1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
|
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android
© Copyright 1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.
1. INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.
Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.
Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.
2. COPYRIGHT LICENSE
Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:
You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.
You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.
The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.
You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.
Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."
3. NO PATENT LICENSE
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.
You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.
4. DISCLAIMER
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.
5. CONTACT INFORMATION
Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany
www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */
/******************* Library for basic calculation routines ********************
Author(s): Markus Lohwasser
Description: FDK Tools Decorrelator
*******************************************************************************/
#include "FDK_decorrelate.h"
#define PC_NUM_BANDS (8)
#define PC_NUM_HYB_BANDS (PC_NUM_BANDS - 3 + 10)
#define DUCK_ALPHA (0.8f)
#define DUCK_GAMMA (1.5f)
#define ABS_THR (1e-9f * 32768 * 32768)
#define ABS_THR_FDK ((FIXP_DBL)1)
#define DECORR_ZERO_PADDING 0
#define DECORR_FILTER_ORDER_BAND_0_MPS (20)
#define DECORR_FILTER_ORDER_BAND_1_MPS (15)
#define DECORR_FILTER_ORDER_BAND_2_MPS (6)
#define DECORR_FILTER_ORDER_BAND_3_MPS (3)
#define DECORR_FILTER_ORDER_BAND_0_USAC (10)
#define DECORR_FILTER_ORDER_BAND_1_USAC (8)
#define DECORR_FILTER_ORDER_BAND_2_USAC (3)
#define DECORR_FILTER_ORDER_BAND_3_USAC (2)
#define DECORR_FILTER_ORDER_BAND_0_LD (0)
#define DECORR_FILTER_ORDER_BAND_1_LD (DECORR_FILTER_ORDER_BAND_1_MPS)
#define DECORR_FILTER_ORDER_BAND_2_LD (DECORR_FILTER_ORDER_BAND_2_MPS)
#define DECORR_FILTER_ORDER_BAND_3_LD (DECORR_FILTER_ORDER_BAND_3_MPS)
#define MAX_DECORR_SEED_MPS \
(5) /* 4 is worst case for 7272 mode for low power */
/* 5 is worst case for 7271 and 7272 mode for high quality */
#define MAX_DECORR_SEED_USAC (1)
#define MAX_DECORR_SEED_LD (4)
#define DECORR_FILTER_ORDER_PS (12)
#define NUM_DECORR_CONFIGS \
(3) /* different configs defined by bsDecorrConfig bitstream field */
/* REV_bandOffset_... tables map (hybrid) bands to the corresponding reverb
bands. Within each reverb band the same processing is applied. Instead of QMF
split frequencies the corresponding hybrid band offsets are stored directly
*/
static const UCHAR REV_bandOffset_MPS_HQ[NUM_DECORR_CONFIGS][(4)] = {
{8, 21, 30, 71}, {8, 56, 71, 71}, {0, 21, 71, 71}};
/* REV_bandOffset_USAC[] are equivalent to REV_bandOffset_MPS_HQ */
static const UCHAR REV_bandOffset_PS_HQ[(4)] = {30, 42, 71, 71};
static const UCHAR REV_bandOffset_PS_LP[(4)] = {14, 42, 71, 71};
static const UCHAR REV_bandOffset_LD[NUM_DECORR_CONFIGS][(4)] = {
{0, 14, 23, 64}, {0, 49, 64, 64}, {0, 14, 64, 64}};
/* REV_delay_... tables define the number of delay elements within each reverb
* band */
/* REV_filterOrder_... tables define the filter order within each reverb band */
static const UCHAR REV_delay_MPS[(4)] = {8, 7, 2, 1};
static const SCHAR REV_filterOrder_MPS[(4)] = {
DECORR_FILTER_ORDER_BAND_0_MPS, DECORR_FILTER_ORDER_BAND_1_MPS,
DECORR_FILTER_ORDER_BAND_2_MPS, DECORR_FILTER_ORDER_BAND_3_MPS};
static const UCHAR REV_delay_PS_HQ[(4)] = {2, 14, 1, 0};
static const UCHAR REV_delay_PS_LP[(4)] = {8, 14, 1, 0};
static const SCHAR REV_filterOrder_PS[(4)] = {DECORR_FILTER_ORDER_PS, -1, -1,
-1};
static const UCHAR REV_delay_USAC[(4)] = {11, 10, 5, 2};
static const SCHAR REV_filterOrder_USAC[(4)] = {
DECORR_FILTER_ORDER_BAND_0_USAC, DECORR_FILTER_ORDER_BAND_1_USAC,
DECORR_FILTER_ORDER_BAND_2_USAC, DECORR_FILTER_ORDER_BAND_3_USAC};
/* REV_filtType_... tables define the type of processing (filtering with
different properties or pure delay) done in each reverb band. This is mapped
to specialized routines. */
static const REVBAND_FILT_TYPE REV_filtType_MPS[(4)] = {
COMMON_REAL, COMMON_REAL, COMMON_REAL, COMMON_REAL};
static const REVBAND_FILT_TYPE REV_filtType_PS[(4)] = {INDEP_CPLX_PS, DELAY,
DELAY, NOT_EXIST};
/* initialization values of ring buffer offsets for the 3 concatenated allpass
* filters (PS type decorrelator). */
static const UCHAR stateBufferOffsetInit[(3)] = {0, 6, 14};
static const REVBAND_FILT_TYPE REV_filtType_LD[(4)] = {
NOT_EXIST, COMMON_REAL, COMMON_REAL, COMMON_REAL};
/*** mapping of hybrid bands to processing (/parameter?) bands ***/
/* table for PS decorr running in legacy PS decoder. */
static const UCHAR kernels_20_to_71_PS[(71) + 1] = {
0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14,
15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18,
18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19};
/*** mapping of processing (/parameter?) bands to hybrid bands ***/
/* table for PS decorr running in legacy PS decoder. */
static const UCHAR kernels_20_to_71_offset_PS[(20) + 1] = {
0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21, 25, 30, 42, 71};
static const UCHAR kernels_28_to_71[(71) + 1] = {
0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23,
23, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26,
26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27};
static const UCHAR kernels_28_to_71_offset[(28) + 1] = {
0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 21, 23, 25, 27, 30, 33, 37, 42, 48, 55, 71};
/* LD-MPS defined in SAOC standart (mapping qmf -> param bands)*/
static const UCHAR kernels_23_to_64[(64) + 1] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 13, 13, 14,
14, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19,
19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22,
22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
};
static const UCHAR kernels_23_to_64_offset[(23) + 1] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 14, 16, 18, 20, 23, 26, 30, 35, 41, 48, 64};
static inline int SpatialDecGetProcessingBand(int hybridBand,
const UCHAR *tab) {
return tab[hybridBand];
}
/* helper inline function */
static inline int SpatialDecGetQmfBand(int paramBand, const UCHAR *tab) {
return (int)tab[paramBand];
}
#define DUCKER_MAX_NRG_SCALE (24)
#define DUCKER_HEADROOM_BITS (2)
#define FILTER_SF (2)
#ifdef ARCH_PREFER_MULT_32x32
#define FIXP_DUCK_GAIN FIXP_DBL
#define FX_DBL2FX_DUCK_GAIN
#define FL2FXCONST_DUCK FL2FXCONST_DBL
#else
#define FIXP_DUCK_GAIN FIXP_SGL
#define FX_DBL2FX_DUCK_GAIN FX_DBL2FX_SGL
#define FL2FXCONST_DUCK FL2FXCONST_SGL
#endif
#define PS_DUCK_PEAK_DECAY_FACTOR (0.765928338364649f)
#define PS_DUCK_FILTER_COEFF (0.25f)
#define DUCK_ALPHA_FDK FL2FXCONST_DUCK(DUCK_ALPHA)
#define DUCK_ONE_MINUS_ALPHA_X4_FDK FL2FXCONST_DUCK(4.0f * (1.0f - DUCK_ALPHA))
#define DUCK_GAMMA_FDK FL2FXCONST_DUCK(DUCK_GAMMA / 2)
#define PS_DUCK_PEAK_DECAY_FACTOR_FDK FL2FXCONST_DUCK(PS_DUCK_PEAK_DECAY_FACTOR)
#define PS_DUCK_FILTER_COEFF_FDK FL2FXCONST_DUCK(PS_DUCK_FILTER_COEFF)
RAM_ALIGN
const FIXP_STP DecorrPsCoeffsCplx[][4] = {
{STCP(0x5d6940eb, 0x5783153e), STCP(0xadcd41a8, 0x0e0373ed),
STCP(0xbad41f3e, 0x14fba045), STCP(0xc1eb6694, 0x0883227d)},
{STCP(0x5d6940eb, 0xa87ceac2), STCP(0xadcd41a8, 0xf1fc8c13),
STCP(0xbad41f3e, 0xeb045fbb), STCP(0xc1eb6694, 0xf77cdd83)},
{STCP(0xaec24162, 0x62e9d75b), STCP(0xb7169316, 0x28751048),
STCP(0xd224c0cc, 0x37e05050), STCP(0xc680864f, 0x18e88cba)},
{STCP(0xaec24162, 0x9d1628a5), STCP(0xb7169316, 0xd78aefb8),
STCP(0xd224c0cc, 0xc81fafb0), STCP(0xc680864f, 0xe7177346)},
{STCP(0x98012341, 0x4aa00ed1), STCP(0xc89ca1b2, 0xc1ab6bff),
STCP(0xf8ea394e, 0xb8106bf4), STCP(0xcf542d73, 0xd888b99b)},
{STCP(0x43b137b3, 0x6ca2ca40), STCP(0xe0649cc4, 0xb2d69cca),
STCP(0x22130c21, 0xc0405382), STCP(0xdbbf8fba, 0xcce3c7cc)},
{STCP(0x28fc4d71, 0x86bd3b87), STCP(0x09ccfeb9, 0xad319baf),
STCP(0x46e51f02, 0xf1e5ea55), STCP(0xf30d5e34, 0xc2b0e335)},
{STCP(0xc798f756, 0x72e73c7d), STCP(0x3b6c3c1e, 0xc580dc72),
STCP(0x2828a6ba, 0x3c1a14fb), STCP(0x14b733bb, 0xc4dcaae1)},
{STCP(0x46dcadd3, 0x956795c7), STCP(0x52f32fae, 0xf78048cd),
STCP(0xd7d75946, 0x3c1a14fb), STCP(0x306017cb, 0xd82c0a75)},
{STCP(0xabe197de, 0x607a675e), STCP(0x460cef6e, 0x2d3b264e),
STCP(0xb91ae0fe, 0xf1e5ea55), STCP(0x3e03e5e0, 0xf706590e)},
{STCP(0xb1b4f509, 0x9abcaf5f), STCP(0xfeb0b4be, 0x535fb8ba),
STCP(0x1ba96f8e, 0xbd37e6d8), STCP(0x30f6dbbb, 0x271a0743)},
{STCP(0xce75b52a, 0x89f9be61), STCP(0xb26e4dda, 0x101054c5),
STCP(0x1a475d2e, 0x3f714b19), STCP(0xf491f154, 0x3a6baf46)},
{STCP(0xee8fdfcb, 0x813181fa), STCP(0xe11e1a00, 0xbb9a6039),
STCP(0xc3e582f5, 0xe71ab533), STCP(0xc9eb35e2, 0x0ffd212a)},
{STCP(0x0fd7d92f, 0x80fbf975), STCP(0x38adccbc, 0xd571bbf4),
STCP(0x38c3aefc, 0xe87cc794), STCP(0xdafe8c3d, 0xd9b16100)},
{STCP(0x300d9e10, 0x895cc359), STCP(0x32b9843e, 0x2b52adcc),
STCP(0xe9ded9f4, 0x356ce0ed), STCP(0x0fdd5ca3, 0xd072932e)},
{STCP(0x4d03b4f8, 0x99c2dec3), STCP(0xe2bc8d94, 0x3744e195),
STCP(0xeb40ec55, 0xcde9ed22), STCP(0x2e67e231, 0xf893470b)},
{STCP(0x64c4deb3, 0xb112790f), STCP(0xc7b32682, 0xf099172d),
STCP(0x2ebf44cf, 0x135d014a), STCP(0x1a2bacd5, 0x23334254)},
{STCP(0x75b5f9aa, 0xcdb81e14), STCP(0x028d9bb1, 0xc9dc45b9),
STCP(0xd497893f, 0x11faeee9), STCP(0xee40ff71, 0x24a91b85)},
{STCP(0x7eb1cd81, 0xedc3feec), STCP(0x31491897, 0xf765f6d8),
STCP(0x1098dc89, 0xd7ee574e), STCP(0xda6b816d, 0x011f35cf)},
{STCP(0x7f1cde01, 0x0f0b7727), STCP(0x118ce49d, 0x2a5ecda4),
STCP(0x0f36ca28, 0x24badaa3), STCP(0xef2908a4, 0xe1ee3743)},
{STCP(0x76efee25, 0x2f4e8c3a), STCP(0xdde3be2a, 0x17f92215),
STCP(0xde9bf36c, 0xf22b4839), STCP(0x1128fc0c, 0xe5c95f5a)},
{STCP(0x66b87d65, 0x4c5ede42), STCP(0xe43f351a, 0xe6bf22dc),
STCP(0x1e0d3e85, 0xf38d5a9a), STCP(0x1c0f44a3, 0x02c92fe3)},
{STCP(0x4f8f36b7, 0x6445680f), STCP(0x10867ea2, 0xe3072740),
STCP(0xf4ef6cfa, 0x1ab67076), STCP(0x09562a8a, 0x1742bb8b)},
{STCP(0x3304f6ec, 0x7564812a), STCP(0x1be4f1a8, 0x0894d75a),
STCP(0xf6517f5b, 0xe8a05d98), STCP(0xf1bb0053, 0x10a78853)},
{STCP(0x1307b2c5, 0x7e93d532), STCP(0xfe098e27, 0x18f02a58),
STCP(0x1408d459, 0x084c6e44), STCP(0xedafe5bd, 0xfbc15b2e)},
{STCP(0xf1c111cd, 0x7f346c97), STCP(0xeb5ca6a0, 0x02efee93),
STCP(0xef4df9b6, 0x06ea5be4), STCP(0xfc149289, 0xf0d53ce4)},
{STCP(0xd1710001, 0x773b6beb), STCP(0xfa1aeb8c, 0xf06655ff),
STCP(0x05884983, 0xf2a4c7c5), STCP(0x094f13df, 0xf79c01bf)},
{STCP(0xb446be0b, 0x6732cfca), STCP(0x0a743752, 0xf9220dfa),
STCP(0x04263722, 0x0a046a2c), STCP(0x08ced80b, 0x0347e9c2)},
{STCP(0x9c3b1202, 0x503018a5), STCP(0x05fcf01a, 0x05cd8529),
STCP(0xf95263e2, 0xfd3bdb3f), STCP(0x00c68cf9, 0x0637cb7f)},
{STCP(0x8aee2710, 0x33c187ec), STCP(0xfdd253f8, 0x038e09b9),
STCP(0x0356ce0f, 0xfe9ded9f), STCP(0xfd6c3054, 0x01c8060a)}};
const FIXP_DECORR DecorrNumeratorReal0_USAC
[MAX_DECORR_SEED_USAC][DECORR_FILTER_ORDER_BAND_0_USAC + 1] = {
{DECORR(0x05bf4880), DECORR(0x08321c00), DECORR(0xe9315ee0),
DECORR(0x07d9dd20), DECORR(0x02224994), DECORR(0x0009d200),
DECORR(0xf8a29358), DECORR(0xf4e310d0), DECORR(0xef901fc0),
DECORR(0xebda0460), DECORR(0x40000000)}};
const FIXP_DECORR DecorrNumeratorReal1_USAC
[MAX_DECORR_SEED_USAC][DECORR_FILTER_ORDER_BAND_1_USAC + 1] = {
{DECORR(0xf82f8378), DECORR(0xfef588c2), DECORR(0x02eddbd8),
DECORR(0x041c2450), DECORR(0xf7edcd60), DECORR(0x07e29310),
DECORR(0xfa4ece48), DECORR(0xed9f8a20), DECORR(0x40000000)}};
/* identical to MPS coeffs for reverb band 3: DecorrNumeratorReal3[0] */
const FIXP_DECORR
DecorrNumeratorReal2_USAC[MAX_DECORR_SEED_USAC]
[DECORR_FILTER_ORDER_BAND_2_USAC + 1] = {
{DECORR(0x0248e8a8), DECORR(0xfde95838),
DECORR(0x084823c0), DECORR(0x40000000)}};
const FIXP_DECORR
DecorrNumeratorReal3_USAC[MAX_DECORR_SEED_USAC]
[DECORR_FILTER_ORDER_BAND_3_USAC + 1] = {
{DECORR(0xff2b020c), DECORR(0x02393830),
DECORR(0x40000000)}};
/* const FIXP_DECORR DecorrNumeratorReal0_LD[MAX_DECORR_SEED_LD][] does not
* exist */
RAM_ALIGN
const FIXP_DECORR DecorrNumeratorReal1_LD[MAX_DECORR_SEED_LD]
[DECORR_FILTER_ORDER_BAND_1_LD + 1] = {
{
DECORR(0xf310cb29),
DECORR(0x1932d745),
DECORR(0x0cc2d917),
DECORR(0xddde064e),
DECORR(0xf234a626),
DECORR(0x198551a6),
DECORR(0x17141b6a),
DECORR(0xf298803d),
DECORR(0xef98be92),
DECORR(0x09ea1706),
DECORR(0x28fbdff4),
DECORR(0x1a869eb9),
DECORR(0xdeefe147),
DECORR(0xcde2adda),
DECORR(0x13ddc619),
DECORR(0x40000000),
},
{
DECORR(0x041d7dbf),
DECORR(0x01b7309c),
DECORR(0xfb599834),
DECORR(0x092fc5ed),
DECORR(0xf2fd7c25),
DECORR(0xdd51e2eb),
DECORR(0xf62fe72b),
DECORR(0x0b15d588),
DECORR(0xf1f091a7),
DECORR(0xed1bbbfe),
DECORR(0x03526899),
DECORR(0x180cb256),
DECORR(0xecf1433d),
DECORR(0xf626ab95),
DECORR(0x197dd27e),
DECORR(0x40000000),
},
{
DECORR(0x157a786c),
DECORR(0x0028c98c),
DECORR(0xf5eff57b),
DECORR(0x11f7d04f),
DECORR(0xf390d28d),
DECORR(0x18947081),
DECORR(0xe5dc2319),
DECORR(0xf4cc0235),
DECORR(0x2394d47f),
DECORR(0xe069230e),
DECORR(0x03a1a773),
DECORR(0xfbc9b092),
DECORR(0x15a0173b),
DECORR(0x0e9ecdf0),
DECORR(0xd309b2c7),
DECORR(0x40000000),
},
{
DECORR(0xe0ce703b),
DECORR(0xe508b672),
DECORR(0xef362398),
DECORR(0xffe788ef),
DECORR(0x2fda3749),
DECORR(0x4671c0c6),
DECORR(0x3c003494),
DECORR(0x2387707c),
DECORR(0xd2107d2e),
DECORR(0xb3e47e08),
DECORR(0xacd0abca),
DECORR(0xc70791df),
DECORR(0x0b586e85),
DECORR(0x2f11cda7),
DECORR(0x3a4a210b),
DECORR(0x40000000),
},
};
RAM_ALIGN
const FIXP_DECORR DecorrNumeratorReal2_LD[MAX_DECORR_SEED_LD]
[DECORR_FILTER_ORDER_BAND_2_LD + 1 +
DECORR_ZERO_PADDING] = {
{
DECORR(0xffb4a234),
DECORR(0x01ac71a2),
DECORR(0xf2bca010),
DECORR(0xfe3d7593),
DECORR(0x093e9976),
DECORR(0xf2c5f3f5),
DECORR(0x40000000),
},
{
DECORR(0xe303afb8),
DECORR(0xcd70c2bb),
DECORR(0xf1e2ad7e),
DECORR(0x0c8ffbe2),
DECORR(0x21f80abf),
DECORR(0x3d08410c),
DECORR(0x40000000),
},
{
DECORR(0xe26809d5),
DECORR(0x0efbcfa4),
DECORR(0x210c1a97),
DECORR(0xfe60af4e),
DECORR(0xeda01a51),
DECORR(0x00faf468),
DECORR(0x40000000),
},
{
DECORR(0x1edc5d64),
DECORR(0xe5b2e35c),
DECORR(0xe94b1c45),
DECORR(0x30a6f1e1),
DECORR(0xf04e52de),
DECORR(0xe30de45a),
DECORR(0x40000000),
},
};
RAM_ALIGN
const FIXP_DECORR DecorrNumeratorReal3_LD[MAX_DECORR_SEED_LD]
[DECORR_FILTER_ORDER_BAND_3_LD + 1] = {
{
DECORR(0x0248e8a7),
DECORR(0xfde9583b),
DECORR(0x084823bb),
DECORR(0x40000000),
},
{
DECORR(0x1db22d0e),
DECORR(0xfc773992),
DECORR(0x0e819a74),
DECORR(0x40000000),
},
{
DECORR(0x0fcb923a),
DECORR(0x0154b7ff),
DECORR(0xe70cb647),
DECORR(0x40000000),
},
{
DECORR(0xe39f559b),
DECORR(0xe06dd6ca),
DECORR(0x19f71f71),
DECORR(0x40000000),
},
};
FIXP_DBL *getAddrDirectSignalMaxVal(HANDLE_DECORR_DEC self) {
return &(self->ducker.maxValDirectData);
}
static INT DecorrFilterInit(DECORR_FILTER_INSTANCE *const self,
FIXP_MPS *pStateBufferCplx,
FIXP_DBL *pDelayBufferCplx, INT *offsetStateBuffer,
INT *offsetDelayBuffer, INT const decorr_seed,
INT const reverb_band, INT const useFractDelay,
INT const noSampleDelay, INT const filterOrder,
FDK_DECORR_TYPE const decorrType) {
INT errorCode = 0;
switch (decorrType) {
case DECORR_USAC:
if (useFractDelay) {
return 1;
} else {
FDK_ASSERT(decorr_seed == 0);
switch (reverb_band) {
case 0:
self->numeratorReal = DecorrNumeratorReal0_USAC[decorr_seed];
break;
case 1:
self->numeratorReal = DecorrNumeratorReal1_USAC[decorr_seed];
break;
case 2:
self->numeratorReal = DecorrNumeratorReal2_USAC[decorr_seed];
break;
case 3:
self->numeratorReal = DecorrNumeratorReal3_USAC[decorr_seed];
break;
}
}
break;
case DECORR_LD:
FDK_ASSERT(decorr_seed < MAX_DECORR_SEED_LD);
switch (reverb_band) {
case 0:
self->numeratorReal = NULL;
break;
case 1:
self->numeratorReal = DecorrNumeratorReal1_LD[decorr_seed];
break;
case 2:
self->numeratorReal = DecorrNumeratorReal2_LD[decorr_seed];
break;
case 3:
self->numeratorReal = DecorrNumeratorReal3_LD[decorr_seed];
break;
}
break;
default:
return 1;
}
self->stateCplx = pStateBufferCplx + (*offsetStateBuffer);
*offsetStateBuffer += 2 * filterOrder;
self->DelayBufferCplx = pDelayBufferCplx + (*offsetDelayBuffer);
*offsetDelayBuffer += 2 * noSampleDelay;
return errorCode;
}
/*******************************************************************************
*******************************************************************************/
static INT DecorrFilterInitPS(DECORR_FILTER_INSTANCE *const self,
FIXP_MPS *pStateBufferCplx,
FIXP_DBL *pDelayBufferCplx,
INT *offsetStateBuffer, INT *offsetDelayBuffer,
INT const hybridBand, INT const reverbBand,
INT const noSampleDelay) {
INT errorCode = 0;
if (reverbBand == 0) {
self->coeffsPacked = DecorrPsCoeffsCplx[hybridBand];
self->stateCplx = pStateBufferCplx + (*offsetStateBuffer);
*offsetStateBuffer += 2 * DECORR_FILTER_ORDER_PS;
}
self->DelayBufferCplx = pDelayBufferCplx + (*offsetDelayBuffer);
*offsetDelayBuffer += 2 * noSampleDelay;
return errorCode;
}
LNK_SECTION_CODE_L1
static INT DecorrFilterApplyPASS(DECORR_FILTER_INSTANCE const filter[],
FIXP_DBL *dataRealIn, FIXP_DBL *dataImagIn,
FIXP_DBL *dataRealOut, FIXP_DBL *dataImagOut,
INT start, INT stop,
INT reverbBandNoSampleDelay,
INT reverbBandDelayBufferIndex) {
INT i;
INT offset = 2 * reverbBandNoSampleDelay;
FIXP_MPS *pDelayBuffer =
&filter[start].DelayBufferCplx[reverbBandDelayBufferIndex];
/* Memory for the delayline has been allocated in a consecutive order, so we
can address from filter to filter with a constant length.
Be aware that real and imaginary part of the delayline are stored in
interleaved order.
*/
if (dataImagIn == NULL) {
for (i = start; i < stop; i++) {
FIXP_DBL tmp;
tmp = *pDelayBuffer;
*pDelayBuffer = dataRealIn[i];
dataRealOut[i] = tmp;
pDelayBuffer += offset;
}
} else {
if ((i = stop - start) != 0) {
dataRealIn += start;
dataImagIn += start;
dataRealOut += start;
dataImagOut += start;
do {
FIXP_DBL delay_re, delay_im, real, imag;
real = *dataRealIn++;
imag = *dataImagIn++;
delay_re = pDelayBuffer[0];
delay_im = pDelayBuffer[1];
pDelayBuffer[0] = real;
pDelayBuffer[1] = imag;
*dataRealOut++ = delay_re;
*dataImagOut++ = delay_im;
pDelayBuffer += offset;
} while (--i != 0);
}
}
return (INT)0;
}
#ifndef FUNCTION_DecorrFilterApplyREAL
LNK_SECTION_CODE_L1
static INT DecorrFilterApplyREAL(DECORR_FILTER_INSTANCE const filter[],
FIXP_DBL *dataRealIn, FIXP_DBL *dataImagIn,
FIXP_DBL *dataRealOut, FIXP_DBL *dataImagOut,
INT start, INT stop, INT reverbFilterOrder,
INT reverbBandNoSampleDelay,
INT reverbBandDelayBufferIndex) {
INT i, j;
FIXP_DBL xReal, xImag, yReal, yImag;
const FIXP_DECORR *pFilter = filter[start].numeratorReal;
INT offsetDelayBuffer = (2 * reverbBandNoSampleDelay) - 1;
FIXP_MPS *pDelayBuffer =
&filter[start].DelayBufferCplx[reverbBandDelayBufferIndex];
INT offsetStates = 2 * reverbFilterOrder;
FIXP_DBL *pStates = filter[start].stateCplx;
/* Memory for the delayline has been allocated in a consecutive order, so we
can address from filter to filter with a constant length. The same is valid
for the states.
Be aware that real and imaginary part of the delayline and the states are
stored in interleaved order.
All filter in a reverb band have the same filter coefficients.
Exploit symmetry: numeratorReal[i] =
denominatorReal[reverbFilterLength-1-i] Do not accumulate the highest
states which are always zero.
*/
if (reverbFilterOrder == 2) {
FIXP_DECORR nFilt0L, nFilt0H;
nFilt0L = pFilter[0];
nFilt0H = pFilter[1];
for (i = start; i < stop; i++) {
xReal = *pDelayBuffer;
*pDelayBuffer = dataRealIn[i];
pDelayBuffer++;
xImag = *pDelayBuffer;
*pDelayBuffer = dataImagIn[i];
pDelayBuffer += offsetDelayBuffer;
yReal = (pStates[0] + fMultDiv2(xReal, nFilt0L)) << FILTER_SF;
yImag = (pStates[1] + fMultDiv2(xImag, nFilt0L)) << FILTER_SF;
dataRealOut[i] = yReal;
dataImagOut[i] = yImag;
pStates[0] =
pStates[2] + fMultDiv2(xReal, nFilt0H) - fMultDiv2(yReal, nFilt0H);
pStates[1] =
pStates[3] + fMultDiv2(xImag, nFilt0H) - fMultDiv2(yImag, nFilt0H);
pStates[2] = (xReal >> FILTER_SF) - fMultDiv2(yReal, nFilt0L);
pStates[3] = (xImag >> FILTER_SF) - fMultDiv2(yImag, nFilt0L);
pStates += offsetStates;
}
} else if (reverbFilterOrder == 3) {
FIXP_DECORR nFilt0L, nFilt0H, nFilt1L;
nFilt0L = pFilter[0];
nFilt0H = pFilter[1];
nFilt1L = pFilter[2];
for (i = start; i < stop; i++) {
xReal = *pDelayBuffer;
*pDelayBuffer = dataRealIn[i];
pDelayBuffer++;
xImag = *pDelayBuffer;
*pDelayBuffer = dataImagIn[i];
pDelayBuffer += offsetDelayBuffer;
yReal = (pStates[0] + fMultDiv2(xReal, nFilt0L)) << FILTER_SF;
yImag = (pStates[1] + fMultDiv2(xImag, nFilt0L)) << FILTER_SF;
dataRealOut[i] = yReal;
dataImagOut[i] = yImag;
pStates[0] =
pStates[2] + fMultDiv2(xReal, nFilt0H) - fMultDiv2(yReal, nFilt1L);
pStates[1] =
pStates[3] + fMultDiv2(xImag, nFilt0H) - fMultDiv2(yImag, nFilt1L);
pStates[2] =
pStates[4] + fMultDiv2(xReal, nFilt1L) - fMultDiv2(yReal, nFilt0H);
pStates[3] =
pStates[5] + fMultDiv2(xImag, nFilt1L) - fMultDiv2(yImag, nFilt0H);
pStates[4] = (xReal >> FILTER_SF) - fMultDiv2(yReal, nFilt0L);
pStates[5] = (xImag >> FILTER_SF) - fMultDiv2(yImag, nFilt0L);
pStates += offsetStates;
}
} else if (reverbFilterOrder == 6) {
FIXP_DECORR nFilt0L, nFilt0H, nFilt1L, nFilt1H, nFilt2L, nFilt2H;
nFilt0L = pFilter[0];
nFilt0H = pFilter[1];
nFilt1L = pFilter[2];
nFilt1H = pFilter[3];
nFilt2L = pFilter[4];
nFilt2H = pFilter[5];
for (i = start; i < stop; i++) {
xReal = *pDelayBuffer;
*pDelayBuffer = dataRealIn[i];
pDelayBuffer++;
xImag = *pDelayBuffer;
*pDelayBuffer = dataImagIn[i];
pDelayBuffer += offsetDelayBuffer;
yReal = (pStates[0] + fMultDiv2(xReal, nFilt0L)) << FILTER_SF;
yImag = (pStates[1] + fMultDiv2(xImag, nFilt0L)) << FILTER_SF;
dataRealOut[i] = yReal;
dataImagOut[i] = yImag;
pStates[0] =
pStates[2] + fMultDiv2(xReal, nFilt0H) - fMultDiv2(yReal, nFilt2H);
pStates[1] =
pStates[3] + fMultDiv2(xImag, nFilt0H) - fMultDiv2(yImag, nFilt2H);
pStates[2] =
pStates[4] + fMultDiv2(xReal, nFilt1L) - fMultDiv2(yReal, nFilt2L);
pStates[3] =
pStates[5] + fMultDiv2(xImag, nFilt1L) - fMultDiv2(yImag, nFilt2L);
pStates[4] =
pStates[6] + fMultDiv2(xReal, nFilt1H) - fMultDiv2(yReal, nFilt1H);
pStates[5] =
pStates[7] + fMultDiv2(xImag, nFilt1H) - fMultDiv2(yImag, nFilt1H);
pStates[6] =
pStates[8] + fMultDiv2(xReal, nFilt2L) - fMultDiv2(yReal, nFilt1L);
pStates[7] =
pStates[9] + fMultDiv2(xImag, nFilt2L) - fMultDiv2(yImag, nFilt1L);
pStates[8] =
pStates[10] + fMultDiv2(xReal, nFilt2H) - fMultDiv2(yReal, nFilt0H);
pStates[9] =
pStates[11] + fMultDiv2(xImag, nFilt2H) - fMultDiv2(yImag, nFilt0H);
pStates[10] = (xReal >> FILTER_SF) - fMultDiv2(yReal, nFilt0L);
pStates[11] = (xImag >> FILTER_SF) - fMultDiv2(yImag, nFilt0L);
pStates += offsetStates;
}
} else {
FIXP_DECORR nFilt0L, nFilt0H;
for (i = start; i < stop; i++) {
xReal = *pDelayBuffer;
*pDelayBuffer = dataRealIn[i];
pDelayBuffer++;
xImag = *pDelayBuffer;
*pDelayBuffer = dataImagIn[i];
pDelayBuffer += offsetDelayBuffer;
nFilt0L = pFilter[0];
yReal = (pStates[0] + fMultDiv2(xReal, nFilt0L)) << 2;
yImag = (pStates[1] + fMultDiv2(xImag, nFilt0L)) << 2;
dataRealOut[i] = yReal;
dataImagOut[i] = yImag;
for (j = 1; j < reverbFilterOrder; j++) {
nFilt0L = pFilter[j];
nFilt0H = pFilter[reverbFilterOrder - j];
pStates[2 * j - 2] = pStates[2 * j] + fMultDiv2(xReal, nFilt0L) -
fMultDiv2(yReal, nFilt0H);
pStates[2 * j - 1] = pStates[2 * j + 1] + fMultDiv2(xImag, nFilt0L) -
fMultDiv2(yImag, nFilt0H);
}
nFilt0L = pFilter[j];
nFilt0H = pFilter[reverbFilterOrder - j];
pStates[2 * j - 2] =
fMultDiv2(xReal, nFilt0L) - fMultDiv2(yReal, nFilt0H);
pStates[2 * j - 1] =
fMultDiv2(xImag, nFilt0L) - fMultDiv2(yImag, nFilt0H);
pStates += offsetStates;
}
}
return (INT)0;
}
#endif /* #ifndef FUNCTION_DecorrFilterApplyREAL */
#ifndef FUNCTION_DecorrFilterApplyCPLX_PS
LNK_SECTION_CODE_L1
static INT DecorrFilterApplyCPLX_PS(
DECORR_FILTER_INSTANCE const filter[], FIXP_DBL *dataRealIn,
FIXP_DBL *dataImagIn, FIXP_DBL *dataRealOut, FIXP_DBL *dataImagOut,
INT start, INT stop, INT reverbFilterOrder, INT reverbBandNoSampleDelay,
INT reverbBandDelayBufferIndex, UCHAR *stateBufferOffset) {
/* r = real, j = imaginary */
FIXP_DBL r_data_a, j_data_a, r_data_b, j_data_b, r_stage_mult, j_stage_mult;
FIXP_STP rj_coeff;
/* get pointer to current position in input delay buffer of filter with
* starting-index */
FIXP_DBL *pDelayBuffer =
&filter[start].DelayBufferCplx[reverbBandDelayBufferIndex]; /* increases
by 2 every
other call
of this
function */
/* determine the increment for this pointer to get to the correct position in
* the delay buffer of the next filter */
INT offsetDelayBuffer = (2 * reverbBandNoSampleDelay) - 1;
/* pointer to current position in state buffer */
FIXP_DBL *pStates = filter[start].stateCplx;
INT pStatesIncrement = 2 * reverbFilterOrder;
/* stateBufferOffset-pointers */
FIXP_DBL *pStateBufferOffset0 = pStates + stateBufferOffset[0];
FIXP_DBL *pStateBufferOffset1 = pStates + stateBufferOffset[1];
FIXP_DBL *pStateBufferOffset2 = pStates + stateBufferOffset[2];
/* traverse all hybrid-bands inbetween start- and stop-index */
for (int i = start; i < stop; i++) {
/* 1. input delay (real/imaginary values interleaved) */
/* load delayed real input value */
r_data_a = *pDelayBuffer;
/* store incoming real data value to delay buffer and increment pointer */
*pDelayBuffer++ = dataRealIn[i];
/* load delayed imaginary input value */
j_data_a = *pDelayBuffer;
/* store incoming imaginary data value to delay buffer */
*pDelayBuffer = dataImagIn[i];
/* increase delay buffer by offset */
pDelayBuffer += offsetDelayBuffer;
/* 2. Phi(k)-stage */
/* create pointer to coefficient table (real and imaginary coefficients
* interleaved) */
const FIXP_STP *pCoeffs = filter[i].coeffsPacked;
/* the first two entries of the coefficient table are the
* Phi(k)-multiplicants */
rj_coeff = *pCoeffs++;
/* multiply value from input delay buffer by looked-up values */
cplxMultDiv2(&r_data_b, &j_data_b, r_data_a, j_data_a, rj_coeff);
/* 3. process all three filter stages */
/* stage 0 */
/* get coefficients from lookup table */
rj_coeff = *pCoeffs++;
/* multiply output of last stage by coefficient */
cplxMultDiv2(&r_stage_mult, &j_stage_mult, r_data_b, j_data_b, rj_coeff);
r_stage_mult <<= 1;
j_stage_mult <<= 1;
/* read and add value from state buffer (this is the input for the next
* stage) */
r_data_a = r_stage_mult + pStateBufferOffset0[0];
j_data_a = j_stage_mult + pStateBufferOffset0[1];
/* negate r_data_a to perform multiplication with complex conjugate of
* rj_coeff */
cplxMultDiv2(&r_stage_mult, &j_stage_mult, -r_data_a, j_data_a, rj_coeff);
/* add stage input to shifted result */
r_stage_mult = r_data_b + (r_stage_mult << 1);
j_stage_mult = j_data_b - (j_stage_mult << 1);
/* store result to state buffer */
pStateBufferOffset0[0] = r_stage_mult;
pStateBufferOffset0[1] = j_stage_mult;
pStateBufferOffset0 += pStatesIncrement;
/* stage 1 */
/* get coefficients from lookup table */
rj_coeff = *pCoeffs++;
/* multiply output of last stage by coefficient */
cplxMultDiv2(&r_stage_mult, &j_stage_mult, r_data_a, j_data_a, rj_coeff);
r_stage_mult <<= 1;
j_stage_mult <<= 1;
/* read and add value from state buffer (this is the input for the next
* stage) */
r_data_b = r_stage_mult + pStateBufferOffset1[0];
j_data_b = j_stage_mult + pStateBufferOffset1[1];
/* negate r_data_b to perform multiplication with complex conjugate of
* rj_coeff */
cplxMultDiv2(&r_stage_mult, &j_stage_mult, -r_data_b, j_data_b, rj_coeff);
/* add stage input to shifted result */
r_stage_mult = r_data_a + (r_stage_mult << 1);
j_stage_mult = j_data_a - (j_stage_mult << 1);
/* store result to state buffer */
pStateBufferOffset1[0] = r_stage_mult;
pStateBufferOffset1[1] = j_stage_mult;
pStateBufferOffset1 += pStatesIncrement;
/* stage 2 */
/* get coefficients from lookup table */
rj_coeff = *pCoeffs++;
/* multiply output of last stage by coefficient */
cplxMultDiv2(&r_stage_mult, &j_stage_mult, r_data_b, j_data_b, rj_coeff);
r_stage_mult <<= 1;
j_stage_mult <<= 1;
/* read and add value from state buffer (this is the input for the next
* stage) */
r_data_a = r_stage_mult + pStateBufferOffset2[0];
j_data_a = j_stage_mult + pStateBufferOffset2[1];
/* negate r_data_a to perform multiplication with complex conjugate of
* rj_coeff */
cplxMultDiv2(&r_stage_mult, &j_stage_mult, -r_data_a, j_data_a, rj_coeff);
/* add stage input to shifted result */
r_stage_mult = r_data_b + (r_stage_mult << 1);
j_stage_mult = j_data_b - (j_stage_mult << 1);
/* store result to state buffer */
pStateBufferOffset2[0] = r_stage_mult;
pStateBufferOffset2[1] = j_stage_mult;
pStateBufferOffset2 += pStatesIncrement;
/* write filter output */
dataRealOut[i] = r_data_a << 1;
dataImagOut[i] = j_data_a << 1;
} /* end of band/filter loop (outer loop) */
/* update stateBufferOffset with respect to ring buffer boundaries */
if (stateBufferOffset[0] == 4)
stateBufferOffset[0] = 0;
else
stateBufferOffset[0] += 2;
if (stateBufferOffset[1] == 12)
stateBufferOffset[1] = 6;
else
stateBufferOffset[1] += 2;
if (stateBufferOffset[2] == 22)
stateBufferOffset[2] = 14;
else
stateBufferOffset[2] += 2;
return (INT)0;
}
#endif /* FUNCTION_DecorrFilterApplyCPLX_PS */
/*******************************************************************************
*******************************************************************************/
static INT DuckerInit(DUCKER_INSTANCE *const self, int const hybridBands,
int partiallyComplex, const FDK_DUCKER_TYPE duckerType,
const int nParamBands, int initStatesFlag) {
INT errorCode = 0;
if (self) {
switch (nParamBands) {
case (20):
FDK_ASSERT(hybridBands == 71);
self->mapHybBands2ProcBands = kernels_20_to_71_PS;
self->mapProcBands2HybBands = kernels_20_to_71_offset_PS;
self->parameterBands = (20);
break;
case (28):
self->mapHybBands2ProcBands = kernels_28_to_71;
self->mapProcBands2HybBands = kernels_28_to_71_offset;
self->parameterBands = (28);
break;
case (23):
FDK_ASSERT(hybridBands == 64 || hybridBands == 32);
self->mapHybBands2ProcBands = kernels_23_to_64;
self->mapProcBands2HybBands = kernels_23_to_64_offset;
self->parameterBands = (23);
break;
default:
return 1;
}
self->qs_next = &self->mapProcBands2HybBands[1];
self->maxValDirectData = FL2FXCONST_DBL(-1.0f);
self->maxValReverbData = FL2FXCONST_DBL(-1.0f);
self->scaleDirectNrg = 2 * DUCKER_MAX_NRG_SCALE;
self->scaleReverbNrg = 2 * DUCKER_MAX_NRG_SCALE;
self->scaleSmoothDirRevNrg = 2 * DUCKER_MAX_NRG_SCALE;
self->headroomSmoothDirRevNrg = 2 * DUCKER_MAX_NRG_SCALE;
self->hybridBands = hybridBands;
self->partiallyComplex = partiallyComplex;
if (initStatesFlag && (duckerType == DUCKER_PS)) {
int pb;
for (pb = 0; pb < self->parameterBands; pb++) {
self->SmoothDirRevNrg[pb] = (FIXP_MPS)0;
}
}
} else
errorCode = 1;
return errorCode;
}
/*******************************************************************************
*******************************************************************************/
#ifndef FUNCTION_DuckerCalcEnergy
static INT DuckerCalcEnergy(DUCKER_INSTANCE *const self,
FIXP_DBL const inputReal[(71)],
FIXP_DBL const inputImag[(71)],
FIXP_DBL energy[(28)], FIXP_DBL inputMaxVal,
SCHAR *nrgScale, int mode, /* 1:(ps) 0:(else) */
int startHybBand) {
INT err = 0;
int qs, maxHybBand;
int maxHybridBand = self->hybridBands - 1;
maxHybBand = maxHybridBand;
FDKmemclear(energy, (28) * sizeof(FIXP_DBL));
if (mode == 1) {
int pb;
int clz;
FIXP_DBL maxVal = FL2FXCONST_DBL(-1.0f);
if (maxVal == FL2FXCONST_DBL(-1.0f)) {
clz = fMin(getScalefactor(&inputReal[startHybBand],
fMax(0, maxHybridBand - startHybBand + 1)),
getScalefactor(&inputImag[startHybBand],
fMax(0, maxHybBand - startHybBand + 1)));
} else {
clz = CntLeadingZeros(maxVal) - 1;
}
clz = fMin(fMax(0, clz - DUCKER_HEADROOM_BITS), DUCKER_MAX_NRG_SCALE);
*nrgScale = (SCHAR)clz << 1;
/* Initialize pb since it would stay uninitialized for the case startHybBand
* > maxHybBand. */
pb = SpatialDecGetProcessingBand(maxHybBand, self->mapHybBands2ProcBands);
for (qs = startHybBand; qs <= maxHybBand; qs++) {
pb = SpatialDecGetProcessingBand(qs, self->mapHybBands2ProcBands);
energy[pb] = SATURATE_LEFT_SHIFT(
(energy[pb] >> 1) + (fPow2Div2(inputReal[qs] << clz) >> 1) +
(fPow2Div2(inputImag[qs] << clz) >> 1),
1, DFRACT_BITS);
}
pb++;
for (; pb <= SpatialDecGetProcessingBand(maxHybridBand,
self->mapHybBands2ProcBands);
pb++) {
FDK_ASSERT(pb != SpatialDecGetProcessingBand(
qs - 1, self->mapHybBands2ProcBands));
int qs_next;
FIXP_DBL nrg = 0;
qs_next = (int)self->qs_next[pb];
for (; qs < qs_next; qs++) {
nrg = fAddSaturate(nrg, fPow2Div2(inputReal[qs] << clz));
}
energy[pb] = nrg;
}
} else {
int clz;
FIXP_DBL maxVal = FL2FXCONST_DBL(-1.0f);
maxVal = inputMaxVal;
if (maxVal == FL2FXCONST_DBL(-1.0f)) {
clz = fMin(getScalefactor(&inputReal[startHybBand],
fMax(0, maxHybridBand - startHybBand + 1)),
getScalefactor(&inputImag[startHybBand],
fMax(0, maxHybBand - startHybBand + 1)));
} else {
clz = CntLeadingZeros(maxVal) - 1;
}
clz = fMin(fMax(0, clz - DUCKER_HEADROOM_BITS), DUCKER_MAX_NRG_SCALE);
*nrgScale = (SCHAR)clz << 1;
for (qs = startHybBand; qs <= maxHybBand; qs++) {
int pb = SpatialDecGetProcessingBand(qs, self->mapHybBands2ProcBands);
energy[pb] = SATURATE_LEFT_SHIFT(
(energy[pb] >> 1) + (fPow2Div2(inputReal[qs] << clz) >> 1) +
(fPow2Div2(inputImag[qs] << clz) >> 1),
1, DFRACT_BITS);
}
for (; qs <= maxHybridBand; qs++) {
int pb = SpatialDecGetProcessingBand(qs, self->mapHybBands2ProcBands);
energy[pb] = fAddSaturate(energy[pb], fPow2Div2(inputReal[qs] << clz));
}
}
{
/* Catch overflows which have been observed in erred bitstreams to avoid
* assertion failures later. */
int pb;
for (pb = 0; pb < (28); pb++) {
energy[pb] = (FIXP_DBL)((LONG)energy[pb] & (LONG)MAXVAL_DBL);
}
}
return err;
}
#endif /* #ifndef FUNCTION_DuckerCalcEnergy */
LNK_SECTION_CODE_L1
static INT DuckerApply(DUCKER_INSTANCE *const self,
FIXP_DBL const directNrg[(28)],
FIXP_DBL outputReal[(71)], FIXP_DBL outputImag[(71)],
int startHybBand) {
INT err = 0;
int qs = startHybBand;
int qs_next = 0;
int pb = 0;
int startParamBand = 0;
int hybBands;
int hybridBands = self->hybridBands;
C_ALLOC_SCRATCH_START(reverbNrg, FIXP_DBL, (28));
FIXP_DBL *smoothDirRevNrg = &self->SmoothDirRevNrg[0];
FIXP_DUCK_GAIN duckGain = 0;
int doScaleNrg = 0;
int scaleDirectNrg = 0;
int scaleReverbNrg = 0;
int scaleSmoothDirRevNrg = 0;
FIXP_DBL maxDirRevNrg = FL2FXCONST_DBL(0.0);
hybBands = hybridBands;
startParamBand =
SpatialDecGetProcessingBand(startHybBand, self->mapHybBands2ProcBands);
DuckerCalcEnergy(self, outputReal, outputImag, reverbNrg,
self->maxValReverbData, &(self->scaleReverbNrg), 0,
startHybBand);
if ((self->scaleDirectNrg != self->scaleReverbNrg) ||
(self->scaleDirectNrg != self->scaleSmoothDirRevNrg) ||
(self->headroomSmoothDirRevNrg == 0)) {
int scale;
scale = fixMin(self->scaleDirectNrg, self->scaleSmoothDirRevNrg +
self->headroomSmoothDirRevNrg - 1);
scale = fixMin(scale, self->scaleReverbNrg);
scaleDirectNrg = fMax(fMin(self->scaleDirectNrg - scale, (DFRACT_BITS - 1)),
-(DFRACT_BITS - 1));
scaleReverbNrg = fMax(fMin(self->scaleReverbNrg - scale, (DFRACT_BITS - 1)),
-(DFRACT_BITS - 1));
scaleSmoothDirRevNrg =
fMax(fMin(self->scaleSmoothDirRevNrg - scale, (DFRACT_BITS - 1)),
-(DFRACT_BITS - 1));
self->scaleSmoothDirRevNrg = (SCHAR)scale;
doScaleNrg = 1;
}
for (pb = startParamBand; pb < self->parameterBands; pb++) {
FIXP_DBL tmp1;
FIXP_DBL tmp2;
INT s;
/* smoothDirRevNrg[2*pb ] = fMult(smoothDirRevNrg[2*pb ],DUCK_ALPHA_FDK) +
fMultDiv2(directNrg[pb],DUCK_ONE_MINUS_ALPHA_X4_FDK);
smoothDirRevNrg[2*pb+1] = fMult(smoothDirRevNrg[2*pb+1],DUCK_ALPHA_FDK) +
fMultDiv2(reverbNrg[pb],DUCK_ONE_MINUS_ALPHA_X4_FDK); tmp1 =
fMult(smoothDirRevNrg[2*pb],DUCK_GAMMA_FDK); tmp2 =
smoothDirRevNrg[2*pb+1] >> 1;
*/
tmp1 = smoothDirRevNrg[2 * pb + 0];
tmp2 = smoothDirRevNrg[2 * pb + 1];
tmp1 = fMult(tmp1, DUCK_ALPHA_FDK);
tmp2 = fMult(tmp2, DUCK_ALPHA_FDK);
if (doScaleNrg) {
int scaleSmoothDirRevNrg_asExponent = -scaleSmoothDirRevNrg;
tmp1 = scaleValue(tmp1, scaleSmoothDirRevNrg_asExponent);
tmp2 = scaleValue(tmp2, scaleSmoothDirRevNrg_asExponent);
tmp1 = fMultAddDiv2(tmp1, scaleValue(directNrg[pb], -scaleDirectNrg),
DUCK_ONE_MINUS_ALPHA_X4_FDK);
tmp2 = fMultAddDiv2(tmp2, scaleValue(reverbNrg[pb], -scaleReverbNrg),
DUCK_ONE_MINUS_ALPHA_X4_FDK);
} else {
tmp1 = fMultAddDiv2(tmp1, directNrg[pb], DUCK_ONE_MINUS_ALPHA_X4_FDK);
tmp2 = fMultAddDiv2(tmp2, reverbNrg[pb], DUCK_ONE_MINUS_ALPHA_X4_FDK);
}
smoothDirRevNrg[2 * pb] = tmp1;
smoothDirRevNrg[2 * pb + 1] = tmp2;
maxDirRevNrg |= fAbs(tmp1);
maxDirRevNrg |= fAbs(tmp2);
tmp1 = fMult(tmp1, DUCK_GAMMA_FDK);
tmp2 = tmp2 >> 1;
qs_next = fMin((int)self->qs_next[pb], self->hybridBands);
if (tmp2 > tmp1) { /* true for about 20% */
/* gain smaller than 1.0 */
tmp1 = sqrtFixp(tmp1);
tmp2 = invSqrtNorm2(tmp2, &s);
duckGain = FX_DBL2FX_DUCK_GAIN(fMultDiv2(tmp1, tmp2) << s);
} else { /* true for about 80 % */
tmp2 = smoothDirRevNrg[2 * pb] >> 1;
tmp1 = fMult(smoothDirRevNrg[2 * pb + 1], DUCK_GAMMA_FDK);
if (tmp2 > tmp1) { /* true for about 20% */
if (tmp1 <= (tmp2 >> 2)) {
/* limit gain to 2.0 */
if (qs < hybBands) {
for (; qs < qs_next; qs++) {
outputReal[qs] = outputReal[qs] << 1;
outputImag[qs] = outputImag[qs] << 1;
}
} else {
for (; qs < qs_next; qs++) {
outputReal[qs] = outputReal[qs] << 1;
}
}
/* skip general gain*output section */
continue;
} else {
/* gain from 1.0 to 2.0 */
tmp2 = sqrtFixp(tmp2 >> 2);
tmp1 = invSqrtNorm2(tmp1, &s);
duckGain = FX_DBL2FX_DUCK_GAIN(fMult(tmp1, tmp2) << s);
}
} else { /* true for about 60% */
/* gain = 1.0; output does not change; update qs index */
qs = qs_next;
continue;
}
}
/* general gain*output section */
if (qs < hybBands) { /* true for about 39% */
for (; qs < qs_next; qs++) { /* runs about 2 times */
outputReal[qs] = fMultDiv2(outputReal[qs], duckGain) << 2;
outputImag[qs] = fMultDiv2(outputImag[qs], duckGain) << 2;
}
} else {
for (; qs < qs_next; qs++) {
outputReal[qs] = fMultDiv2(outputReal[qs], duckGain) << 2;
}
}
} /* pb */
self->headroomSmoothDirRevNrg =
(SCHAR)fixMax(0, CntLeadingZeros(maxDirRevNrg) - 1);
C_ALLOC_SCRATCH_END(reverbNrg, FIXP_DBL, (28));
return err;
}
LNK_SECTION_CODE_L1
static INT DuckerApplyPS(DUCKER_INSTANCE *const self,
FIXP_DBL const directNrg[(28)],
FIXP_DBL outputReal[(71)], FIXP_DBL outputImag[(71)],
int startHybBand) {
int qs = startHybBand;
int pb = 0;
int startParamBand =
SpatialDecGetProcessingBand(startHybBand, self->mapHybBands2ProcBands);
int hybBands;
int doScaleNrg = 0;
int scaleDirectNrg = 0;
int scaleSmoothDirRevNrg = 0;
FIXP_DBL maxDirRevNrg = FL2FXCONST_DBL(0.0);
if ((self->scaleDirectNrg != self->scaleSmoothDirRevNrg) ||
(self->headroomSmoothDirRevNrg == 0)) {
int scale;
scale = fixMin(self->scaleDirectNrg, self->scaleSmoothDirRevNrg +
self->headroomSmoothDirRevNrg - 2);
scaleDirectNrg = fMax(fMin(self->scaleDirectNrg - scale, (DFRACT_BITS - 1)),
-(DFRACT_BITS - 1));
scaleSmoothDirRevNrg =
fMax(fMin(self->scaleSmoothDirRevNrg - scale, (DFRACT_BITS - 1)),
-(DFRACT_BITS - 1));
self->scaleSmoothDirRevNrg = (SCHAR)scale;
doScaleNrg = 1;
}
hybBands = self->hybridBands;
FDK_ASSERT((self->parameterBands == (28)) || (self->parameterBands == (20)));
for (pb = startParamBand; pb < self->parameterBands; pb++) {
FIXP_DBL directNrg2 = directNrg[pb];
if (doScaleNrg) {
directNrg2 = scaleValue(directNrg2, -scaleDirectNrg);
self->peakDiff[pb] =
scaleValue(self->peakDiff[pb], -scaleSmoothDirRevNrg);
self->peakDecay[pb] =
scaleValue(self->peakDecay[pb], -scaleSmoothDirRevNrg);
self->SmoothDirRevNrg[pb] =
scaleValue(self->SmoothDirRevNrg[pb], -scaleSmoothDirRevNrg);
}
self->peakDecay[pb] = fixMax(
directNrg2, fMult(self->peakDecay[pb], PS_DUCK_PEAK_DECAY_FACTOR_FDK));
self->peakDiff[pb] =
self->peakDiff[pb] +
fMult(PS_DUCK_FILTER_COEFF_FDK,
(self->peakDecay[pb] - directNrg2 - self->peakDiff[pb]));
self->SmoothDirRevNrg[pb] =
fixMax(self->SmoothDirRevNrg[pb] +
fMult(PS_DUCK_FILTER_COEFF_FDK,
(directNrg2 - self->SmoothDirRevNrg[pb])),
FL2FXCONST_DBL(0));
maxDirRevNrg |= fAbs(self->peakDiff[pb]);
maxDirRevNrg |= fAbs(self->SmoothDirRevNrg[pb]);
if ((self->peakDiff[pb] == FL2FXCONST_DBL(0)) &&
(self->SmoothDirRevNrg[pb] == FL2FXCONST_DBL(0))) {
int qs_next;
qs = fMax(qs, SpatialDecGetQmfBand(pb, self->mapProcBands2HybBands));
qs_next = fMin((int)self->qs_next[pb], self->hybridBands);
FIXP_DBL *pOutputReal = &outputReal[qs];
FIXP_DBL *pOutputImag = &outputImag[qs];
if (qs < hybBands) {
for (; qs < qs_next; qs++) {
*pOutputReal++ = FL2FXCONST_DBL(0);
*pOutputImag++ = FL2FXCONST_DBL(0);
}
} else {
for (; qs < qs_next; qs++) {
*pOutputReal++ = FL2FXCONST_DBL(0);
}
}
} else if (self->peakDiff[pb] != FL2FXCONST_DBL(0)) {
FIXP_DBL multiplication =
fMult(FL2FXCONST_DUCK(0.75f), self->peakDiff[pb]);
if (multiplication > (self->SmoothDirRevNrg[pb] >> 1)) {
FIXP_DBL num, denom, duckGain;
int scale, qs_next;
/* implement x/y as (sqrt(x)*invSqrt(y))^2 */
num = sqrtFixp(self->SmoothDirRevNrg[pb] >> 1);
denom = self->peakDiff[pb] +
FL2FXCONST_DBL(ABS_THR / (32768.0f * 32768.0f * 128.0f * 1.5f));
denom = invSqrtNorm2(denom, &scale);
/* duck output whether duckGain != 1.f */
qs = fMax(qs, SpatialDecGetQmfBand(pb, self->mapProcBands2HybBands));
qs_next = fMin((int)self->qs_next[pb], self->hybridBands);
duckGain = fMult(num, denom);
duckGain = fPow2Div2(duckGain << scale);
duckGain = fMultDiv2(FL2FXCONST_DUCK(2.f / 3.f), duckGain) << 3;
FIXP_DBL *pOutputReal = &outputReal[qs];
FIXP_DBL *pOutputImag = &outputImag[qs];
if (qs < hybBands) {
for (; qs < qs_next; qs++) {
*pOutputReal = fMult(*pOutputReal, duckGain);
pOutputReal++; /* don't move in front of "=" above, because then the
fract class treats it differently and provides
wrong argument to fMult() (seen on win32/msvc8) */
*pOutputImag = fMult(*pOutputImag, duckGain);
pOutputImag++;
}
} else {
for (; qs < qs_next; qs++) {
*pOutputReal = fMult(*pOutputReal, duckGain);
pOutputReal++;
}
}
}
}
} /* pb */
self->headroomSmoothDirRevNrg =
(SCHAR)fixMax(0, CntLeadingZeros(maxDirRevNrg) - 1);
return 0;
}
INT FDKdecorrelateOpen(HANDLE_DECORR_DEC hDecorrDec, FIXP_DBL *bufferCplx,
const INT bufLen) {
HANDLE_DECORR_DEC self = hDecorrDec;
if (bufLen < (2 * ((825) + (373)))) return 1;
/* assign all memory to stateBufferCplx. It is reassigned during
* FDKdecorrelateInit() */
self->stateBufferCplx = bufferCplx;
self->L_stateBufferCplx = 0;
self->delayBufferCplx = NULL;
self->L_delayBufferCplx = 0;
return 0;
}
static int distributeBuffer(HANDLE_DECORR_DEC self, const int L_stateBuf,
const int L_delayBuf) {
/* factor 2 because of complex values */
if ((2 * ((825) + (373))) < 2 * (L_stateBuf + L_delayBuf)) {
return 1;
}
self->L_stateBufferCplx = 2 * L_stateBuf;
self->delayBufferCplx = self->stateBufferCplx + 2 * L_stateBuf;
self->L_delayBufferCplx = 2 * L_delayBuf;
return 0;
}
INT FDKdecorrelateInit(HANDLE_DECORR_DEC hDecorrDec, const INT nrHybBands,
const FDK_DECORR_TYPE decorrType,
const FDK_DUCKER_TYPE duckerType, const INT decorrConfig,
const INT seed, const INT partiallyComplex,
const INT useFractDelay, const INT isLegacyPS,
const INT initStatesFlag) {
INT errorCode = 0;
int i, rb, i_start;
int nParamBands = 28;
INT offsetStateBuffer = 0;
INT offsetDelayBuffer = 0;
const UCHAR *REV_bandOffset;
const SCHAR *REV_filterOrder;
hDecorrDec->partiallyComplex = partiallyComplex;
hDecorrDec->numbins = nrHybBands;
switch (decorrType) {
case DECORR_PS:
/* ignore decorrConfig, seed */
if (partiallyComplex) {
hDecorrDec->REV_bandOffset = REV_bandOffset_PS_LP;
hDecorrDec->REV_delay = REV_delay_PS_LP;
errorCode = distributeBuffer(hDecorrDec, (168), (533));
} else {
hDecorrDec->REV_bandOffset = REV_bandOffset_PS_HQ;
hDecorrDec->REV_delay = REV_delay_PS_HQ;
errorCode = distributeBuffer(hDecorrDec, (360), (257));
}
hDecorrDec->REV_filterOrder = REV_filterOrder_PS;
hDecorrDec->REV_filtType = REV_filtType_PS;
/* Initialize ring buffer offsets for PS specific filter implementation.
*/
for (i = 0; i < (3); i++)
hDecorrDec->stateBufferOffset[i] = stateBufferOffsetInit[i];
break;
case DECORR_USAC:
if (partiallyComplex) return 1;
if (seed != 0) return 1;
hDecorrDec->REV_bandOffset =
REV_bandOffset_MPS_HQ[decorrConfig]; /* reverb band layout is
inherited from MPS standard */
hDecorrDec->REV_filterOrder = REV_filterOrder_USAC;
hDecorrDec->REV_delay = REV_delay_USAC;
if (useFractDelay) {
return 1; /* not yet supported */
} else {
hDecorrDec->REV_filtType = REV_filtType_MPS; /* the filter types are
inherited from MPS
standard */
}
/* bsDecorrConfig == 1 is worst case */
errorCode = distributeBuffer(hDecorrDec, (509), (643));
break;
case DECORR_LD:
if (partiallyComplex) return 1;
if (useFractDelay) return 1;
if (decorrConfig > 2) return 1;
if (seed > (MAX_DECORR_SEED_LD - 1)) return 1;
if (!(nrHybBands == 64 || nrHybBands == 32))
return 1; /* actually just qmf bands and no hybrid bands */
hDecorrDec->REV_bandOffset = REV_bandOffset_LD[decorrConfig];
hDecorrDec->REV_filterOrder = REV_filterOrder_MPS; /* the filter orders
are inherited from
MPS standard */
hDecorrDec->REV_delay =
REV_delay_MPS; /* the delays in each reverb band are inherited from
MPS standard */
hDecorrDec->REV_filtType = REV_filtType_LD;
errorCode = distributeBuffer(hDecorrDec, (825), (373));
break;
default:
return 1;
}
if (errorCode) {
return errorCode;
}
if (initStatesFlag) {
FDKmemclear(
hDecorrDec->stateBufferCplx,
hDecorrDec->L_stateBufferCplx * sizeof(*hDecorrDec->stateBufferCplx));
FDKmemclear(
hDecorrDec->delayBufferCplx,
hDecorrDec->L_delayBufferCplx * sizeof(*hDecorrDec->delayBufferCplx));
FDKmemclear(hDecorrDec->reverbBandDelayBufferIndex,
sizeof(hDecorrDec->reverbBandDelayBufferIndex));
}
REV_bandOffset = hDecorrDec->REV_bandOffset;
REV_filterOrder = hDecorrDec->REV_filterOrder;
i_start = 0;
for (rb = 0; rb < (4); rb++) {
int i_stop;
i_stop = REV_bandOffset[rb];
if (i_stop <= i_start) {
continue;
}
for (i = i_start; i < i_stop; i++) {
switch (decorrType) {
case DECORR_PS:
errorCode = DecorrFilterInitPS(
&hDecorrDec->Filter[i], hDecorrDec->stateBufferCplx,
hDecorrDec->delayBufferCplx, &offsetStateBuffer,
&offsetDelayBuffer, i, rb, hDecorrDec->REV_delay[rb]);
break;
default:
errorCode = DecorrFilterInit(
&hDecorrDec->Filter[i], hDecorrDec->stateBufferCplx,
hDecorrDec->delayBufferCplx, &offsetStateBuffer,
&offsetDelayBuffer, seed, rb, useFractDelay,
hDecorrDec->REV_delay[rb], REV_filterOrder[rb], decorrType);
break;
}
}
i_start = i_stop;
} /* loop over reverbBands */
if (!(offsetStateBuffer <= hDecorrDec->L_stateBufferCplx) ||
!(offsetDelayBuffer <= hDecorrDec->L_delayBufferCplx)) {
return errorCode = 1;
}
if (duckerType == DUCKER_AUTOMATIC) {
/* Choose correct ducker type according to standards: */
switch (decorrType) {
case DECORR_PS:
hDecorrDec->ducker.duckerType = DUCKER_PS;
if (isLegacyPS) {
nParamBands = (20);
} else {
nParamBands = (28);
}
break;
case DECORR_USAC:
hDecorrDec->ducker.duckerType = DUCKER_MPS;
nParamBands = (28);
break;
case DECORR_LD:
hDecorrDec->ducker.duckerType = DUCKER_MPS;
nParamBands = (23);
break;
default:
return 1;
}
}
errorCode = DuckerInit(
&hDecorrDec->ducker, hDecorrDec->numbins, hDecorrDec->partiallyComplex,
hDecorrDec->ducker.duckerType, nParamBands, initStatesFlag);
return errorCode;
}
INT FDKdecorrelateClose(HANDLE_DECORR_DEC hDecorrDec) {
INT err = 0;
if (hDecorrDec == NULL) {
return 1;
}
hDecorrDec->stateBufferCplx = NULL;
hDecorrDec->L_stateBufferCplx = 0;
hDecorrDec->delayBufferCplx = NULL;
hDecorrDec->L_delayBufferCplx = 0;
return err;
}
LNK_SECTION_CODE_L1
INT FDKdecorrelateApply(HANDLE_DECORR_DEC hDecorrDec, FIXP_DBL *dataRealIn,
FIXP_DBL *dataImagIn, FIXP_DBL *dataRealOut,
FIXP_DBL *dataImagOut, const INT startHybBand) {
HANDLE_DECORR_DEC self = hDecorrDec;
INT err = 0;
INT rb, stop, start;
if (self != NULL) {
int nHybBands = 0;
/* copy new samples */
nHybBands = self->numbins;
FIXP_DBL directNrg[(28)];
DuckerCalcEnergy(
&self->ducker, dataRealIn, dataImagIn, directNrg,
self->ducker.maxValDirectData, &(self->ducker.scaleDirectNrg),
(self->ducker.duckerType == DUCKER_PS) ? 1 : 0, startHybBand);
/* complex-valued hybrid bands */
for (stop = 0, rb = 0; rb < (4); rb++) {
start = fMax(stop, startHybBand);
stop = fMin(self->REV_bandOffset[rb], (UCHAR)nHybBands);
if (start < stop) {
switch (hDecorrDec->REV_filtType[rb]) {
case DELAY:
err = DecorrFilterApplyPASS(&self->Filter[0], dataRealIn,
dataImagIn, dataRealOut, dataImagOut,
start, stop, self->REV_delay[rb],
self->reverbBandDelayBufferIndex[rb]);
break;
case INDEP_CPLX_PS:
err = DecorrFilterApplyCPLX_PS(
&self->Filter[0], dataRealIn, dataImagIn, dataRealOut,
dataImagOut, start, stop, self->REV_filterOrder[rb],
self->REV_delay[rb], self->reverbBandDelayBufferIndex[rb],
self->stateBufferOffset);
break;
case COMMON_REAL:
err = DecorrFilterApplyREAL(
&self->Filter[0], dataRealIn, dataImagIn, dataRealOut,
dataImagOut, start, stop, self->REV_filterOrder[rb],
self->REV_delay[rb], self->reverbBandDelayBufferIndex[rb]);
break;
default:
err = 1;
break;
}
if (err != 0) {
goto bail;
}
} /* if start < stop */
} /* loop over reverb bands */
for (rb = 0; rb < (4); rb++) {
self->reverbBandDelayBufferIndex[rb] += 2;
if (self->reverbBandDelayBufferIndex[rb] >= 2 * self->REV_delay[rb])
self->reverbBandDelayBufferIndex[rb] = 0;
}
switch (self->ducker.duckerType) {
case DUCKER_PS:
err = DuckerApplyPS(&self->ducker, directNrg, dataRealOut, dataImagOut,
startHybBand);
if (err != 0) goto bail;
break;
default:
err = DuckerApply(&self->ducker, directNrg, dataRealOut, dataImagOut,
startHybBand);
if (err != 0) goto bail;
break;
}
}
bail:
return err;
}
|