aboutsummaryrefslogtreecommitdiffstats
path: root/fdk-aac/libFDK/src/FDK_lpc.cpp
blob: 7d7e6912db7eead0ea41bde66dece98acc868680 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:

You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.

You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */

/******************* Library for basic calculation routines ********************

   Author(s):   Manuel Jander

   Description: LPC related functions

*******************************************************************************/

#include "FDK_lpc.h"

/* Internal scaling of LPC synthesis to avoid overflow of filte states.
   This depends on the LPC order, because the LPC order defines the amount
   of MAC operations. */
static SCHAR order_ld[LPC_MAX_ORDER] = {
    /* Assume that Synthesis filter output does not clip and filter
       accu does change no more than 1.0 for each iteration.
       ceil(0.5*log((1:24))/log(2)) */
    0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3};

/* IIRLattice */
#ifndef FUNCTION_CLpc_SynthesisLattice_SGL
void CLpc_SynthesisLattice(FIXP_DBL *signal, const int signal_size,
                           const int signal_e, const int signal_e_out,
                           const int inc, const FIXP_SGL *coeff,
                           const int order, FIXP_DBL *state) {
  int i, j;
  FIXP_DBL *pSignal;
  int shift;

  FDK_ASSERT(order <= LPC_MAX_ORDER);
  FDK_ASSERT(order > 0);

  if (inc == -1)
    pSignal = &signal[signal_size - 1];
  else
    pSignal = &signal[0];

  /*
    tmp = x(k) - K(M)*g(M);
    for m=M-1:-1:1
            tmp = tmp - K(m) * g(m);
            g(m+1) = g(m) + K(m) * tmp;
    endfor
    g(1) = tmp;

    y(k) = tmp;
  */

  shift = -order_ld[order - 1];

  for (i = signal_size; i != 0; i--) {
    FIXP_DBL *pState = state + order - 1;
    const FIXP_SGL *pCoeff = coeff + order - 1;
    FIXP_DBL tmp;

    tmp = scaleValue(*pSignal, shift + signal_e) -
          fMultDiv2(*pCoeff--, *pState--);
    for (j = order - 1; j != 0; j--) {
      tmp = fMultSubDiv2(tmp, pCoeff[0], pState[0]);
      pState[1] = pState[0] + (fMultDiv2(*pCoeff--, tmp) << 2);
      pState--;
    }

    *pSignal = scaleValueSaturate(tmp, -shift - signal_e_out);

    /* exponent of state[] is -1 */
    pState[1] = tmp << 1;
    pSignal += inc;
  }
}
#endif

#ifndef FUNCTION_CLpc_SynthesisLattice_DBL
void CLpc_SynthesisLattice(FIXP_DBL *signal, const int signal_size,
                           const int signal_e, const int signal_e_out,
                           const int inc, const FIXP_DBL *coeff,
                           const int order, FIXP_DBL *state) {
  int i, j;
  FIXP_DBL *pSignal;

  FDK_ASSERT(order <= LPC_MAX_ORDER);
  FDK_ASSERT(order > 0);

  if (inc == -1)
    pSignal = &signal[signal_size - 1];
  else
    pSignal = &signal[0];

  FDK_ASSERT(signal_size > 0);
  for (i = signal_size; i != 0; i--) {
    FIXP_DBL *pState = state + order - 1;
    const FIXP_DBL *pCoeff = coeff + order - 1;
    FIXP_DBL tmp, accu;

    accu =
        fMultSubDiv2(scaleValue(*pSignal, signal_e - 1), *pCoeff--, *pState--);
    tmp = SATURATE_LEFT_SHIFT_ALT(accu, 1, DFRACT_BITS);

    for (j = order - 1; j != 0; j--) {
      accu = fMultSubDiv2(tmp >> 1, pCoeff[0], pState[0]);
      tmp = SATURATE_LEFT_SHIFT_ALT(accu, 1, DFRACT_BITS);

      accu = fMultAddDiv2(pState[0] >> 1, *pCoeff--, tmp);
      pState[1] = SATURATE_LEFT_SHIFT_ALT(accu, 1, DFRACT_BITS);

      pState--;
    }

    *pSignal = scaleValue(tmp, -signal_e_out);

    /* exponent of state[] is 0 */
    pState[1] = tmp;
    pSignal += inc;
  }
}

#endif

/* LPC_SYNTHESIS_IIR version */
void CLpc_Synthesis(FIXP_DBL *signal, const int signal_size, const int signal_e,
                    const int inc, const FIXP_LPC_TNS *lpcCoeff_m,
                    const int lpcCoeff_e, const int order, FIXP_DBL *state,
                    int *pStateIndex) {
  int i, j;
  FIXP_DBL *pSignal;
  int stateIndex = *pStateIndex;

  FIXP_LPC_TNS coeff[2 * LPC_MAX_ORDER];
  FDKmemcpy(&coeff[0], lpcCoeff_m, order * sizeof(FIXP_LPC_TNS));
  FDKmemcpy(&coeff[order], lpcCoeff_m, order * sizeof(FIXP_LPC_TNS));

  FDK_ASSERT(order <= LPC_MAX_ORDER);
  FDK_ASSERT(stateIndex < order);

  if (inc == -1)
    pSignal = &signal[signal_size - 1];
  else
    pSignal = &signal[0];

  /* y(n) = x(n) - lpc[1]*y(n-1) - ... - lpc[order]*y(n-order) */

  for (i = 0; i < signal_size; i++) {
    FIXP_DBL x;
    const FIXP_LPC_TNS *pCoeff = coeff + order - stateIndex;

    x = scaleValue(*pSignal, -(lpcCoeff_e + 1));
    for (j = 0; j < order; j++) {
      x -= fMultDiv2(state[j], pCoeff[j]);
    }
    x = SATURATE_SHIFT(x, -lpcCoeff_e - 1, DFRACT_BITS);

    /* Update states */
    stateIndex = ((stateIndex - 1) < 0) ? (order - 1) : (stateIndex - 1);
    state[stateIndex] = x;

    *pSignal = scaleValue(x, signal_e);
    pSignal += inc;
  }

  *pStateIndex = stateIndex;
}
/* default version */
void CLpc_Synthesis(FIXP_DBL *signal, const int signal_size, const int signal_e,
                    const int inc, const FIXP_LPC *lpcCoeff_m,
                    const int lpcCoeff_e, const int order, FIXP_DBL *state,
                    int *pStateIndex) {
  int i, j;
  FIXP_DBL *pSignal;
  int stateIndex = *pStateIndex;

  FIXP_LPC coeff[2 * LPC_MAX_ORDER];
  FDKmemcpy(&coeff[0], lpcCoeff_m, order * sizeof(FIXP_LPC));
  FDKmemcpy(&coeff[order], lpcCoeff_m, order * sizeof(FIXP_LPC));

  FDK_ASSERT(order <= LPC_MAX_ORDER);
  FDK_ASSERT(stateIndex < order);

  if (inc == -1)
    pSignal = &signal[signal_size - 1];
  else
    pSignal = &signal[0];

  /* y(n) = x(n) - lpc[1]*y(n-1) - ... - lpc[order]*y(n-order) */

  for (i = 0; i < signal_size; i++) {
    FIXP_DBL x;
    const FIXP_LPC *pCoeff = coeff + order - stateIndex;

    x = scaleValue(*pSignal, -(lpcCoeff_e + 1));
    for (j = 0; j < order; j++) {
      x -= fMultDiv2(state[j], pCoeff[j]);
    }
    x = SATURATE_SHIFT(x, -lpcCoeff_e - 1, DFRACT_BITS);

    /* Update states */
    stateIndex = ((stateIndex - 1) < 0) ? (order - 1) : (stateIndex - 1);
    state[stateIndex] = x;

    *pSignal = scaleValue(x, signal_e);
    pSignal += inc;
  }

  *pStateIndex = stateIndex;
}

/* FIR */
void CLpc_Analysis(FIXP_DBL *RESTRICT signal, const int signal_size,
                   const FIXP_LPC lpcCoeff_m[], const int lpcCoeff_e,
                   const int order, FIXP_DBL *RESTRICT filtState,
                   int *filtStateIndex) {
  int stateIndex;
  INT i, j, shift = lpcCoeff_e + 1; /* +1, because fMultDiv2 */
  FIXP_DBL tmp;

  if (order <= 0) {
    return;
  }
  if (filtStateIndex != NULL) {
    stateIndex = *filtStateIndex;
  } else {
    stateIndex = 0;
  }

  /* keep filter coefficients twice and save memory copy operation in
     modulo state buffer */
  FIXP_LPC coeff[2 * LPC_MAX_ORDER];
  FIXP_LPC *pCoeff;
  FDKmemcpy(&coeff[0], lpcCoeff_m, order * sizeof(FIXP_LPC));
  FDKmemcpy(&coeff[order], lpcCoeff_m, order * sizeof(FIXP_LPC));

  /*
      # Analysis filter, obtain residual.
      for k = 0:BL-1
              err(i-BL+k) = a * inputSignal(i-BL+k:-1:i-BL-M+k);
      endfor
   */

  FDK_ASSERT(shift >= 0);

  for (j = 0; j < signal_size; j++) {
    pCoeff = &coeff[(order - stateIndex)];

    tmp = signal[j] >> shift;
    for (i = 0; i < order; i++) {
      tmp = fMultAddDiv2(tmp, pCoeff[i], filtState[i]);
    }

    stateIndex =
        ((stateIndex - 1) < 0) ? (stateIndex - 1 + order) : (stateIndex - 1);
    filtState[stateIndex] = signal[j];

    signal[j] = tmp << shift;
  }

  if (filtStateIndex != NULL) {
    *filtStateIndex = stateIndex;
  }
}

/* For the LPC_SYNTHESIS_IIR version */
INT CLpc_ParcorToLpc(const FIXP_LPC_TNS reflCoeff[], FIXP_LPC_TNS LpcCoeff[],
                     INT numOfCoeff, FIXP_DBL workBuffer[]) {
  INT i, j;
  INT shiftval,
      par2LpcShiftVal = 6; /* 6 should be enough, bec. max(numOfCoeff) = 20 */
  FIXP_DBL maxVal = (FIXP_DBL)0;

  workBuffer[0] = FX_LPC_TNS2FX_DBL(reflCoeff[0]) >> par2LpcShiftVal;
  for (i = 1; i < numOfCoeff; i++) {
    for (j = 0; j < i / 2; j++) {
      FIXP_DBL tmp1, tmp2;

      tmp1 = workBuffer[j];
      tmp2 = workBuffer[i - 1 - j];
      workBuffer[j] += fMult(reflCoeff[i], tmp2);
      workBuffer[i - 1 - j] += fMult(reflCoeff[i], tmp1);
    }
    if (i & 1) {
      workBuffer[j] += fMult(reflCoeff[i], workBuffer[j]);
    }

    workBuffer[i] = FX_LPC_TNS2FX_DBL(reflCoeff[i]) >> par2LpcShiftVal;
  }

  /* calculate exponent */
  for (i = 0; i < numOfCoeff; i++) {
    maxVal = fMax(maxVal, fAbs(workBuffer[i]));
  }

  shiftval = fMin(fNorm(maxVal), par2LpcShiftVal);

  for (i = 0; i < numOfCoeff; i++) {
    LpcCoeff[i] = FX_DBL2FX_LPC_TNS(workBuffer[i] << shiftval);
  }

  return (par2LpcShiftVal - shiftval);
}
/* Default version */
INT CLpc_ParcorToLpc(const FIXP_LPC reflCoeff[], FIXP_LPC LpcCoeff[],
                     INT numOfCoeff, FIXP_DBL workBuffer[]) {
  INT i, j;
  INT shiftval,
      par2LpcShiftVal = 6; /* 6 should be enough, bec. max(numOfCoeff) = 20 */
  FIXP_DBL maxVal = (FIXP_DBL)0;

  workBuffer[0] = FX_LPC2FX_DBL(reflCoeff[0]) >> par2LpcShiftVal;
  for (i = 1; i < numOfCoeff; i++) {
    for (j = 0; j < i / 2; j++) {
      FIXP_DBL tmp1, tmp2;

      tmp1 = workBuffer[j];
      tmp2 = workBuffer[i - 1 - j];
      workBuffer[j] += fMult(reflCoeff[i], tmp2);
      workBuffer[i - 1 - j] += fMult(reflCoeff[i], tmp1);
    }
    if (i & 1) {
      workBuffer[j] += fMult(reflCoeff[i], workBuffer[j]);
    }

    workBuffer[i] = FX_LPC2FX_DBL(reflCoeff[i]) >> par2LpcShiftVal;
  }

  /* calculate exponent */
  for (i = 0; i < numOfCoeff; i++) {
    maxVal = fMax(maxVal, fAbs(workBuffer[i]));
  }

  shiftval = fMin(fNorm(maxVal), par2LpcShiftVal);

  for (i = 0; i < numOfCoeff; i++) {
    LpcCoeff[i] = FX_DBL2FX_LPC(workBuffer[i] << shiftval);
  }

  return (par2LpcShiftVal - shiftval);
}

void CLpc_AutoToParcor(FIXP_DBL acorr[], const int acorr_e,
                       FIXP_LPC reflCoeff[], const int numOfCoeff,
                       FIXP_DBL *pPredictionGain_m, INT *pPredictionGain_e) {
  INT i, j, scale = 0;
  FIXP_DBL parcorWorkBuffer[LPC_MAX_ORDER];

  FIXP_DBL *workBuffer = parcorWorkBuffer;
  FIXP_DBL autoCorr_0 = acorr[0];

  FDKmemclear(reflCoeff, numOfCoeff * sizeof(FIXP_LPC));

  if (autoCorr_0 == FL2FXCONST_DBL(0.0)) {
    if (pPredictionGain_m != NULL) {
      *pPredictionGain_m = FL2FXCONST_DBL(0.5f);
      *pPredictionGain_e = 1;
    }
    return;
  }

  FDKmemcpy(workBuffer, acorr + 1, numOfCoeff * sizeof(FIXP_DBL));
  for (i = 0; i < numOfCoeff; i++) {
    LONG sign = ((LONG)workBuffer[0] >> (DFRACT_BITS - 1));
    FIXP_DBL tmp = (FIXP_DBL)((LONG)workBuffer[0] ^ sign);

    /* Check preconditions for division function: num<=denum             */
    /* For 1st iteration acorr[0] cannot be 0, it is checked before loop */
    /* Due to exor operation with "sign", num(=tmp) is greater/equal 0   */
    if (acorr[0] < tmp) break;

    /* tmp = div(num, denum, 16) */
    tmp = (FIXP_DBL)((LONG)schur_div(tmp, acorr[0], FRACT_BITS) ^ (~sign));

    reflCoeff[i] = FX_DBL2FX_LPC(tmp);

    for (j = numOfCoeff - i - 1; j >= 0; j--) {
      FIXP_DBL accu1 = fMult(tmp, acorr[j]);
      FIXP_DBL accu2 = fMult(tmp, workBuffer[j]);
      workBuffer[j] += accu1;
      acorr[j] += accu2;
    }
    /* Check preconditions for division function: denum (=acorr[0]) > 0 */
    if (acorr[0] == (FIXP_DBL)0) break;

    workBuffer++;
  }

  if (pPredictionGain_m != NULL) {
    if (acorr[0] > (FIXP_DBL)0) {
      /* prediction gain = signal power / error (residual) power */
      *pPredictionGain_m = fDivNormSigned(autoCorr_0, acorr[0], &scale);
      *pPredictionGain_e = scale;
    } else {
      *pPredictionGain_m = (FIXP_DBL)0;
      *pPredictionGain_e = 0;
    }
  }
}