------------------------------------- */
static void ClearBitFromBitfield(STATEFUNC *ptrState,
                                 UINT   offset,
                                 UINT  *pBitfield)
{
  UINT  numBitfieldWord;
  UINT  numBitfieldBit;

  /* get both values needed for clearing the bit */
  numBitfieldWord = offset >> THIRTYTWO_LOG_DIV_TWO_LOG;                      /* int   = wordNr */
  numBitfieldBit  = offset - (numBitfieldWord << THIRTYTWO_LOG_DIV_TWO_LOG);  /* fract = bitNr  */

  /* clear a bit in bitfield */
  pBitfield[numBitfieldWord] = pBitfield[numBitfieldWord] & ~(1 << (NUMBER_OF_BIT_IN_WORD-1 - numBitfieldBit));

  /* switch off state machine because codeword is decoded and/or because segment is empty */
  *ptrState = NULL;
}



/* =========================================================================================
                              the states of the statemachine
   ========================================================================================= */


/*---------------------------------------------------------------------------------------------
     description:  Decodes the body of a codeword. This State is used for codebooks 1,2,5 and 6.
                   No sign bits are decoded, because the table of the quantized spectral values
                   has got a valid sign at the quantized spectral lines.
-----------------------------------------------------------------------------------------------
        output:   Two or four quantizes spectral values written at position where pResultPointr
                  points to
-----------------------------------------------------------------------------------------------
        return:   0
-------------------------------------------------------------------------------------------- */
UINT Hcr_State_BODY_ONLY(HANDLE_FDK_BITSTREAM bs, void *ptr)
{
  H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
  UINT        *pSegmentBitfield;
  UINT        *pCodewordBitfield;
  UINT         segmentOffset;
  FIXP_DBL    *pResultBase;
  UINT        *iNode;
  USHORT      *iResultPointer;
  UINT         codewordOffset;
  UINT         branchNode;
  UINT         branchValue;
  UINT         iQSC;
  UINT         treeNode;
  UCHAR        carryBit;
  USHORT      *pLeftStartOfSegment;
  USHORT      *pRightStartOfSegment;
  SCHAR       *pRemainingBitsInSegment;
  UCHAR        readDirection;
  UCHAR       *pCodebook;
  UCHAR        dimCntr;
  const UINT  *pCurrentTree;
  const UCHAR *pCbDimension;
  const SCHAR *pQuantVal;
  const SCHAR *pQuantValBase;

  pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
  pLeftStartOfSegment     = pHcr->segmentInfo.pLeftStartOfSegment;
  pRightStartOfSegment    = pHcr->segmentInfo.pRightStartOfSegment;
  readDirection           = pHcr->segmentInfo.readDirection;
  pSegmentBitfield        = pHcr->segmentInfo.pSegmentBitfield;
  pCodewordBitfield       = pHcr->segmentInfo.pCodewordBitfield;
  segmentOffset           = pHcr->segmentInfo.segmentOffset;

  pCodebook               = pHcr->nonPcwSideinfo.pCodebook;
  iNode                   = pHcr->nonPcwSideinfo.iNode;
  pResultBase             = pHcr->nonPcwSideinfo.pResultBase;
  iResultPointer          = pHcr->nonPcwSideinfo.iResultPointer;
  codewordOffset          = pHcr->nonPcwSideinfo.codewordOffset;

  pCbDimension            = pHcr->tableInfo.pCbDimension;

  treeNode                = iNode[codewordOffset];
  pCurrentTree            = aHuffTable[pCodebook[codewordOffset]];


  for ( ; pRemainingBitsInSegment[segmentOffset] > 0 ; pRemainingBitsInSegment[segmentOffset] -= 1 ) {

    carryBit = HcrGetABitFromBitstream( bs,
                                       &pLeftStartOfSegment[segmentOffset],
                                       &pRightStartOfSegment[segmentOffset],
                                        readDirection);

    CarryBitToBranchValue(carryBit,                                                         /* make a step in decoding tree */
                          treeNode,
                          &branchValue,
                          &branchNode);

    /* if end of branch reached write out lines and count bits needed for sign, otherwise store node in codeword sideinfo */
    if ((branchNode & TEST_BIT_10) == TEST_BIT_10) {                                        /* test bit 10 ; ==> body is complete */
      pQuantValBase = aQuantTable[pCodebook[codewordOffset]];                               /* get base address of quantized values belonging to current codebook */
      pQuantVal = pQuantValBase + branchValue;                                              /* set pointer to first valid line [of 2 or 4 quantized values] */

      iQSC = iResultPointer[codewordOffset];                                               /* get position of first line for writing out result */

      for ( dimCntr = pCbDimension[pCodebook[codewordOffset]]; dimCntr != 0; dimCntr-- ) {
        pResultBase[iQSC++] = (FIXP_DBL)*pQuantVal++;                                                             /* write out 2 or 4 lines into spectrum; no Sign bits available in this state */
      }

      ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
                           segmentOffset,
                           pCodewordBitfield);                                              /* clear a bit in bitfield and switch off statemachine */
      pRemainingBitsInSegment[segmentOffset] -= 1;                                          /* last reinitialzation of for loop counter (see above) is done here */
      break;                                                                                /* end of branch in tree reached  i.e. a whole nonPCW-Body is decoded */
    }
    else { /* body is not decoded completely: */
      treeNode = *(pCurrentTree + branchValue);                                             /* update treeNode for further step in decoding tree */
    }
  }
  iNode[codewordOffset] = treeNode;                                                         /* store updated treeNode because maybe decoding of codeword body not finished yet */

  if ( pRemainingBitsInSegment[segmentOffset] <= 0 ) {
    ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
                         segmentOffset,
                         pSegmentBitfield);                                                 /* clear a bit in bitfield and switch off statemachine */

#if STATE_MACHINE_ERROR_CHECK
    if ( pRemainingBitsInSegment[segmentOffset] < 0 ) {
      pHcr->decInOut.errorLog |= STATE_ERROR_BODY_ONLY;
      return                                 BODY_ONLY;
    }
#endif
  }

  return STOP_THIS_STATE;
}


/*---------------------------------------------------------------------------------------------
     description: Decodes the codeword body, writes out result and counts the number of quantized
                  spectral values, which are different form zero. For those values sign bits are
                  needed.

                  If sign bit counter cntSign is different from zero, switch to next state to
                  decode sign Bits there.
                  If sign bit counter cntSign is zero, no sign bits are needed and codeword is
                  decoded.
-----------------------------------------------------------------------------------------------
        output:   Two or four written quantizes spectral values written at position where
                  pResultPointr points to. The signs of those lines may be wrong. If the signs
                  [on just one signle sign] is wrong, the next state will correct it.
-----------------------------------------------------------------------------------------------
        return:   0
-------------------------------------------------------------------------------------------- */
UINT Hcr_State_BODY_SIGN__BODY(HANDLE_FDK_BITSTREAM bs, void *ptr)
{
  H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
  SCHAR       *pRemainingBitsInSegment;
  USHORT      *pLeftStartOfSegment;
  USHORT      *pRightStartOfSegment;
  UCHAR        readDirection;
  UINT        *pSegmentBitfield;
  UINT        *pCodewordBitfield;
  UINT         segmentOffset;

  UCHAR       *pCodebook;
  UINT        *iNode;
  UCHAR       *pCntSign;
  FIXP_DBL    *pResultBase;
  USHORT      *iResultPointer;
  UINT         codewordOffset;

  UINT         iQSC;
  UINT         cntSign;
  UCHAR        dimCntr;
  UCHAR        carryBit;
  SCHAR       *pSta;
  UINT         treeNode;
  UINT         branchValue;
  UINT         branchNode;
  const UCHAR *pCbDimension;
  const UINT  *pCurrentTree;
  const SCHAR *pQuantValBase;
  const SCHAR *pQuantVal;

  pRemainingBitsInSegment          = pHcr->segmentInfo.pRemainingBitsInSegment;
  pLeftStartOfSegment              = pHcr->segmentInfo.pLeftStartOfSegment;
  pRightStartOfSegment             = pHcr->segmentInfo.pRightStartOfSegment;
  readDirection                    = pHcr->segmentInfo.readDirection;
  pSegmentBitfield                 = pHcr->segmentInfo.pSegmentBitfield;
  pCodewordBitfield                = pHcr->segmentInfo.pCodewordBitfield;
  segmentOffset                    = pHcr->segmentInfo.segmentOffset;

  pCodebook                        = pHcr->nonPcwSideinfo.pCodebook;
  iNode                            = pHcr->nonPcwSideinfo.iNode;
  pCntSign                         = pHcr->nonPcwSideinfo.pCntSign;
  pResultBase                      = pHcr->nonPcwSideinfo.pResultBase;
  iResultPointer                   = pHcr->nonPcwSideinfo.iResultPointer;
  codewordOffset                   = pHcr->nonPcwSideinfo.codewordOffset;
  pSta                             = pHcr->nonPcwSideinfo.pSta;

  pCbDimension                     = pHcr->tableInfo.pCbDimension;

  treeNode                         = iNode[codewordOffset];
  pCurrentTree                     = aHuffTable[pCodebook[codewordOffset]];


  for ( ; pRemainingBitsInSegment[segmentOffset] > 0 ; pRemainingBitsInSegment[segmentOffset] -= 1 ) {

    carryBit = HcrGetABitFromBitstream( bs,
                                       &pLeftStartOfSegment[segmentOffset],
                                       &pRightStartOfSegment[segmentOffset],
                                        readDirection);

    CarryBitToBranchValue(carryBit,                                                         /* make a step in decoding tree */
                          treeNode,
                          &branchValue,
                          &branchNode);

    /* if end of branch reached write out lines and count bits needed for sign, otherwise store node in codeword sideinfo */
    if ((branchNode & TEST_BIT_10) == TEST_BIT_10) {                                        /* test bit 10 ; if set body complete */
      /* body completely decoded; branchValue is valid, set pQuantVal to first (of two or four) quantized spectral coefficients */
      pQuantValBase = aQuantTable[pCodebook[codewordOffset]];                               /* get base address of quantized values belonging to current codebook */
      pQuantVal = pQuantValBase + branchValue;                                              /* set pointer to first valid line [of 2 or 4 quantized values] */

      iQSC = iResultPointer[codewordOffset];                                                /* get position of first line for writing result */

      /* codeword decoding result is written out here: Write out 2 or 4 quantized spectral values with probably */
      /* wrong sign and count number of values which are different from zero for sign bit decoding [which happens in next state] */
      cntSign = 0;
      for ( dimCntr = pCbDimension[pCodebook[codewordOffset]]; dimCntr != 0; dimCntr-- ) {
        pResultBase[iQSC++] = (FIXP_DBL)*pQuantVal;                                                               /* write quant. spec. coef. into spectrum */
        if ( *pQuantVal++ != 0 ) {
          cntSign += 1;
        }
      }

      if ( cntSign == 0 ) {
        ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
                             segmentOffset,
                             pCodewordBitfield);                                            /* clear a bit in bitfield and switch off statemachine */
      }
      else {
        pCntSign[codewordOffset] = cntSign;                                                 /* write sign count result into codewordsideinfo of current codeword */
        pSta[codewordOffset] = BODY_SIGN__SIGN;                                             /* change state */
        pHcr->nonPcwSideinfo.pState = aStateConstant2State[pSta[codewordOffset]];           /* get state from separate array of cw-sideinfo */
      }
      pRemainingBitsInSegment[segmentOffset] -= 1;                                          /* last reinitialzation of for loop counter (see above) is done here */
      break;                                                                                /* end of branch in tree reached  i.e. a whole nonPCW-Body is decoded */
    }
    else {/* body is not decoded completely: */
      treeNode = *(pCurrentTree + branchValue);                                             /* update treeNode for further step in decoding tree */
    }
  }
  iNode[codewordOffset] = treeNode;                                                         /* store updated treeNode because maybe decoding of codeword body not finished yet */

  if ( pRemainingBitsInSegment[segmentOffset] <= 0 ) {
    ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
                         segmentOffset,
                         pSegmentBitfield);                                                 /* clear a bit in bitfield and switch off statemachine */

#if STATE_MACHINE_ERROR_CHECK
    if ( pRemainingBitsInSegment[segmentOffset] < 0 ) {
      pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN__BODY;
      return                                 BODY_SIGN__BODY;
    }
#endif
  }

  return STOP_THIS_STATE;
}


/*---------------------------------------------------------------------------------------------
     description: This state decodes the sign bits belonging to a codeword. The state is called
                  as often in different "trials" until pCntSgn[codewordOffset] is zero.
-----------------------------------------------------------------------------------------------
        output:   The two or four quantizes spectral values (written in previous state) have
                  now the correct sign.
-----------------------------------------------------------------------------------------------
        return:   0
-------------------------------------------------------------------------------------------- */
UINT Hcr_State_BODY_SIGN__SIGN(HANDLE_FDK_BITSTREAM bs, void *ptr)
{
  H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
  SCHAR       *pRemainingBitsInSegment;
  USHORT      *pLeftStartOfSegment;
  USHORT      *pRightStartOfSegment;
  UCHAR        readDirection;
  UINT        *pSegmentBitfield;
  UINT        *pCodewordBitfield;
  UINT         segmentOffset;

  UCHAR       *pCntSign;
  FIXP_DBL    *pResultBase;
  USHORT      *iResultPointer;
  UINT         codewordOffset;
  UCHAR        carryBit;
  UINT         iQSC;
  UCHAR        cntSign;

  pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
  pLeftStartOfSegment     = pHcr->segmentInfo.pLeftStartOfSegment;
  pRightStartOfSegment    = pHcr->segmentInfo.pRightStartOfSegment;
  readDirection           = pHcr->segmentInfo.readDirection;
  pSegmentBitfield        = pHcr->segmentInfo.pSegmentBitfield;
  pCodewordBitfield       = pHcr->segmentInfo.pCodewordBitfield;
  segmentOffset           = pHcr->segmentInfo.segmentOffset;

  pCntSign                = pHcr->nonPcwSideinfo.pCntSign;
  pResultBase             = pHcr->nonPcwSideinfo.pResultBase;
  iResultPointer          = pHcr->nonPcwSideinfo.iResultPointer;
  codewordOffset          = pHcr->nonPcwSideinfo.codewordOffset;
  iQSC                    = iResultPointer[codewordOffset];
  cntSign                 = pCntSign[codewordOffset];



  /* loop for sign bit decoding */
  for ( ; pRemainingBitsInSegment[segmentOffset] > 0 ; pRemainingBitsInSegment[segmentOffset] -= 1 ) {

    carryBit = HcrGetABitFromBitstream( bs,
                                       &pLeftStartOfSegment[segmentOffset],
                                       &pRightStartOfSegment[segmentOffset],
                                        readDirection);
    cntSign -= 1;                                                                           /* decrement sign counter because one sign bit has been read */

    /* search for a line (which was decoded in previous state) which is not zero. [This value will get a sign] */
    while ( pResultBase[iQSC] == (FIXP_DBL)0 ) {
      iQSC++;                                                                               /* points to current value different from zero */
      if (iQSC >= 1024) {
        return BODY_SIGN__SIGN;
      }
    }

    /* put sign together with line; if carryBit is zero, the sign is ok already; no write operation necessary in this case */
    if ( carryBit != 0 ) {
      pResultBase[iQSC] = -pResultBase[iQSC];                                               /* carryBit = 1 --> minus */
    }

    iQSC++;                                                                                 /* update pointer to next (maybe valid) value */

    if ( cntSign == 0 ) {                                                                   /* if (cntSign==0)  ==>  set state CODEWORD_DECODED */
      ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
                           segmentOffset,
                           pCodewordBitfield);                                              /* clear a bit in bitfield and switch off statemachine */
      pRemainingBitsInSegment[segmentOffset] -= 1;                                          /* last reinitialzation of for loop counter (see above) is done here */
      break;                                                                                /* whole nonPCW-Body and according sign bits are decoded */
     }
  }
  pCntSign[codewordOffset] = cntSign;
  iResultPointer[codewordOffset] = iQSC;                                                    /* store updated pResultPointer */

  if ( pRemainingBitsInSegment[segmentOffset] <= 0 ) {
    ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
                         segmentOffset,
                         pSegmentBitfield);                                                 /* clear a bit in bitfield and switch off statemachine */

#if STATE_MACHINE_ERROR_CHECK
    if ( pRemainingBitsInSegment[segmentOffset] < 0 ) {
      pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN__SIGN;
      return                                 BODY_SIGN__SIGN;
    }
#endif
  }

  return STOP_THIS_STATE;
}


/*---------------------------------------------------------------------------------------------
     description: Decodes the codeword body in case of codebook is 11. Writes out resulting
                  two or four lines [with probably wrong sign] and counts the number of
                  lines, which are different form zero. This information is needed in next
                  state where sign bits will be decoded, if necessary.
                  If sign bit counter cntSign is zero, no sign bits are needed and codeword is
                  decoded completely.
-----------------------------------------------------------------------------------------------
        output:   Two lines (quantizes spectral coefficients) which are probably wrong. The
                  sign may be wrong and if one or two values is/are 16, the following states
                  will decode the escape sequence to correct the values which are wirtten here.
-----------------------------------------------------------------------------------------------
        return:   0
-------------------------------------------------------------------------------------------- */
UINT Hcr_State_BODY_SIGN_ESC__BODY(HANDLE_FDK_BITSTREAM bs, void *ptr)
{
  H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
  SCHAR       *pRemainingBitsInSegment;
  USHORT      *pLeftStartOfSegment;
  USHORT      *pRightStartOfSegment;
  UCHAR        readDirection;
  UINT        *pSegmentBitfield;
  UINT        *pCodewordBitfield;
  UINT         segmentOffset;

  UINT        *iNode;
  UCHAR       *pCntSign;
  FIXP_DBL    *pResultBase;
  USHORT      *iResultPointer;
  UINT         codewordOffset;

  UCHAR        carryBit;
  UINT         iQSC;
  UINT         cntSign;
  UINT         dimCntr;
  UINT         treeNode;
  SCHAR       *pSta;
  UINT         branchNode;
  UINT         branchValue;
  const UINT  *pCurrentTree;
  const SCHAR *pQuantValBase;
  const SCHAR *pQuantVal;

  pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
  pLeftStartOfSegment     = pHcr->segmentInfo.pLeftStartOfSegment;
  pRightStartOfSegment    = pHcr->segmentInfo.pRightStartOfSegment;
  readDirection           = pHcr->segmentInfo.readDirection;
  pSegmentBitfield        = pHcr->segmentInfo.pSegmentBitfield;
  pCodewordBitfield       = pHcr->segmentInfo.pCodewordBitfield;
  segmentOffset           = pHcr->segmentInfo.segmentOffset;

  iNode                   = pHcr->nonPcwSideinfo.iNode;
  pCntSign                = pHcr->nonPcwSideinfo.pCntSign;
  pResultBase             = pHcr->nonPcwSideinfo.pResultBase;
  iResultPointer          = pHcr->nonPcwSideinfo.iResultPointer;
  codewordOffset          = pHcr->nonPcwSideinfo.codewordOffset;
  pSta                    = pHcr->nonPcwSideinfo.pSta;

  treeNode                = iNode[codewordOffset];
  pCurrentTree            = aHuffTable[ESCAPE_CODEBOOK];


  for ( ; pRemainingBitsInSegment[segmentOffset] > 0 ; pRemainingBitsInSegment[segmentOffset] -= 1 ) {

    carryBit = HcrGetABitFromBitstream( bs,
                                       &pLeftStartOfSegment[segmentOffset],
                                       &pRightStartOfSegment[segmentOffset],
                                        readDirection);

    /* make a step in tree */
    CarryBitToBranchValue(carryBit,
                          treeNode,
                          &branchValue,
                          &branchNode);

    /* if end of branch reached write out lines and count bits needed for sign, otherwise store node in codeword sideinfo */
    if ((branchNode & TEST_BIT_10) == TEST_BIT_10) {                                        /* test bit 10 ; if set body complete */

      /* body completely decoded; branchValue is valid */
      /* set pQuantVol to first (of two or four) quantized spectral coefficients */
      pQuantValBase = aQuantTable[ESCAPE_CODEBOOK];                                        /* get base address of quantized values belonging to current codebook */
      pQuantVal = pQuantValBase + branchValue;                                             /* set pointer to first valid line [of 2 or 4 quantized values] */

      /* make backup from original resultPointer in node storage for state BODY_SIGN_ESC__SIGN */
      iNode[codewordOffset] = iResultPointer[codewordOffset];

      /* get position of first line for writing result */
      iQSC = iResultPointer[codewordOffset];

      /* codeword decoding result is written out here: Write out 2 or 4 quantized spectral values with probably */
      /* wrong sign and count number of values which are different from zero for sign bit decoding [which happens in next state] */
      cntSign = 0;

      for ( dimCntr = DIMENSION_OF_ESCAPE_CODEBOOK; dimCntr != 0; dimCntr-- ) {
        pResultBase[iQSC++] = (FIXP_DBL)*pQuantVal;                                                               /* write quant. spec. coef. into spectrum */
        if ( *pQuantVal++ != 0 ) {
          cntSign += 1;
        }
      }

      if ( cntSign == 0 ) {
        ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
                             segmentOffset,
                             pCodewordBitfield);                                           /* clear a bit in bitfield and switch off statemachine */
        /* codeword decoded */
      }
      else {
        /* write sign count result into codewordsideinfo of current codeword */
        pCntSign[codewordOffset] = cntSign;
        pSta[codewordOffset] = BODY_SIGN_ESC__SIGN;                 /* change state */
        pHcr->nonPcwSideinfo.pState = aStateConstant2State[pSta[codewordOffset]];           /* get state from separate array of cw-sideinfo */
      }
      pRemainingBitsInSegment[segmentOffset] -= 1;                                          /* the last reinitialzation of for loop counter (see above) is done here */
      break;                                                                                /* end of branch in tree reached  i.e. a whole nonPCW-Body is decoded */
    }
    else { /* body is not decoded completely: */
      /* update treeNode for further step in decoding tree and store updated treeNode because maybe no more bits left in segment */
      treeNode = *(pCurrentTree + branchValue);
      iNode[codewordOffset] = treeNode;
    }
  }

  if ( pRemainingBitsInSegment[segmentOffset] <= 0 ) {
    ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
                         segmentOffset,
                         pSegmentBitfield);                                   /* clear a bit in bitfield and switch off statemachine */

#if STATE_MACHINE_ERROR_CHECK
    if ( pRemainingBitsInSegment[segmentOffset] < 0 ) {
      pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__BODY;
      return                                 BODY_SIGN_ESC__BODY;
    }
#endif
  }

  return STOP_THIS_STATE;
}


/*---------------------------------------------------------------------------------------------
     description: This state decodes the sign bits, if a codeword of codebook 11 needs some.
                  A flag named 'flagB' in codeword sideinfo is set, if the second line of
                  quantized spectral values is 16. The 'flagB' is used in case of decoding
                  of a escape sequence is necessary as far as the second line is concerned.

                  If only the first line needs an escape sequence, the flagB is cleared.
                  If only the second line needs an escape sequence, the flagB is not used.

                  For storing sideinfo in case of escape sequence decoding one single word
                  can be used for both escape sequences because they are decoded not at the
                  same time:


                  bit 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
                      ===== == == =========== =========== ===================================
                      ^      ^  ^         ^            ^                    ^
                      |      |  |         |            |                    |
                    res. flagA  flagB  escapePrefixUp  escapePrefixDown  escapeWord

-----------------------------------------------------------------------------------------------
        output:   Two lines with correct sign. If one or two values is/are 16, the lines are
                  not valid, otherwise they are.
-----------------------------------------------------------------------------------------------
        return:   0
-------------------------------------------------------------------------------------------- */
UINT Hcr_State_BODY_SIGN_ESC__SIGN(HANDLE_FDK_BITSTREAM bs, void *ptr)
{
  H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
  SCHAR     *pRemainingBitsInSegment;
  USHORT    *pLeftStartOfSegment;
  USHORT    *pRightStartOfSegment;
  UCHAR      readDirection;
  UINT      *pSegmentBitfield;
  UINT      *pCodewordBitfield;
  UINT       segmentOffset;

  UINT      *iNode;
  UCHAR     *pCntSign;
  FIXP_DBL  *pResultBase;
  USHORT    *iResultPointer;
  UINT      *pEscapeSequenceInfo;
  UINT       codewordOffset;

  UINT       iQSC;
  UCHAR      cntSign;
  UINT       flagA;
  UINT       flagB;
  UINT       flags;
  UCHAR      carryBit;
  SCHAR     *pSta;

  pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
  pLeftStartOfSegment     = pHcr->segmentInfo.pLeftStartOfSegment;
  pRightStartOfSegment    = pHcr->segmentInfo.pRightStartOfSegment;
  readDirection           = pHcr->segmentInfo.readDirection;
  pSegmentBitfield        = pHcr->segmentInfo.pSegmentBitfield;
  pCodewordBitfield       = pHcr->segmentInfo.pCodewordBitfield;
  segmentOffset           = pHcr->segmentInfo.segmentOffset;

  iNode                   = pHcr->nonPcwSideinfo.iNode;
  pCntSign                = pHcr->nonPcwSideinfo.pCntSign;
  pResultBase             = pHcr->nonPcwSideinfo.pResultBase;
  iResultPointer          = pHcr->nonPcwSideinfo.iResultPointer;
  pEscapeSequenceInfo     = pHcr->nonPcwSideinfo.pEscapeSequenceInfo;
  codewordOffset          = pHcr->nonPcwSideinfo.codewordOffset;
  pSta                    = pHcr->nonPcwSideinfo.pSta;

  iQSC                    = iResultPointer[codewordOffset];
  cntSign                 = pCntSign[codewordOffset];


  /* loop for sign bit decoding */
  for ( ; pRemainingBitsInSegment[segmentOffset] > 0 ; pRemainingBitsInSegment[segmentOffset] -= 1 ) {

    carryBit = HcrGetABitFromBitstream( bs,
                                       &pLeftStartOfSegment[segmentOffset],
                                       &pRightStartOfSegment[segmentOffset],
                                        readDirection);

    /* decrement sign counter because one sign bit has been read */
    cntSign -= 1;
    pCntSign[codewordOffset] = cntSign;

    /* get a quantized spectral value (which was decoded in previous state) which is not zero. [This value will get a sign] */
    while ( pResultBase[iQSC] == (FIXP_DBL)0 ) {
      iQSC++;
    }
    iResultPointer[codewordOffset] = iQSC;

    /* put negative sign together with quantized spectral value; if carryBit is zero, the sign is ok already; no write operation necessary in this case */
    if ( carryBit != 0 ) {
      pResultBase[iQSC] = - pResultBase[iQSC];                               /* carryBit = 1 --> minus */
    }
    iQSC++;                                                                  /* update index to next (maybe valid) value */
    iResultPointer[codewordOffset] = iQSC;

    if ( cntSign == 0 ) {
      /* all sign bits are decoded now */
      pRemainingBitsInSegment[segmentOffset] -= 1;                           /* last reinitialzation of for loop counter (see above) is done here */

      /* check decoded values if codeword is decoded: Check if one or two escape sequences 16 follow */

      /* step 0 */
      /* restore pointer to first decoded quantized value [ = original pResultPointr] from index iNode prepared in State_BODY_SIGN_ESC__BODY */
      iQSC = iNode[codewordOffset];

      /* step 1 */
      /* test first value if escape sequence follows */
      flagA = 0;                                                             /* for first possible escape sequence */
      if ( fixp_abs(pResultBase[iQSC++]) == (FIXP_DBL)ESCAPE_VALUE ) {
        flagA = 1;
      }

      /* step 2 */
      /* test second value if escape sequence follows */
      flagB = 0;                                                             /* for second possible escape sequence */
      if ( fixp_abs(pResultBase[iQSC]) == (FIXP_DBL)ESCAPE_VALUE ) {
        flagB = 1;
      }


      /* step 3 */
      /* evaluate flag result and go on if necessary */
      if ( !flagA && !flagB ) {
        ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
                             segmentOffset,
                             pCodewordBitfield);                             /* clear a bit in bitfield and switch off statemachine */
      }
      else {
        /* at least one of two lines is 16 */
        /* store both flags at correct positions in non PCW codeword sideinfo pEscapeSequenceInfo[codewordOffset] */
        flags = 0;
        flags =   flagA << POSITION_OF_FLAG_A;
        flags |= (flagB << POSITION_OF_FLAG_B);
        pEscapeSequenceInfo[codewordOffset] = flags;


        /* set next state */
        pSta[codewordOffset] = BODY_SIGN_ESC__ESC_PREFIX;
        pHcr->nonPcwSideinfo.pState = aStateConstant2State[pSta[codewordOffset]];           /* get state from separate array of cw-sideinfo */

        /* set result pointer to the first line of the two decoded lines */
        iResultPointer[codewordOffset] = iNode[codewordOffset];

        if ( !flagA && flagB ) {
          /* update pResultPointr ==> state Stat_BODY_SIGN_ESC__ESC_WORD writes to correct position. Second value is the one and only escape value */
          iQSC = iResultPointer[codewordOffset];
          iQSC++;
          iResultPointer[codewordOffset] = iQSC;
        }

      }     /* at least one of two lines is 16 */
      break;                                                                 /* nonPCW-Body at cb 11 and according sign bits are decoded */

    } /* if ( cntSign == 0 ) */
  } /* loop over remaining Bits in segment */

  if ( pRemainingBitsInSegment[segmentOffset] <= 0 ) {
    ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
                         segmentOffset,
                         pSegmentBitfield);                                  /* clear a bit in bitfield and switch off statemachine */

#if STATE_MACHINE_ERROR_CHECK
    if ( pRemainingBitsInSegment[segmentOffset] < 0 ) {
      pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__SIGN;
      return                                 BODY_SIGN_ESC__SIGN;
    }
#endif

  }
  return STOP_THIS_STATE;
}


/*---------------------------------------------------------------------------------------------
     description: Decode escape prefix of first or second escape sequence. The escape prefix
                  consists of ones. The following zero is also decoded here.
-----------------------------------------------------------------------------------------------
        output:   If the single separator-zero which follows the escape-prefix-ones is not yet decoded:
                    The value 'escapePrefixUp' in word pEscapeSequenceInfo[codewordOffset] is updated.

                  If the single separator-zero which follows the escape-prefix-ones is decoded:
                    Two updated values 'escapePrefixUp' and 'escapePrefixDown' in word
                    pEscapeSequenceInfo[codewordOffset]. This State is finished. Switch to next state.
-----------------------------------------------------------------------------------------------
        return:   0
-------------------------------------------------------------------------------------------- */
UINT Hcr_State_BODY_SIGN_ESC__ESC_PREFIX(HANDLE_FDK_BITSTREAM bs, void *ptr)
{
  H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
  SCHAR  *pRemainingBitsInSegment;
  USHORT *pLeftStartOfSegment;
  USHORT *pRightStartOfSegment;
  UCHAR   readDirection;
  UINT   *pSegmentBitfield;
  UINT    segmentOffset;
  UINT   *pEscapeSequenceInfo;
  UINT    codewordOffset;
  UCHAR   carryBit;
  UINT    escapePrefixUp;
  SCHAR  *pSta;

  pRemainingBitsInSegment          = pHcr->segmentInfo.pRemainingBitsInSegment;
  pLeftStartOfSegment              = pHcr->segmentInfo.pLeftStartOfSegment;
  pRightStartOfSegment             = pHcr->segmentInfo.pRightStartOfSegment;
  readDirection                    = pHcr->segmentInfo.readDirection;
  pSegmentBitfield                 = pHcr->segmentInfo.pSegmentBitfield;
  segmentOffset                    = pHcr->segmentInfo.segmentOffset;
  pEscapeSequenceInfo              = pHcr->nonPcwSideinfo.pEscapeSequenceInfo;
  codewordOffset                   = pHcr->nonPcwSideinfo.codewordOffset;
  pSta                             = pHcr->nonPcwSideinfo.pSta;

  escapePrefixUp  = (pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_PREFIX_UP) >> LSB_ESCAPE_PREFIX_UP;


  /* decode escape prefix */
  for ( ; pRemainingBitsInSegment[segmentOffset] > 0 ; pRemainingBitsInSegment[segmentOffset] -= 1 ) {

    carryBit = HcrGetABitFromBitstream( bs,
                                       &pLeftStartOfSegment[segmentOffset],
                                       &pRightStartOfSegment[segmentOffset],
                                        readDirection);

    /* count ones and store sum in escapePrefixUp */
    if ( carryBit == 1 ) {
      escapePrefixUp += 1;                                                  /* update conter for ones */

      /* store updated counter in sideinfo of current codeword */
      pEscapeSequenceInfo[codewordOffset] &= ~MASK_ESCAPE_PREFIX_UP;        /* delete old escapePrefixUp */
      escapePrefixUp <<= LSB_ESCAPE_PREFIX_UP;                              /* shift to correct position */
      pEscapeSequenceInfo[codewordOffset] |= escapePrefixUp;                /* insert new escapePrefixUp */
      escapePrefixUp >>= LSB_ESCAPE_PREFIX_UP;                              /* shift back down */
    }
    else {  /* separator [zero] reached */
      pRemainingBitsInSegment[segmentOffset] -= 1;                          /* last reinitialzation of for loop counter (see above) is done here */
      escapePrefixUp += 4;                                                  /* if escape_separator '0' appears, add 4 and ==> break */

      /* store escapePrefixUp in pEscapeSequenceInfo[codewordOffset] at bit position escapePrefixUp */
      pEscapeSequenceInfo[codewordOffset] &= ~MASK_ESCAPE_PREFIX_UP;        /* delete old escapePrefixUp */
      escapePrefixUp <<= LSB_ESCAPE_PREFIX_UP;                              /* shift to correct position */
      pEscapeSequenceInfo[codewordOffset] |= escapePrefixUp;                /* insert new escapePrefixUp */
      escapePrefixUp >>= LSB_ESCAPE_PREFIX_UP;                              /* shift back down */

      /* store escapePrefixUp in pEscapeSequenceInfo[codewordOffset] at bit position escapePrefixDown */
      pEscapeSequenceInfo[codewordOffset] &= ~MASK_ESCAPE_PREFIX_DOWN;      /* delete old escapePrefixDown */
      escapePrefixUp <<= LSB_ESCAPE_PREFIX_DOWN;                            /* shift to correct position */
      pEscapeSequenceInfo[codewordOffset] |= escapePrefixUp;                /* insert new escapePrefixDown */
      escapePrefixUp >>= LSB_ESCAPE_PREFIX_DOWN;                            /* shift back down */

      pSta[codewordOffset] = BODY_SIGN_ESC__ESC_WORD;                       /* set next state */
      pHcr->nonPcwSideinfo.pState = aStateConstant2State[pSta[codewordOffset]];           /* get state from separate array of cw-sideinfo */
      break;
    }
  }

  if ( pRemainingBitsInSegment[segmentOffset] <= 0 ) {
    ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
                         segmentOffset,
                         pSegmentBitfield);                                 /* clear a bit in bitfield and switch off statemachine */

#if STATE_MACHINE_ERROR_CHECK
    if ( pRemainingBitsInSegment[segmentOffset] < 0 ) {
      pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__ESC_PREFIX;
      return                                 BODY_SIGN_ESC__ESC_PREFIX;
    }
#endif
  }

  return STOP_THIS_STATE;
}


/*---------------------------------------------------------------------------------------------
     description: Decode escapeWord of escape sequence. If the escape sequence is decoded
                  completely, assemble quantized-spectral-escape-coefficient and replace the
                  previous decoded 16 by the new value.
                  Test flagB. If flagB is set, the second escape sequence must be decoded. If
                  flagB is not set, the codeword is decoded and the state machine is switched
                  off.
-----------------------------------------------------------------------------------------------
        output:   Two lines with valid sign. At least one of both lines has got the correct
                  value.
-----------------------------------------------------------------------------------------------
        return:   0
-------------------------------------------------------------------------------------------- */
UINT Hcr_State_BODY_SIGN_ESC__ESC_WORD(HANDLE_FDK_BITSTREAM bs, void *ptr)
{
  H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
  SCHAR     *pRemainingBitsInSegment;
  USHORT    *pLeftStartOfSegment;
  USHORT    *pRightStartOfSegment;
  UCHAR      readDirection;
  UINT      *pSegmentBitfield;
  UINT      *pCodewordBitfield;
  UINT       segmentOffset;

  FIXP_DBL  *pResultBase;
  USHORT    *iResultPointer;
  UINT      *pEscapeSequenceInfo;
  UINT       codewordOffset;

  UINT       escapeWord;
  UINT       escapePrefixDown;
  UINT       escapePrefixUp;
  UCHAR      carryBit;
  UINT       iQSC;
  INT        sign;
  UINT       flagA;
  UINT       flagB;
  SCHAR     *pSta;

  pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
  pLeftStartOfSegment     = pHcr->segmentInfo.pLeftStartOfSegment;
  pRightStartOfSegment    = pHcr->segmentInfo.pRightStartOfSegment;
  readDirection           = pHcr->segmentInfo.readDirection;
  pSegmentBitfield        = pHcr->segmentInfo.pSegmentBitfield;
  pCodewordBitfield       = pHcr->segmentInfo.pCodewordBitfield;
  segmentOffset           = pHcr->segmentInfo.segmentOffset;

  pResultBase             = pHcr->nonPcwSideinfo.pResultBase;
  iResultPointer          = pHcr->nonPcwSideinfo.iResultPointer;
  pEscapeSequenceInfo     = pHcr->nonPcwSideinfo.pEscapeSequenceInfo;
  codewordOffset          = pHcr->nonPcwSideinfo.codewordOffset;
  pSta                    = pHcr->nonPcwSideinfo.pSta;

  escapeWord       =  pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_WORD;
  escapePrefixDown = (pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_PREFIX_DOWN) >> LSB_ESCAPE_PREFIX_DOWN;


  /* decode escape word */
  for ( ; pRemainingBitsInSegment[segmentOffset] > 0 ; pRemainingBitsInSegment[segmentOffset] -= 1 ) {

    carryBit = HcrGetABitFromBitstream( bs,
                                       &pLeftStartOfSegment[segmentOffset],
                                       &pRightStartOfSegment[segmentOffset],
                                        readDirection);

    /* build escape word */
    escapeWord <<= 1;                                                       /* left shift previous decoded part of escapeWord by on bit */
    escapeWord = escapeWord | carryBit;                                     /* assemble escape word by bitwise or */

    /* decrement counter for length of escape word because one more bit was decoded */
    escapePrefixDown -= 1;

    /* store updated escapePrefixDown */
    pEscapeSequenceInfo[codewordOffset] &= ~MASK_ESCAPE_PREFIX_DOWN;        /* delete old escapePrefixDown */
    escapePrefixDown <<= LSB_ESCAPE_PREFIX_DOWN;                            /* shift to correct position */
    pEscapeSequenceInfo[codewordOffset] |= escapePrefixDown;                /* insert new escapePrefixDown */
    escapePrefixDown >>= LSB_ESCAPE_PREFIX_DOWN;                            /* shift back */


    /* store updated escapeWord */
    pEscapeSequenceInfo[codewordOffset] &= ~MASK_ESCAPE_WORD;               /* delete old escapeWord */
    pEscapeSequenceInfo[codewordOffset] |= escapeWord;                      /* insert new escapeWord */


    if ( escapePrefixDown == 0 ) {
      pRemainingBitsInSegment[segmentOffset] -= 1;                          /* last reinitialzation of for loop counter (see above) is done here */

      /* escape sequence decoded. Assemble escape-line and replace original line */

      /* step 0 */
      /* derive sign */
      iQSC = iResultPointer[codewordOffset];
      sign = (pResultBase[iQSC] >= (FIXP_DBL)0) ? 1 : -1;                                         /* get sign of escape value 16 */

      /* step 1 */
      /* get escapePrefixUp */
      escapePrefixUp = (pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_PREFIX_UP) >> LSB_ESCAPE_PREFIX_UP;

      /* step 2 */
      /* calculate escape value */
      pResultBase[iQSC] = (FIXP_DBL)(sign * (((INT) 1 << escapePrefixUp) + escapeWord));

      /* get both flags from sideinfo (flags are not shifted to the lsb-position) */
      flagA = pEscapeSequenceInfo[codewordOffset] & MASK_FLAG_A;
      flagB = pEscapeSequenceInfo[codewordOffset] & MASK_FLAG_B;

      /* step 3 */
      /* clear the whole escape sideinfo word */
      pEscapeSequenceInfo[codewordOffset] = 0;

      /* change state in dependence of flag flagB */
      if ( flagA != 0 ) {
        /* first escape sequence decoded; previous decoded 16 has been replaced by valid line */

        /* clear flagA in sideinfo word because this escape sequence has already beed decoded */
        pEscapeSequenceInfo[codewordOffset] &= ~MASK_FLAG_A;

        if ( flagB == 0 ) {
          ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
                               segmentOffset,
                               pCodewordBitfield);                          /* clear a bit in bitfield and switch off statemachine */
        }
        else {
          /* updated pointer to next and last 16 */
          iQSC++;
          iResultPointer[codewordOffset] = iQSC;

          /* change state */
          pSta[codewordOffset] = BODY_SIGN_ESC__ESC_PREFIX;
          pHcr->nonPcwSideinfo.pState = aStateConstant2State[pSta[codewordOffset]]; /* get state from separate array of cw-sideinfo */
        }
      }
      else {
        ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
                             segmentOffset,
                             pCodewordBitfield);                            /* clear a bit in bitfield and switch off statemachine */
      }
      break;
    }
  }

  if ( pRemainingBitsInSegment[segmentOffset] <= 0 ) {
    ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState),
                         segmentOffset,
                         pSegmentBitfield);                                 /* clear a bit in bitfield and switch off statemachine */

#if STATE_MACHINE_ERROR_CHECK
    if ( pRemainingBitsInSegment[segmentOffset] < 0 ) {
      pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__ESC_WORD;
      return                                 BODY_SIGN_ESC__ESC_WORD;
    }
#endif
  }

  return STOP_THIS_STATE;
}