aboutsummaryrefslogtreecommitdiffstats
path: root/fdk-aac/libAACdec/src/usacdec_lpc.cpp
blob: 271463fe0c00ab64ad871f2f4a72ac1d5303c656 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:

You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.

You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */

/**************************** AAC decoder library ******************************

   Author(s):   Matthias Hildenbrand, Manuel Jander

   Description: USAC LPC/AVQ decode

*******************************************************************************/

#include "usacdec_lpc.h"

#include "usacdec_rom.h"
#include "FDK_trigFcts.h"

#define NQ_MAX 36

/*
 * Helper functions.
 */

/**
 * \brief Read unary code.
 * \param hBs bitstream handle as data source.
 * \return decoded value.
 */
static int get_vlclbf(HANDLE_FDK_BITSTREAM hBs) {
  int result = 0;

  while (FDKreadBits(hBs, 1) && result <= NQ_MAX) {
    result++;
  }
  return result;
}

/**
 * \brief Read bit count limited unary code.
 * \param hBs bitstream handle as data source
 * \param n max amount of bits to be read.
 * \return decoded value.
 */
static int get_vlclbf_n(HANDLE_FDK_BITSTREAM hBs, int n) {
  int result = 0;

  while (FDKreadBits(hBs, 1)) {
    result++;
    n--;
    if (n <= 0) {
      break;
    }
  }

  return result;
}

/*
 * Algebraic Vector Quantizer
 */

/* ZF_SCALE must be greater than (number of FIXP_ZF)/2
   because the loss of precision caused by fPow2Div2 in RE8_PPV() */
//#define ZF_SCALE ((NQ_MAX-3)>>1)
#define ZF_SCALE ((DFRACT_BITS / 2))
#define FIXP_ZF FIXP_DBL
#define INT2ZF(x, s) (FIXP_ZF)((x) << (ZF_SCALE - (s)))
#define ZF2INT(x) (INT)((x) >> ZF_SCALE)

/* 1.0 in ZF format format */
#define ONEZF ((FIXP_ZF)INT2ZF(1, 0))

/* static */
void nearest_neighbor_2D8(FIXP_ZF x[8], int y[8]) {
  FIXP_ZF s, em, e[8];
  int i, j, sum;

  /* round x into 2Z^8 i.e. compute y=(y1,...,y8) such that yi = 2[xi/2]
     where [.] is the nearest integer operator
     in the mean time, compute sum = y1+...+y8
  */
  sum = 0;
  for (i = 0; i < 8; i++) {
    FIXP_ZF tmp;
    /* round to ..., -2, 0, 2, ... ([-1..1[ --> 0) */
    if (x[i] < (FIXP_ZF)0) {
      tmp = ONEZF - x[i];
      y[i] = -2 * ((ZF2INT(tmp)) >> 1);
    } else {
      tmp = ONEZF + x[i];
      y[i] = 2 * ((ZF2INT(tmp)) >> 1);
    }
    sum += y[i];
  }
  /* check if y1+...+y8 is a multiple of 4
     if not, y is not round xj in the wrong way where j is defined by
        j = arg max_i | xi -yi|
     (this is called the Wagner rule)
  */
  if (sum % 4) {
    /* find j = arg max_i | xi -yi| */
    em = (FIXP_SGL)0;
    j = 0;
    for (i = 0; i < 8; i++) {
      /* compute ei = xi-yi */
      e[i] = x[i] - INT2ZF(y[i], 0);
    }
    for (i = 0; i < 8; i++) {
      /* compute |ei| = | xi-yi | */
      if (e[i] < (FIXP_ZF)0) {
        s = -e[i];
      } else {
        s = e[i];
      }
      /* check if |ei| is maximal, if so, set j=i */
      if (em < s) {
        em = s;
        j = i;
      }
    }
    /* round xj in the "wrong way" */
    if (e[j] < (FIXP_ZF)0) {
      y[j] -= 2;
    } else {
      y[j] += 2;
    }
  }
}

/*--------------------------------------------------------------
  RE8_PPV(x,y)
  NEAREST NEIGHBOR SEARCH IN INFINITE LATTICE RE8
  the algorithm is based on the definition of RE8 as
      RE8 = (2D8) U (2D8+[1,1,1,1,1,1,1,1])
  it applies the coset decoding of Sloane and Conway
  (i) x: point in R^8 in 32-ZF_SCALE.ZF_SCALE format
  (o) y: point in RE8 (8-dimensional integer vector)
  --------------------------------------------------------------
*/
/* static */
void RE8_PPV(FIXP_ZF x[], SHORT y[], int r) {
  int i, y0[8], y1[8];
  FIXP_ZF x1[8], tmp;
  FIXP_DBL e;

  /* find the nearest neighbor y0 of x in 2D8 */
  nearest_neighbor_2D8(x, y0);
  /* find the nearest neighbor y1 of x in 2D8+(1,...,1) (by coset decoding) */
  for (i = 0; i < 8; i++) {
    x1[i] = x[i] - ONEZF;
  }
  nearest_neighbor_2D8(x1, y1);
  for (i = 0; i < 8; i++) {
    y1[i] += 1;
  }

  /* compute e0=||x-y0||^2 and e1=||x-y1||^2 */
  e = (FIXP_DBL)0;
  for (i = 0; i < 8; i++) {
    tmp = x[i] - INT2ZF(y0[i], 0);
    e += fPow2Div2(
        tmp << r); /* shift left to ensure that no fract part bits get lost. */
    tmp = x[i] - INT2ZF(y1[i], 0);
    e -= fPow2Div2(tmp << r);
  }
  /* select best candidate y0 or y1 to minimize distortion */
  if (e < (FIXP_DBL)0) {
    for (i = 0; i < 8; i++) {
      y[i] = y0[i];
    }
  } else {
    for (i = 0; i < 8; i++) {
      y[i] = y1[i];
    }
  }
}

/* table look-up of unsigned value: find i where index >= table[i]
   Note: range must be >= 2, index must be >= table[0] */
static int table_lookup(const USHORT *table, unsigned int index, int range) {
  int i;

  for (i = 4; i < range; i += 4) {
    if (index < table[i]) {
      break;
    }
  }
  if (i > range) {
    i = range;
  }

  if (index < table[i - 2]) {
    i -= 2;
  }
  if (index < table[i - 1]) {
    i--;
  }
  i--;

  return (i); /* index >= table[i] */
}

/*--------------------------------------------------------------------------
  re8_decode_rank_of_permutation(rank, xs, x)
  DECODING OF THE RANK OF THE PERMUTATION OF xs
  (i) rank: index (rank) of a permutation
  (i) xs:   signed leader in RE8 (8-dimensional integer vector)
  (o) x:    point in RE8 (8-dimensional integer vector)
  --------------------------------------------------------------------------
 */
static void re8_decode_rank_of_permutation(int rank, int *xs, SHORT x[8]) {
  INT a[8], w[8], B, fac, fac_B, target;
  int i, j;

  /* --- pre-processing based on the signed leader xs ---
     - compute the alphabet a=[a[0] ... a[q-1]] of x (q elements)
       such that a[0]!=...!=a[q-1]
       it is assumed that xs is sorted in the form of a signed leader
       which can be summarized in 2 requirements:
          a) |xs[0]| >= |xs[1]| >= |xs[2]| >= ... >= |xs[7]|
          b) if |xs[i]|=|xs[i-1]|, xs[i]>=xs[i+1]
       where |.| indicates the absolute value operator
     - compute q (the number of symbols in the alphabet)
     - compute w[0..q-1] where w[j] counts the number of occurences of
       the symbol a[j] in xs
     - compute B = prod_j=0..q-1 (w[j]!) where .! is the factorial */
  /* xs[i], xs[i-1] and ptr_w/a*/
  j = 0;
  w[j] = 1;
  a[j] = xs[0];
  B = 1;
  for (i = 1; i < 8; i++) {
    if (xs[i] != xs[i - 1]) {
      j++;
      w[j] = 1;
      a[j] = xs[i];
    } else {
      w[j]++;
      B *= w[j];
    }
  }

  /* --- actual rank decoding ---
     the rank of x (where x is a permutation of xs) is based on
     Schalkwijk's formula
     it is given by rank=sum_{k=0..7} (A_k * fac_k/B_k)
     the decoding of this rank is sequential and reconstructs x[0..7]
     element by element from x[0] to x[7]
     [the tricky part is the inference of A_k for each k...]
   */

  if (w[0] == 8) {
    for (i = 0; i < 8; i++) {
      x[i] = a[0]; /* avoid fac of 40320 */
    }
  } else {
    target = rank * B;
    fac_B = 1;
    /* decode x element by element */
    for (i = 0; i < 8; i++) {
      fac = fac_B * fdk_dec_tab_factorial[i]; /* fac = 1..5040 */
      j = -1;
      do {
        target -= w[++j] * fac;
      } while (target >= 0); /* max of 30 tests / SV */
      x[i] = a[j];
      /* update rank, denominator B (B_k) and counter w[j] */
      target += w[j] * fac; /* target = fac_B*B*rank */
      fac_B *= w[j];
      w[j]--;
    }
  }
}

/*--------------------------------------------------------------------------
  re8_decode_base_index(n, I, y)
  DECODING OF AN INDEX IN Qn (n=0,2,3 or 4)
  (i) n: codebook number (*n is an integer defined in {0,2,3,4})
  (i) I: index of c (pointer to unsigned 16-bit word)
  (o) y: point in RE8 (8-dimensional integer vector)
  note: the index I is defined as a 32-bit word, but only
  16 bits are required (long can be replaced by unsigned integer)
  --------------------------------------------------------------------------
 */
static void re8_decode_base_index(int *n, UINT index, SHORT y[8]) {
  int i, im, t, sign_code, ka, ks, rank, leader[8];

  if (*n < 2) {
    for (i = 0; i < 8; i++) {
      y[i] = 0;
    }
  } else {
    // index = (unsigned int)*I;
    /* search for the identifier ka of the absolute leader (table-lookup)
       Q2 is a subset of Q3 - the two cases are considered in the same branch
     */
    switch (*n) {
      case 2:
      case 3:
        i = table_lookup(fdk_dec_I3, index, NB_LDQ3);
        ka = fdk_dec_A3[i];
        break;
      case 4:
        i = table_lookup(fdk_dec_I4, index, NB_LDQ4);
        ka = fdk_dec_A4[i];
        break;
      default:
        FDK_ASSERT(0);
        return;
    }
    /* reconstruct the absolute leader */
    for (i = 0; i < 8; i++) {
      leader[i] = fdk_dec_Da[ka][i];
    }
    /* search for the identifier ks of the signed leader (table look-up)
       (this search is focused based on the identifier ka of the absolute
        leader)*/
    t = fdk_dec_Ia[ka];
    im = fdk_dec_Ns[ka];
    ks = table_lookup(fdk_dec_Is + t, index, im);

    /* reconstruct the signed leader from its sign code */
    sign_code = 2 * fdk_dec_Ds[t + ks];
    for (i = 7; i >= 0; i--) {
      leader[i] *= (1 - (sign_code & 2));
      sign_code >>= 1;
    }

    /* compute and decode the rank of the permutation */
    rank = index - fdk_dec_Is[t + ks]; /* rank = index - cardinality offset */

    re8_decode_rank_of_permutation(rank, leader, y);
  }
  return;
}

/* re8_y2k(y,m,k)
   VORONOI INDEXING (INDEX DECODING) k -> y
   (i) k: Voronoi index k[0..7]
   (i) m: Voronoi modulo (m = 2^r = 1<<r, where r is integer >=2)
   (i) r: Voronoi order  (m = 2^r = 1<<r, where r is integer >=2)
   (o) y: 8-dimensional point y[0..7] in RE8
 */
static void re8_k2y(int *k, int r, SHORT *y) {
  int i, tmp, sum;
  SHORT v[8];
  FIXP_ZF zf[8];

  FDK_ASSERT(r <= ZF_SCALE);

  /* compute y = k M and z=(y-a)/m, where
     M = [4        ]
         [2 2      ]
         [|   \    ]
         [2     2  ]
         [1 1 _ 1 1]
     a=(2,0,...,0)
     m = 1<<r
  */
  for (i = 0; i < 8; i++) {
    y[i] = k[7];
  }
  zf[7] = INT2ZF(y[7], r);
  sum = 0;
  for (i = 6; i >= 1; i--) {
    tmp = 2 * k[i];
    sum += tmp;
    y[i] += tmp;
    zf[i] = INT2ZF(y[i], r);
  }
  y[0] += (4 * k[0] + sum);
  zf[0] = INT2ZF(y[0] - 2, r);
  /* find nearest neighbor v of z in infinite RE8 */
  RE8_PPV(zf, v, r);
  /* compute y -= m v */
  for (i = 0; i < 8; i++) {
    y[i] -= (SHORT)(v[i] << r);
  }
}

/*--------------------------------------------------------------------------
  RE8_dec(n, I, k, y)
  MULTI-RATE INDEXING OF A POINT y in THE LATTICE RE8 (INDEX DECODING)
  (i) n: codebook number (*n is an integer defined in {0,2,3,4,..,n_max}). n_max
  = 36 (i) I: index of c (pointer to unsigned 16-bit word) (i) k: index of v
  (8-dimensional vector of binary indices) = Voronoi index (o) y: point in RE8
  (8-dimensional integer vector) note: the index I is defined as a 32-bit word,
  but only 16 bits are required (long can be replaced by unsigned integer)

  return 0 on success, -1 on error.
  --------------------------------------------------------------------------
 */
static int RE8_dec(int n, int I, int *k, FIXP_DBL *y) {
  SHORT v[8];
  SHORT _y[8];
  UINT r;
  int i;

  /* Check bound of codebook qn */
  if (n > NQ_MAX) {
    return -1;
  }

  /* decode the sub-indices I and kv[] according to the codebook number n:
     if n=0,2,3,4, decode I (no Voronoi extension)
     if n>4, Voronoi extension is used, decode I and kv[] */
  if (n <= 4) {
    re8_decode_base_index(&n, I, _y);
    for (i = 0; i < 8; i++) {
      y[i] = (LONG)_y[i];
    }
  } else {
    /* compute the Voronoi modulo m = 2^r where r is extension order */
    r = ((n - 3) >> 1);

    while (n > 4) {
      n -= 2;
    }
    /* decode base codebook index I into c (c is an element of Q3 or Q4)
       [here c is stored in y to save memory] */
    re8_decode_base_index(&n, I, _y);
    /* decode Voronoi index k[] into v */
    re8_k2y(k, r, v);
    /* reconstruct y as y = m c + v (with m=2^r, r integer >=1) */
    for (i = 0; i < 8; i++) {
      y[i] = (LONG)((_y[i] << r) + v[i]);
    }
  }
  return 0;
}

/**************************/
/* start LPC decode stuff */
/**************************/
//#define M         16
#define FREQ_MAX 6400.0f
#define FREQ_DIV 400.0f
#define LSF_GAP 50.0f

/**
 * \brief calculate inverse weighting factor and add non-weighted residual
 *        LSF vector to first stage LSF approximation
 * \param lsfq first stage LSF approximation values.
 * \param xq weighted residual LSF vector
 * \param nk_mode code book number coding mode.
 */
static void lsf_weight_2st(FIXP_LPC *lsfq, FIXP_DBL *xq, int nk_mode) {
  FIXP_LPC d[M_LP_FILTER_ORDER + 1];
  FIXP_SGL factor;
  LONG w; /* inverse weight factor */
  int i;

  /* compute lsf distance */
  d[0] = lsfq[0];
  d[M_LP_FILTER_ORDER] =
      FL2FXCONST_LPC(FREQ_MAX / (1 << LSF_SCALE)) - lsfq[M_LP_FILTER_ORDER - 1];
  for (i = 1; i < M_LP_FILTER_ORDER; i++) {
    d[i] = lsfq[i] - lsfq[i - 1];
  }

  switch (nk_mode) {
    case 0:
      factor = FL2FXCONST_SGL(2.0f * 60.0f / FREQ_DIV);
      break; /* abs */
    case 1:
      factor = FL2FXCONST_SGL(2.0f * 65.0f / FREQ_DIV);
      break; /* mid */
    case 2:
      factor = FL2FXCONST_SGL(2.0f * 64.0f / FREQ_DIV);
      break; /* rel1 */
    default:
      factor = FL2FXCONST_SGL(2.0f * 63.0f / FREQ_DIV);
      break; /* rel2 */
  }
  /* add non-weighted residual LSF vector to LSF1st */
  for (i = 0; i < M_LP_FILTER_ORDER; i++) {
    w = (LONG)fMultDiv2(factor, sqrtFixp(fMult(d[i], d[i + 1])));
    lsfq[i] = fAddSaturate(lsfq[i], FX_DBL2FX_LPC((FIXP_DBL)(w * (LONG)xq[i])));
  }

  return;
}

/**
 * \brief decode nqn amount of code book numbers. These values determine the
 * amount of following bits for nqn AVQ RE8 vectors.
 * \param nk_mode quantization mode.
 * \param nqn amount code book number to read.
 * \param qn pointer to output buffer to hold decoded code book numbers qn.
 */
static void decode_qn(HANDLE_FDK_BITSTREAM hBs, int nk_mode, int nqn,
                      int qn[]) {
  int n;

  if (nk_mode == 1) { /* nk mode 1 */
    /* Unary code for mid LPC1/LPC3 */
    /* Q0=0, Q2=10, Q3=110, ... */
    for (n = 0; n < nqn; n++) {
      qn[n] = get_vlclbf(hBs);
      if (qn[n] > 0) {
        qn[n]++;
      }
    }
  } else { /* nk_mode 0, 3 and 2 */
    /* 2 bits to specify Q2,Q3,Q4,ext */
    for (n = 0; n < nqn; n++) {
      qn[n] = 2 + FDKreadBits(hBs, 2);
    }
    if (nk_mode == 2) {
      /* Unary code for rel LPC1/LPC3 */
      /* Q0 = 0, Q5=10, Q6=110, ... */
      for (n = 0; n < nqn; n++) {
        if (qn[n] > 4) {
          qn[n] = get_vlclbf(hBs);
          if (qn[n] > 0) qn[n] += 4;
        }
      }
    } else { /* nk_mode == (0 and 3) */
      /* Unary code for abs and rel LPC0/LPC2 */
      /* Q5 = 0, Q6=10, Q0=110, Q7=1110, ... */
      for (n = 0; n < nqn; n++) {
        if (qn[n] > 4) {
          qn[n] = get_vlclbf(hBs);
          switch (qn[n]) {
            case 0:
              qn[n] = 5;
              break;
            case 1:
              qn[n] = 6;
              break;
            case 2:
              qn[n] = 0;
              break;
            default:
              qn[n] += 4;
              break;
          }
        }
      }
    }
  }
}

/**
 * \brief reorder LSF coefficients to minimum distance.
 * \param lsf pointer to buffer containing LSF coefficients and where reordered
 * LSF coefficients will be stored into, scaled by LSF_SCALE.
 * \param min_dist min distance scaled by LSF_SCALE
 * \param n number of LSF/LSP coefficients.
 */
static void reorder_lsf(FIXP_LPC *lsf, FIXP_LPC min_dist, int n) {
  FIXP_LPC lsf_min;
  int i;

  lsf_min = min_dist;
  for (i = 0; i < n; i++) {
    if (lsf[i] < lsf_min) {
      lsf[i] = lsf_min;
    }
    lsf_min = fAddSaturate(lsf[i], min_dist);
  }

  /* reverse */
  lsf_min = FL2FXCONST_LPC(FREQ_MAX / (1 << LSF_SCALE)) - min_dist;
  for (i = n - 1; i >= 0; i--) {
    if (lsf[i] > lsf_min) {
      lsf[i] = lsf_min;
    }

    lsf_min = lsf[i] - min_dist;
  }
}

/**
 * \brief First stage approximation
 * \param hBs bitstream handle as data source
 * \param lsfq pointer to output buffer to hold LPC coefficients scaled by
 * LSF_SCALE.
 */
static void vlpc_1st_dec(
    HANDLE_FDK_BITSTREAM hBs, /* input:  codebook index                  */
    FIXP_LPC *lsfq            /* i/o:    i:prediction   o:quantized lsf  */
) {
  const FIXP_LPC *p_dico;
  int i, index;

  index = FDKreadBits(hBs, 8);
  p_dico = &fdk_dec_dico_lsf_abs_8b[index * M_LP_FILTER_ORDER];
  for (i = 0; i < M_LP_FILTER_ORDER; i++) {
    lsfq[i] = p_dico[i];
  }
}

/**
 * \brief Do first stage approximation weighting and multiply with AVQ
 * refinement.
 * \param hBs bitstream handle data ssource.
 * \param lsfq buffer holding 1st stage approx, 2nd stage approx is added to
 * this values.
 * \param nk_mode quantization mode.
 * \return 0 on success, -1 on error.
 */
static int vlpc_2st_dec(
    HANDLE_FDK_BITSTREAM hBs,
    FIXP_LPC *lsfq, /* i/o:    i:1st stage   o:1st+2nd stage   */
    int nk_mode     /* input:  0=abs, >0=rel                   */
) {
  int err;
  FIXP_DBL xq[M_LP_FILTER_ORDER]; /* weighted residual LSF vector */

  /* Decode AVQ refinement */
  { err = CLpc_DecodeAVQ(hBs, xq, nk_mode, 2, 8); }
  if (err != 0) {
    return -1;
  }

  /* add non-weighted residual LSF vector to LSF1st */
  lsf_weight_2st(lsfq, xq, nk_mode);

  /* reorder */
  reorder_lsf(lsfq, FL2FXCONST_LPC(LSF_GAP / (1 << LSF_SCALE)),
              M_LP_FILTER_ORDER);

  return 0;
}

/*
 * Externally visible functions
 */

int CLpc_DecodeAVQ(HANDLE_FDK_BITSTREAM hBs, FIXP_DBL *pOutput, int nk_mode,
                   int no_qn, int length) {
  int i, l;

  for (i = 0; i < length; i += 8 * no_qn) {
    int qn[2], nk, n, I;
    int kv[8] = {0};

    decode_qn(hBs, nk_mode, no_qn, qn);

    for (l = 0; l < no_qn; l++) {
      if (qn[l] == 0) {
        FDKmemclear(&pOutput[i + l * 8], 8 * sizeof(FIXP_DBL));
      }

      /* Voronoi extension order ( nk ) */
      nk = 0;
      n = qn[l];
      if (qn[l] > 4) {
        nk = (qn[l] - 3) >> 1;
        n = qn[l] - nk * 2;
      }

      /* Base codebook index, in reverse bit group order (!) */
      I = FDKreadBits(hBs, 4 * n);

      if (nk > 0) {
        int j;

        for (j = 0; j < 8; j++) {
          kv[j] = FDKreadBits(hBs, nk);
        }
      }

      if (RE8_dec(qn[l], I, kv, &pOutput[i + l * 8]) != 0) {
        return -1;
      }
    }
  }
  return 0;
}

int CLpc_Read(HANDLE_FDK_BITSTREAM hBs, FIXP_LPC lsp[][M_LP_FILTER_ORDER],
              FIXP_LPC lpc4_lsf[M_LP_FILTER_ORDER],
              FIXP_LPC lsf_adaptive_mean_cand[M_LP_FILTER_ORDER],
              FIXP_SGL pStability[], UCHAR *mod, int first_lpd_flag,
              int last_lpc_lost, int last_frame_ok) {
  int i, k, err;
  int mode_lpc_bin = 0; /* mode_lpc bitstream representation */
  int lpc_present[5] = {0, 0, 0, 0, 0};
  int lpc0_available = 1;
  int s = 0;
  int l = 3;
  const int nbDiv = NB_DIV;

  lpc_present[4 >> s] = 1; /* LPC4 */

  /* Decode LPC filters in the following order: LPC 4,0,2,1,3 */

  /*** Decode LPC4 ***/
  vlpc_1st_dec(hBs, lsp[4 >> s]);
  err = vlpc_2st_dec(hBs, lsp[4 >> s], 0); /* nk_mode = 0 */
  if (err != 0) {
    return err;
  }

  /*** Decode LPC0 and LPC2 ***/
  k = 0;
  if (!first_lpd_flag) {
    lpc_present[0] = 1;
    lpc0_available = !last_lpc_lost;
    /* old LPC4 is new LPC0 */
    for (i = 0; i < M_LP_FILTER_ORDER; i++) {
      lsp[0][i] = lpc4_lsf[i];
    }
    /* skip LPC0 and continue with LPC2 */
    k = 2;
  }

  for (; k < l; k += 2) {
    int nk_mode = 0;

    if ((k == 2) && (mod[0] == 3)) {
      break; /* skip LPC2 */
    }

    lpc_present[k >> s] = 1;

    mode_lpc_bin = FDKreadBit(hBs);

    if (mode_lpc_bin == 0) {
      /* LPC0/LPC2: Abs */
      vlpc_1st_dec(hBs, lsp[k >> s]);
    } else {
      /* LPC0/LPC2: RelR */
      for (i = 0; i < M_LP_FILTER_ORDER; i++) {
        lsp[k >> s][i] = lsp[4 >> s][i];
      }
      nk_mode = 3;
    }

    err = vlpc_2st_dec(hBs, lsp[k >> s], nk_mode);
    if (err != 0) {
      return err;
    }
  }

  /*** Decode LPC1 ***/
  if (mod[0] < 2) { /* else: skip LPC1 */
    lpc_present[1] = 1;
    mode_lpc_bin = get_vlclbf_n(hBs, 2);

    switch (mode_lpc_bin) {
      case 1:
        /* LPC1: abs */
        vlpc_1st_dec(hBs, lsp[1]);
        err = vlpc_2st_dec(hBs, lsp[1], 0);
        if (err != 0) {
          return err;
        }
        break;
      case 2:
        /* LPC1: mid0 (no second stage AVQ quantizer in this case) */
        if (lpc0_available) { /* LPC0/lsf[0] might be zero some times */
          for (i = 0; i < M_LP_FILTER_ORDER; i++) {
            lsp[1][i] = (lsp[0][i] >> 1) + (lsp[2][i] >> 1);
          }
        } else {
          for (i = 0; i < M_LP_FILTER_ORDER; i++) {
            lsp[1][i] = lsp[2][i];
          }
        }
        break;
      case 0:
        /* LPC1: RelR */
        for (i = 0; i < M_LP_FILTER_ORDER; i++) {
          lsp[1][i] = lsp[2][i];
        }
        err = vlpc_2st_dec(hBs, lsp[1], 2 << s);
        if (err != 0) {
          return err;
        }
        break;
    }
  }

  /*** Decode LPC3 ***/
  if ((mod[2] < 2)) { /* else: skip LPC3 */
    int nk_mode = 0;
    lpc_present[3] = 1;

    mode_lpc_bin = get_vlclbf_n(hBs, 3);

    switch (mode_lpc_bin) {
      case 1:
        /* LPC3: abs */
        vlpc_1st_dec(hBs, lsp[3]);
        break;
      case 0:
        /* LPC3: mid */
        for (i = 0; i < M_LP_FILTER_ORDER; i++) {
          lsp[3][i] = (lsp[2][i] >> 1) + (lsp[4][i] >> 1);
        }
        nk_mode = 1;
        break;
      case 2:
        /* LPC3: relL */
        for (i = 0; i < M_LP_FILTER_ORDER; i++) {
          lsp[3][i] = lsp[2][i];
        }
        nk_mode = 2;
        break;
      case 3:
        /* LPC3: relR */
        for (i = 0; i < M_LP_FILTER_ORDER; i++) {
          lsp[3][i] = lsp[4][i];
        }
        nk_mode = 2;
        break;
    }
    err = vlpc_2st_dec(hBs, lsp[3], nk_mode);
    if (err != 0) {
      return err;
    }
  }

  if (!lpc0_available && !last_frame_ok) {
    /* LPC(0) was lost. Use next available LPC(k) instead */
    for (k = 1; k < (nbDiv + 1); k++) {
      if (lpc_present[k]) {
        for (i = 0; i < M_LP_FILTER_ORDER; i++) {
#define LSF_INIT_TILT (0.25f)
          if (mod[0] > 0) {
            lsp[0][i] = FX_DBL2FX_LPC(
                fMult(lsp[k][i], FL2FXCONST_SGL(1.0f - LSF_INIT_TILT)) +
                fMult(fdk_dec_lsf_init[i], FL2FXCONST_SGL(LSF_INIT_TILT)));
          } else {
            lsp[0][i] = lsp[k][i];
          }
        }
        break;
      }
    }
  }

  for (i = 0; i < M_LP_FILTER_ORDER; i++) {
    lpc4_lsf[i] = lsp[4 >> s][i];
  }

  {
    FIXP_DBL divFac;
    int last, numLpc = 0;

    i = nbDiv;
    do {
      numLpc += lpc_present[i--];
    } while (i >= 0 && numLpc < 3);

    last = i;

    switch (numLpc) {
      case 3:
        divFac = FL2FXCONST_DBL(1.0f / 3.0f);
        break;
      case 2:
        divFac = FL2FXCONST_DBL(1.0f / 2.0f);
        break;
      default:
        divFac = FL2FXCONST_DBL(1.0f);
        break;
    }

    /* get the adaptive mean for the next (bad) frame */
    for (k = 0; k < M_LP_FILTER_ORDER; k++) {
      FIXP_DBL tmp = (FIXP_DBL)0;
      for (i = nbDiv; i > last; i--) {
        if (lpc_present[i]) {
          tmp = fMultAdd(tmp >> 1, lsp[i][k], divFac);
        }
      }
      lsf_adaptive_mean_cand[k] = FX_DBL2FX_LPC(tmp);
    }
  }

  /* calculate stability factor Theta. Needed for ACELP decoder and concealment
   */
  {
    FIXP_LPC *lsf_prev, *lsf_curr;
    k = 0;

    FDK_ASSERT(lpc_present[0] == 1 && lpc_present[4 >> s] == 1);
    lsf_prev = lsp[0];
    for (i = 1; i < (nbDiv + 1); i++) {
      if (lpc_present[i]) {
        FIXP_DBL tmp = (FIXP_DBL)0;
        int j;
        lsf_curr = lsp[i];

        /* sum = tmp * 2^(LSF_SCALE*2 + 4) */
        for (j = 0; j < M_LP_FILTER_ORDER; j++) {
          tmp += fPow2Div2((FIXP_SGL)(lsf_curr[j] - lsf_prev[j])) >> 3;
        }

        /* tmp = (float)(FL2FXCONST_DBL(1.25f) - fMult(tmp,
         * FL2FXCONST_DBL(1/400000.0f))); */
        tmp = FL2FXCONST_DBL(1.25f / (1 << LSF_SCALE)) -
              fMult(tmp, FL2FXCONST_DBL((1 << (LSF_SCALE + 4)) / 400000.0f));
        if (tmp >= FL2FXCONST_DBL(1.0f / (1 << LSF_SCALE))) {
          pStability[k] = FL2FXCONST_SGL(1.0f / 2.0f);
        } else if (tmp < FL2FXCONST_DBL(0.0f)) {
          pStability[k] = FL2FXCONST_SGL(0.0f);
        } else {
          pStability[k] = FX_DBL2FX_SGL(tmp << (LSF_SCALE - 1));
        }

        lsf_prev = lsf_curr;
        k = i;
      } else {
        /* Mark stability value as undefined. */
        pStability[i] = (FIXP_SGL)-1;
      }
    }
  }

  /* convert into LSP domain */
  for (i = 0; i < (nbDiv + 1); i++) {
    if (lpc_present[i]) {
      for (k = 0; k < M_LP_FILTER_ORDER; k++) {
        lsp[i][k] = FX_DBL2FX_LPC(
            fixp_cos(fMult(lsp[i][k],
                           FL2FXCONST_SGL((1 << LSPARG_SCALE) * M_PI / 6400.0)),
                     LSF_SCALE - LSPARG_SCALE));
      }
    }
  }

  return 0;
}

void CLpc_Conceal(FIXP_LPC lsp[][M_LP_FILTER_ORDER],
                  FIXP_LPC lpc4_lsf[M_LP_FILTER_ORDER],
                  FIXP_LPC lsf_adaptive_mean[M_LP_FILTER_ORDER],
                  const int first_lpd_flag) {
  int i, j;

#define BETA (FL2FXCONST_SGL(0.25f))
#define ONE_BETA (FL2FXCONST_SGL(0.75f))
#define BFI_FAC (FL2FXCONST_SGL(0.90f))
#define ONE_BFI_FAC (FL2FXCONST_SGL(0.10f))

  /* Frame loss concealment (could be improved) */

  if (first_lpd_flag) {
    /* Reset past LSF values */
    for (i = 0; i < M_LP_FILTER_ORDER; i++) {
      lsp[0][i] = lpc4_lsf[i] = fdk_dec_lsf_init[i];
    }
  } else {
    /* old LPC4 is new LPC0 */
    for (i = 0; i < M_LP_FILTER_ORDER; i++) {
      lsp[0][i] = lpc4_lsf[i];
    }
  }

  /* LPC1 */
  for (i = 0; i < M_LP_FILTER_ORDER; i++) {
    FIXP_LPC lsf_mean = FX_DBL2FX_LPC(fMult(BETA, fdk_dec_lsf_init[i]) +
                                      fMult(ONE_BETA, lsf_adaptive_mean[i]));

    lsp[1][i] = FX_DBL2FX_LPC(fMult(BFI_FAC, lpc4_lsf[i]) +
                              fMult(ONE_BFI_FAC, lsf_mean));
  }

  /* LPC2 - LPC4 */
  for (j = 2; j <= 4; j++) {
    for (i = 0; i < M_LP_FILTER_ORDER; i++) {
      /* lsf_mean[i] =  FX_DBL2FX_LPC(fMult((FIXP_LPC)(BETA + j *
         FL2FXCONST_LPC(0.1f)), fdk_dec_lsf_init[i])
                                    + fMult((FIXP_LPC)(ONE_BETA - j *
         FL2FXCONST_LPC(0.1f)), lsf_adaptive_mean[i])); */

      FIXP_LPC lsf_mean = FX_DBL2FX_LPC(
          fMult((FIXP_SGL)(BETA + (FIXP_SGL)(j * (INT)FL2FXCONST_SGL(0.1f))),
                (FIXP_SGL)fdk_dec_lsf_init[i]) +
          fMult(
              (FIXP_SGL)(ONE_BETA - (FIXP_SGL)(j * (INT)FL2FXCONST_SGL(0.1f))),
              lsf_adaptive_mean[i]));

      lsp[j][i] = FX_DBL2FX_LPC(fMult(BFI_FAC, lsp[j - 1][i]) +
                                fMult(ONE_BFI_FAC, lsf_mean));
    }
  }

  /* Update past values for the future */
  for (i = 0; i < M_LP_FILTER_ORDER; i++) {
    lpc4_lsf[i] = lsp[4][i];
  }

  /* convert into LSP domain */
  for (j = 0; j < 5; j++) {
    for (i = 0; i < M_LP_FILTER_ORDER; i++) {
      lsp[j][i] = FX_DBL2FX_LPC(fixp_cos(
          fMult(lsp[j][i], FL2FXCONST_SGL((1 << LSPARG_SCALE) * M_PI / 6400.0)),
          LSF_SCALE - LSPARG_SCALE));
    }
  }
}

void E_LPC_a_weight(FIXP_LPC *wA, const FIXP_LPC *A, int m) {
  FIXP_DBL f;
  int i;

  f = FL2FXCONST_DBL(0.92f);
  for (i = 0; i < m; i++) {
    wA[i] = FX_DBL2FX_LPC(fMult(A[i], f));
    f = fMult(f, FL2FXCONST_DBL(0.92f));
  }
}

void CLpd_DecodeGain(FIXP_DBL *gain, INT *gain_e, int gain_code) {
  /* gain * 2^(gain_e) = 10^(gain_code/28) */
  *gain = fLdPow(
      FL2FXCONST_DBL(3.3219280948873623478703194294894 / 4.0), /* log2(10)*/
      2,
      fMultDiv2((FIXP_DBL)gain_code << (DFRACT_BITS - 1 - 7),
                FL2FXCONST_DBL(2.0f / 28.0f)),
      7, gain_e);
}

  /**
   * \brief *   Find the polynomial F1(z) or F2(z) from the LSPs.
   * This is performed by expanding the product polynomials:
   *
   * F1(z) =   product   ( 1 - 2 LSP_i z^-1 + z^-2 )
   *         i=0,2,4,6,8
   * F2(z) =   product   ( 1 - 2 LSP_i z^-1 + z^-2 )
   *         i=1,3,5,7,9
   *
   * where LSP_i are the LSPs in the cosine domain.
   * R.A.Salami    October 1990
   * \param lsp input, line spectral freq. (cosine domain)
   * \param f output, the coefficients of F1 or F2, scaled by 8 bits
   * \param n no of coefficients (m/2)
   * \param flag 1 : F1(z) ; 2 : F2(z)
   */

#define SF_F 8

static void get_lsppol(FIXP_LPC lsp[], FIXP_DBL f[], int n, int flag) {
  FIXP_DBL b;
  FIXP_LPC *plsp;
  int i, j;

  plsp = lsp + flag - 1;
  f[0] = FL2FXCONST_DBL(1.0f / (1 << SF_F));
  b = -FX_LPC2FX_DBL(*plsp);
  f[1] = b >> (SF_F - 1);
  for (i = 2; i <= n; i++) {
    plsp += 2;
    b = -FX_LPC2FX_DBL(*plsp);
    f[i] = ((fMultDiv2(b, f[i - 1]) << 1) + (f[i - 2])) << 1;
    for (j = i - 1; j > 1; j--) {
      f[j] = f[j] + (fMultDiv2(b, f[j - 1]) << 2) + f[j - 2];
    }
    f[1] = f[1] + (b >> (SF_F - 1));
  }
  return;
}

#define NC M_LP_FILTER_ORDER / 2

/**
 * \brief lsp input LSP vector
 * \brief a output LP filter coefficient vector scaled by SF_A_COEFFS.
 */
void E_LPC_f_lsp_a_conversion(FIXP_LPC *lsp, FIXP_LPC *a, INT *a_exp) {
  FIXP_DBL f1[NC + 1], f2[NC + 1];
  int i, k;

  /*-----------------------------------------------------*
   *  Find the polynomials F1(z) and F2(z)               *
   *-----------------------------------------------------*/

  get_lsppol(lsp, f1, NC, 1);
  get_lsppol(lsp, f2, NC, 2);

  /*-----------------------------------------------------*
   *  Multiply F1(z) by (1+z^-1) and F2(z) by (1-z^-1)   *
   *-----------------------------------------------------*/
  for (i = NC; i > 0; i--) {
    f1[i] += f1[i - 1];
    f2[i] -= f2[i - 1];
  }

  FIXP_DBL aDBL[M_LP_FILTER_ORDER];

  for (i = 1, k = M_LP_FILTER_ORDER - 1; i <= NC; i++, k--) {
    FIXP_DBL tmp1, tmp2;

    tmp1 = f1[i] >> 1;
    tmp2 = f2[i] >> 1;

    aDBL[i - 1] = (tmp1 + tmp2);
    aDBL[k] = (tmp1 - tmp2);
  }

  int headroom_a = getScalefactor(aDBL, M_LP_FILTER_ORDER);

  for (i = 0; i < M_LP_FILTER_ORDER; i++) {
    a[i] = FX_DBL2FX_LPC(aDBL[i] << headroom_a);
  }

  *a_exp = 8 - headroom_a;
}