summaryrefslogtreecommitdiffstats
path: root/fdk-aac/libAACdec/src/usacdec_acelp.cpp
blob: 9769a07a17c8856f8e5df8ab8566509f4f337bf9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

© Copyright  1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:

You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.

You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */

/**************************** AAC decoder library ******************************

   Author(s):   Matthias Hildenbrand

   Description: USAC ACELP frame decoder

*******************************************************************************/

#include "usacdec_acelp.h"

#include "usacdec_ace_d4t64.h"
#include "usacdec_ace_ltp.h"
#include "usacdec_rom.h"
#include "usacdec_lpc.h"
#include "genericStds.h"

#define PIT_FR2_12k8 128 /* Minimum pitch lag with resolution 1/2      */
#define PIT_FR1_12k8 160 /* Minimum pitch lag with resolution 1        */
#define TILT_CODE2 \
  FL2FXCONST_SGL(0.3f * 2.0f) /* ACELP code pre-emphasis factor ( *2 )      */
#define PIT_SHARP \
  FL2FXCONST_SGL(0.85f) /* pitch sharpening factor                    */
#define PREEMPH_FAC \
  FL2FXCONST_SGL(0.68f) /* ACELP synth pre-emphasis factor            */

#define ACELP_HEADROOM 1
#define ACELP_OUTSCALE (MDCT_OUT_HEADROOM - ACELP_HEADROOM)

/**
 * \brief Calculate pre-emphasis (1 - mu z^-1) on input signal.
 * \param[in] in pointer to input signal; in[-1] is also needed.
 * \param[out] out pointer to output signal.
 * \param[in] L length of filtering.
 */
/* static */
void E_UTIL_preemph(const FIXP_DBL *in, FIXP_DBL *out, INT L) {
  int i;

  for (i = 0; i < L; i++) {
    out[i] = fAddSaturate(in[i], -fMult(PREEMPH_FAC, in[i - 1]));
  }

  return;
}

/**
 * \brief Calculate de-emphasis 1/(1 - TILT_CODE z^-1) on innovative codebook
 * vector.
 * \param[in,out] x innovative codebook vector.
 */
static void Preemph_code(
    FIXP_COD x[] /* (i/o)   : input signal overwritten by the output */
) {
  int i;
  FIXP_DBL L_tmp;

  /* ARM926: 12 cycles per sample */
  for (i = L_SUBFR - 1; i > 0; i--) {
    L_tmp = FX_COD2FX_DBL(x[i]);
    L_tmp -= fMultDiv2(x[i - 1], TILT_CODE2);
    x[i] = FX_DBL2FX_COD(L_tmp);
  }
}

/**
 * \brief Apply pitch sharpener to the innovative codebook vector.
 * \param[in,out] x innovative codebook vector.
 * \param[in] pit_lag decoded pitch lag.
 */
static void Pit_shrp(
    FIXP_COD x[], /* in/out: impulse response (or algebraic code) */
    int pit_lag   /* input : pitch lag                            */
) {
  int i;
  FIXP_DBL L_tmp;

  for (i = pit_lag; i < L_SUBFR; i++) {
    L_tmp = FX_COD2FX_DBL(x[i]);
    L_tmp += fMult(x[i - pit_lag], PIT_SHARP);
    x[i] = FX_DBL2FX_COD(L_tmp);
  }

  return;
}

  /**
   * \brief Calculate Quantized codebook gain, Quantized pitch gain and unbiased
   *        Innovative code vector energy.
   * \param[in] index index of quantizer.
   * \param[in] code innovative code vector with exponent = SF_CODE.
   * \param[out] gain_pit Quantized pitch gain g_p with exponent = SF_GAIN_P.
   * \param[out] gain_code Quantized codebook gain g_c.
   * \param[in] mean_ener mean_ener defined in open-loop (2 bits), exponent = 7.
   * \param[out] E_code unbiased innovative code vector energy.
   * \param[out] E_code_e exponent of unbiased innovative code vector energy.
   */

#define SF_MEAN_ENER_LG10 9

/* pow(10.0, {18, 30, 42, 54}/20.0) /(float)(1<<SF_MEAN_ENER_LG10) */
static const FIXP_DBL pow_10_mean_energy[4] = {0x01fc5ebd, 0x07e7db92,
                                               0x1f791f65, 0x7d4bfba3};

static void D_gain2_plus(int index, FIXP_COD code[], FIXP_SGL *gain_pit,
                         FIXP_DBL *gain_code, int mean_ener_bits, int bfi,
                         FIXP_SGL *past_gpit, FIXP_DBL *past_gcode,
                         FIXP_DBL *pEner_code, int *pEner_code_e) {
  FIXP_DBL Ltmp;
  FIXP_DBL gcode0, gcode_inov;
  INT gcode0_e, gcode_inov_e;
  int i;

  FIXP_DBL ener_code;
  INT ener_code_e;

  /* ener_code = sum(code[]^2) */
  ener_code = FIXP_DBL(0);
  for (i = 0; i < L_SUBFR; i++) {
    ener_code += fPow2Div2(code[i]);
  }

  ener_code_e = fMax(fNorm(ener_code) - 1, 0);
  ener_code <<= ener_code_e;
  ener_code_e = 2 * SF_CODE + 1 - ener_code_e;

  /* export energy of code for calc_period_factor() */
  *pEner_code = ener_code;
  *pEner_code_e = ener_code_e;

  ener_code += scaleValue(FL2FXCONST_DBL(0.01f), -ener_code_e);

  /* ener_code *= 1/L_SUBFR, and make exponent even (because of square root
   * below). */
  if (ener_code_e & 1) {
    ener_code_e -= 5;
    ener_code >>= 1;
  } else {
    ener_code_e -= 6;
  }
  gcode_inov = invSqrtNorm2(ener_code, &gcode0_e);
  gcode_inov_e = gcode0_e - (ener_code_e >> 1);

  if (bfi) {
    FIXP_DBL tgcode;
    FIXP_SGL tgpit;

    tgpit = *past_gpit;

    if (tgpit > FL2FXCONST_SGL(0.95f / (1 << SF_GAIN_P))) {
      tgpit = FL2FXCONST_SGL(0.95f / (1 << SF_GAIN_P));
    } else if (tgpit < FL2FXCONST_SGL(0.5f / (1 << SF_GAIN_P))) {
      tgpit = FL2FXCONST_SGL(0.5f / (1 << SF_GAIN_P));
    }
    *gain_pit = tgpit;
    tgpit = FX_DBL2FX_SGL(fMult(tgpit, FL2FXCONST_DBL(0.95f)));
    *past_gpit = tgpit;

    tgpit = FL2FXCONST_SGL(1.4f / (1 << SF_GAIN_P)) - tgpit;
    tgcode = fMult(*past_gcode, tgpit) << SF_GAIN_P;
    *gain_code = scaleValue(fMult(tgcode, gcode_inov), gcode_inov_e);
    *past_gcode = tgcode;

    return;
  }

  /*-------------- Decode gains ---------------*/
  /*
   gcode0 = pow(10.0, (float)mean_ener/20.0);
   gcode0 = gcode0 / sqrt(ener_code/L_SUBFR);
   */
  gcode0 = pow_10_mean_energy[mean_ener_bits];
  gcode0 = fMultDiv2(gcode0, gcode_inov);
  gcode0_e = gcode0_e + SF_MEAN_ENER_LG10 - (ener_code_e >> 1) + 1;

  i = index << 1;
  *gain_pit = fdk_t_qua_gain7b[i]; /* adaptive codebook gain */
  /* t_qua_gain[ind2p1] : fixed codebook gain correction factor */
  Ltmp = fMult(fdk_t_qua_gain7b[i + 1], gcode0);
  *gain_code = scaleValue(Ltmp, gcode0_e - SF_GAIN_C + SF_QUA_GAIN7B);

  /* update bad frame handler */
  *past_gpit = *gain_pit;

  /*--------------------------------------------------------
    past_gcode  = gain_code/gcode_inov
   --------------------------------------------------------*/
  {
    FIXP_DBL gcode_m;
    INT gcode_e;

    gcode_m = fDivNormHighPrec(Ltmp, gcode_inov, &gcode_e);
    gcode_e += (gcode0_e - SF_GAIN_C + SF_QUA_GAIN7B) - (gcode_inov_e);
    *past_gcode = scaleValue(gcode_m, gcode_e);
  }
}

/**
 * \brief Calculate period/voicing factor r_v
 * \param[in] exc pitch excitation.
 * \param[in] gain_pit gain of pitch g_p.
 * \param[in] gain_code gain of code g_c.
 * \param[in] gain_code_e exponent of gain of code.
 * \param[in] ener_code unbiased innovative code vector energy.
 * \param[in] ener_code_e exponent of unbiased innovative code vector energy.
 * \return period/voice factor r_v (-1=unvoiced to 1=voiced), exponent SF_PFAC.
 */
static FIXP_DBL calc_period_factor(FIXP_DBL exc[], FIXP_SGL gain_pit,
                                   FIXP_DBL gain_code, FIXP_DBL ener_code,
                                   int ener_code_e) {
  int ener_exc_e, L_tmp_e, s = 0;
  FIXP_DBL ener_exc, L_tmp;
  FIXP_DBL period_fac;

  /* energy of pitch excitation */
  ener_exc = (FIXP_DBL)0;
  for (int i = 0; i < L_SUBFR; i++) {
    ener_exc += fPow2Div2(exc[i]) >> s;
    if (ener_exc >= FL2FXCONST_DBL(0.5f)) {
      ener_exc >>= 1;
      s++;
    }
  }

  ener_exc_e = fNorm(ener_exc);
  ener_exc = fMult(ener_exc << ener_exc_e, fPow2(gain_pit));
  if (ener_exc != (FIXP_DBL)0) {
    ener_exc_e = 2 * SF_EXC + 1 + 2 * SF_GAIN_P - ener_exc_e + s;
  } else {
    ener_exc_e = 0;
  }

  /* energy of innovative code excitation */
  /* L_tmp = ener_code * gain_code*gain_code; */
  L_tmp_e = fNorm(gain_code);
  L_tmp = fPow2(gain_code << L_tmp_e);
  L_tmp = fMult(ener_code, L_tmp);
  L_tmp_e = 2 * SF_GAIN_C + ener_code_e - 2 * L_tmp_e;

  /* Find common exponent */
  {
    FIXP_DBL num, den;
    int exp_diff;

    exp_diff = ener_exc_e - L_tmp_e;
    if (exp_diff >= 0) {
      ener_exc >>= 1;
      if (exp_diff <= DFRACT_BITS - 2) {
        L_tmp >>= exp_diff + 1;
      } else {
        L_tmp = (FIXP_DBL)0;
      }
      den = ener_exc + L_tmp;
      if (ener_exc_e < DFRACT_BITS - 1) {
        den += scaleValue(FL2FXCONST_DBL(0.01f), -ener_exc_e - 1);
      }
    } else {
      if (exp_diff >= -(DFRACT_BITS - 2)) {
        ener_exc >>= 1 - exp_diff;
      } else {
        ener_exc = (FIXP_DBL)0;
      }
      L_tmp >>= 1;
      den = ener_exc + L_tmp;
      if (L_tmp_e < DFRACT_BITS - 1) {
        den += scaleValue(FL2FXCONST_DBL(0.01f), -L_tmp_e - 1);
      }
    }
    num = (ener_exc - L_tmp);
    num >>= SF_PFAC;

    if (den > (FIXP_DBL)0) {
      if (ener_exc > L_tmp) {
        period_fac = schur_div(num, den, 16);
      } else {
        period_fac = -schur_div(-num, den, 16);
      }
    } else {
      period_fac = (FIXP_DBL)MAXVAL_DBL;
    }
  }

  /* exponent = SF_PFAC */
  return period_fac;
}

/*------------------------------------------------------------*
 * noise enhancer                                             *
 * ~~~~~~~~~~~~~~                                             *
 * - Enhance excitation on noise. (modify gain of code)       *
 *   If signal is noisy and LPC filter is stable, move gain   *
 *   of code 1.5 dB toward gain of code threshold.            *
 *   This decrease by 3 dB noise energy variation.            *
 *------------------------------------------------------------*/
/**
 * \brief Enhance excitation on noise. (modify gain of code)
 * \param[in] gain_code Quantized codebook gain g_c, exponent = SF_GAIN_C.
 * \param[in] period_fac periodicity factor, exponent = SF_PFAC.
 * \param[in] stab_fac stability factor, exponent = SF_STAB.
 * \param[in,out] p_gc_threshold modified gain of previous subframe.
 * \return gain_code smoothed gain of code g_sc, exponent = SF_GAIN_C.
 */
static FIXP_DBL
noise_enhancer(/* (o) : smoothed gain g_sc                     SF_GAIN_C */
               FIXP_DBL gain_code, /* (i) : Quantized codebook gain SF_GAIN_C */
               FIXP_DBL period_fac, /* (i) : periodicity factor (-1=unvoiced to
                                       1=voiced), SF_PFAC */
               FIXP_SGL stab_fac,   /* (i) : stability factor (0 <= ... < 1.0)
                                       SF_STAB   */
               FIXP_DBL
                   *p_gc_threshold) /* (io): gain of code threshold SF_GAIN_C */
{
  FIXP_DBL fac, L_tmp, gc_thres;

  gc_thres = *p_gc_threshold;

  L_tmp = gain_code;
  if (L_tmp < gc_thres) {
    L_tmp += fMultDiv2(gain_code,
                       FL2FXCONST_SGL(2.0 * 0.19f)); /* +1.5dB => *(1.0+0.19) */
    if (L_tmp > gc_thres) {
      L_tmp = gc_thres;
    }
  } else {
    L_tmp = fMult(gain_code,
                  FL2FXCONST_SGL(1.0f / 1.19f)); /* -1.5dB => *10^(-1.5/20) */
    if (L_tmp < gc_thres) {
      L_tmp = gc_thres;
    }
  }
  *p_gc_threshold = L_tmp;

  /* voicing factor     lambda = 0.5*(1-period_fac) */
  /* gain smoothing factor S_m = lambda*stab_fac  (=fac)
                               = 0.5(stab_fac - stab_fac * period_fac) */
  fac = (FX_SGL2FX_DBL(stab_fac) >> (SF_PFAC + 1)) -
        fMultDiv2(stab_fac, period_fac);
  /* fac_e = SF_PFAC + SF_STAB */
  FDK_ASSERT(fac >= (FIXP_DBL)0);

  /* gain_code = (float)((fac*tmp) + ((1.0-fac)*gain_code)); */
  gain_code = fMult(fac, L_tmp) -
              fMult(FL2FXCONST_DBL(-1.0f / (1 << (SF_PFAC + SF_STAB))) + fac,
                    gain_code);
  gain_code <<= (SF_PFAC + SF_STAB);

  return gain_code;
}

/**
 * \brief Update adaptive codebook u'(n) (exc)
 *        Enhance pitch of c(n) and build post-processed excitation u(n) (exc2)
 * \param[in] code innovative codevector c(n), exponent = SF_CODE.
 * \param[in,out] exc filtered adaptive codebook v(n), exponent = SF_EXC.
 * \param[in] gain_pit adaptive codebook gain, exponent = SF_GAIN_P.
 * \param[in] gain_code innovative codebook gain g_c, exponent = SF_GAIN_C.
 * \param[in] gain_code_smoothed smoothed innov. codebook gain g_sc, exponent =
 * SF_GAIN_C.
 * \param[in] period_fac periodicity factor r_v, exponent = SF_PFAC.
 * \param[out] exc2 post-processed excitation u(n), exponent = SF_EXC.
 */
void BuildAdaptiveExcitation(
    FIXP_COD code[],    /* (i) : algebraic codevector c(n)             Q9  */
    FIXP_DBL exc[],     /* (io): filtered adaptive codebook v(n)       Q15 */
    FIXP_SGL gain_pit,  /* (i) : adaptive codebook gain g_p            Q14 */
    FIXP_DBL gain_code, /* (i) : innovative codebook gain g_c          Q16 */
    FIXP_DBL gain_code_smoothed, /* (i) : smoothed innov. codebook gain g_sc
                                    Q16 */
    FIXP_DBL period_fac, /* (i) : periodicity factor r_v                Q15 */
    FIXP_DBL exc2[]      /* (o) : post-processed excitation u(n)        Q15 */
) {
/* Note: code[L_SUBFR] and exc2[L_SUBFR] share the same memory!
         If exc2[i] is written, code[i] will be destroyed!
*/
#define SF_HEADROOM (1)
#define SF (SF_CODE + SF_GAIN_C + 1 - SF_EXC - SF_HEADROOM)
#define SF_GAIN_P2 (SF_GAIN_P - SF_HEADROOM)

  int i;
  FIXP_DBL tmp, cpe, code_smooth_prev, code_smooth;

  FIXP_COD code_i;
  FIXP_DBL cpe_code_smooth, cpe_code_smooth_prev;

  /* cpe = (1+r_v)/8 * 2 ; ( SF = -1) */
  cpe = (period_fac >> (2 - SF_PFAC)) + FL2FXCONST_DBL(0.25f);

  /* u'(n) */
  tmp = fMultDiv2(*exc, gain_pit) << (SF_GAIN_P2 + 1); /* v(0)*g_p */
  *exc++ = (tmp + (fMultDiv2(code[0], gain_code) << SF)) << SF_HEADROOM;

  /* u(n) */
  code_smooth_prev = fMultDiv2(*code++, gain_code_smoothed)
                     << SF; /* c(0) * g_sc */
  code_i = *code++;
  code_smooth = fMultDiv2(code_i, gain_code_smoothed) << SF; /* c(1) * g_sc */
  tmp += code_smooth_prev; /* tmp = v(0)*g_p + c(0)*g_sc */
  cpe_code_smooth = fMultDiv2(cpe, code_smooth);
  *exc2++ = (tmp - cpe_code_smooth) << SF_HEADROOM;
  cpe_code_smooth_prev = fMultDiv2(cpe, code_smooth_prev);

  i = L_SUBFR - 2;
  do /* ARM926: 22 cycles per iteration */
  {
    /* u'(n) */
    tmp = fMultDiv2(*exc, gain_pit) << (SF_GAIN_P2 + 1);
    *exc++ = (tmp + (fMultDiv2(code_i, gain_code) << SF)) << SF_HEADROOM;
    /* u(n) */
    tmp += code_smooth; /* += g_sc * c(i) */
    tmp -= cpe_code_smooth_prev;
    cpe_code_smooth_prev = cpe_code_smooth;
    code_i = *code++;
    code_smooth = fMultDiv2(code_i, gain_code_smoothed) << SF;
    cpe_code_smooth = fMultDiv2(cpe, code_smooth);
    *exc2++ = (tmp - cpe_code_smooth)
              << SF_HEADROOM; /* tmp - c_pe * g_sc * c(i+1) */
  } while (--i != 0);

  /* u'(n) */
  tmp = fMultDiv2(*exc, gain_pit) << (SF_GAIN_P2 + 1);
  *exc = (tmp + (fMultDiv2(code_i, gain_code) << SF)) << SF_HEADROOM;
  /* u(n) */
  tmp += code_smooth;
  tmp -= cpe_code_smooth_prev;
  *exc2++ = tmp << SF_HEADROOM;

  return;
}

/**
 * \brief Interpolate LPC vector in LSP domain for current subframe and convert
 * to LP domain
 * \param[in] lsp_old LPC vector (LSP domain) corresponding to the beginning of
 * current ACELP frame.
 * \param[in] lsp_new LPC vector (LSP domain) corresponding to the end of
 * current ACELP frame.
 * \param[in] subfr_nr number of current ACELP subframe 0..3.
 * \param[in] nb_subfr total number of ACELP subframes in this frame.
 * \param[out] A LP filter coefficients for current ACELP subframe, exponent =
 * SF_A_COEFFS.
 */
/* static */
void int_lpc_acelp(
    const FIXP_LPC lsp_old[], /* input : LSPs from past frame              */
    const FIXP_LPC lsp_new[], /* input : LSPs from present frame           */
    int subfr_nr, int nb_subfr,
    FIXP_LPC
        A[], /* output: interpolated LP coefficients for current subframe */
    INT *A_exp) {
  int i;
  FIXP_LPC lsp_interpol[M_LP_FILTER_ORDER];
  FIXP_SGL fac_old, fac_new;

  FDK_ASSERT((nb_subfr == 3) || (nb_subfr == 4));

  fac_old = lsp_interpol_factor[nb_subfr & 0x1][(nb_subfr - 1) - subfr_nr];
  fac_new = lsp_interpol_factor[nb_subfr & 0x1][subfr_nr];
  for (i = 0; i < M_LP_FILTER_ORDER; i++) {
    lsp_interpol[i] = FX_DBL2FX_LPC(
        (fMultDiv2(lsp_old[i], fac_old) + fMultDiv2(lsp_new[i], fac_new)) << 1);
  }

  E_LPC_f_lsp_a_conversion(lsp_interpol, A, A_exp);

  return;
}

/**
 * \brief Perform LP synthesis by filtering the post-processed excitation u(n)
 *        through the LP synthesis filter 1/A(z)
 * \param[in] a LP filter coefficients, exponent = SF_A_COEFFS.
 * \param[in] length length of input/output signal.
 * \param[in] x post-processed excitation u(n).
 * \param[in,out] y LP synthesis signal and filter memory
 * y[-M_LP_FILTER_ORDER..-1].
 */

/* static */
void Syn_filt(const FIXP_LPC a[], /* (i) : a[m] prediction coefficients Q12 */
              const INT a_exp,
              INT length,   /* (i) : length of input/output signal (64|128)   */
              FIXP_DBL x[], /* (i) : input signal Qx  */
              FIXP_DBL y[]  /* (i/o) : filter states / output signal  Qx-s*/
) {
  int i, j;
  FIXP_DBL L_tmp;

  for (i = 0; i < length; i++) {
    L_tmp = (FIXP_DBL)0;

    for (j = 0; j < M_LP_FILTER_ORDER; j++) {
      L_tmp -= fMultDiv2(a[j], y[i - (j + 1)]) >> (LP_FILTER_SCALE - 1);
    }

    L_tmp = scaleValue(L_tmp, a_exp + LP_FILTER_SCALE);
    y[i] = fAddSaturate(L_tmp, x[i]);
  }

  return;
}

/**
 * \brief Calculate de-emphasis 1/(1 - mu z^-1) on input signal.
 * \param[in] x input signal.
 * \param[out] y output signal.
 * \param[in] L length of signal.
 * \param[in,out] mem memory (signal[-1]).
 */
/* static */
void Deemph(FIXP_DBL *x, FIXP_DBL *y, int L, FIXP_DBL *mem) {
  int i;
  FIXP_DBL yi = *mem;

  for (i = 0; i < L; i++) {
    FIXP_DBL xi = x[i] >> 1;
    xi = fMultAddDiv2(xi, PREEMPH_FAC, yi);
    yi = SATURATE_LEFT_SHIFT(xi, 1, 32);
    y[i] = yi;
  }
  *mem = yi;
  return;
}

/**
 * \brief Compute the LP residual by filtering the input speech through the
 * analysis filter A(z).
 * \param[in] a LP filter coefficients, exponent = SF_A_COEFFS
 * \param[in] x input signal (note that values x[-m..-1] are needed), exponent =
 * SF_SYNTH
 * \param[out] y output signal (residual), exponent = SF_EXC
 * \param[in] l length of filtering
 */
/* static */
void E_UTIL_residu(const FIXP_LPC *a, const INT a_exp, FIXP_DBL *x, FIXP_DBL *y,
                   INT l) {
  FIXP_DBL s;
  INT i, j;

  /* (note that values x[-m..-1] are needed) */
  for (i = 0; i < l; i++) {
    s = (FIXP_DBL)0;

    for (j = 0; j < M_LP_FILTER_ORDER; j++) {
      s += fMultDiv2(a[j], x[i - j - 1]) >> (LP_FILTER_SCALE - 1);
    }

    s = scaleValue(s, a_exp + LP_FILTER_SCALE);
    y[i] = fAddSaturate(s, x[i]);
  }

  return;
}

/* use to map subfr number to number of bits used for acb_index */
static const UCHAR num_acb_idx_bits_table[2][NB_SUBFR] = {
    {9, 6, 9, 6}, /* coreCoderFrameLength == 1024 */
    {9, 6, 6, 0}  /* coreCoderFrameLength == 768  */
};

static int DecodePitchLag(HANDLE_FDK_BITSTREAM hBs,
                          const UCHAR num_acb_idx_bits,
                          const int PIT_MIN, /* TMIN */
                          const int PIT_FR2, /* TFR2 */
                          const int PIT_FR1, /* TFR1 */
                          const int PIT_MAX, /* TMAX */
                          int *pT0, int *pT0_frac, int *pT0_min, int *pT0_max) {
  int acb_idx;
  int error = 0;
  int T0, T0_frac;

  FDK_ASSERT((num_acb_idx_bits == 9) || (num_acb_idx_bits == 6));

  acb_idx = FDKreadBits(hBs, num_acb_idx_bits);

  if (num_acb_idx_bits == 6) {
    /* When the pitch value is encoded on 6 bits, a pitch resolution of 1/4 is
       always used in the range [T1-8, T1+7.75], where T1 is nearest integer to
       the fractional pitch lag of the previous subframe.
    */
    T0 = *pT0_min + acb_idx / 4;
    T0_frac = acb_idx & 0x3;
  } else { /* num_acb_idx_bits == 9 */
    /* When the pitch value is encoded on 9 bits, a fractional pitch delay is
       used with resolutions 0.25 in the range [TMIN, TFR2-0.25], resolutions
       0.5 in the range [TFR2, TFR1-0.5], and integers only in the range [TFR1,
       TMAX]. NOTE: for small sampling rates TMAX can get smaller than TFR1.
    */
    int T0_min, T0_max;

    if (acb_idx < (PIT_FR2 - PIT_MIN) * 4) {
      /* first interval with 0.25 pitch resolution */
      T0 = PIT_MIN + (acb_idx / 4);
      T0_frac = acb_idx & 0x3;
    } else if (acb_idx < ((PIT_FR2 - PIT_MIN) * 4 + (PIT_FR1 - PIT_FR2) * 2)) {
      /* second interval with 0.5 pitch resolution */
      acb_idx -= (PIT_FR2 - PIT_MIN) * 4;
      T0 = PIT_FR2 + (acb_idx / 2);
      T0_frac = (acb_idx & 0x1) * 2;
    } else {
      /* third interval with 1.0 pitch resolution */
      T0 = acb_idx + PIT_FR1 - ((PIT_FR2 - PIT_MIN) * 4) -
           ((PIT_FR1 - PIT_FR2) * 2);
      T0_frac = 0;
    }
    /* find T0_min and T0_max for subframe 1 or 3 */
    T0_min = T0 - 8;
    if (T0_min < PIT_MIN) {
      T0_min = PIT_MIN;
    }
    T0_max = T0_min + 15;
    if (T0_max > PIT_MAX) {
      T0_max = PIT_MAX;
      T0_min = T0_max - 15;
    }
    *pT0_min = T0_min;
    *pT0_max = T0_max;
  }
  *pT0 = T0;
  *pT0_frac = T0_frac;

  return error;
}
static void ConcealPitchLag(CAcelpStaticMem *acelp_mem, const int PIT_MAX,
                            int *pT0, int *pT0_frac) {
  USHORT *pold_T0 = &acelp_mem->old_T0;
  UCHAR *pold_T0_frac = &acelp_mem->old_T0_frac;

  if ((int)*pold_T0 >= PIT_MAX) {
    *pold_T0 = (USHORT)(PIT_MAX - 5);
  }
  *pT0 = (int)*pold_T0;
  *pT0_frac = (int)*pold_T0_frac;
}

static UCHAR tab_coremode2nbits[8] = {20, 28, 36, 44, 52, 64, 12, 16};

static int MapCoreMode2NBits(int core_mode) {
  return (int)tab_coremode2nbits[core_mode];
}

void CLpd_AcelpDecode(CAcelpStaticMem *acelp_mem, INT i_offset,
                      const FIXP_LPC lsp_old[M_LP_FILTER_ORDER],
                      const FIXP_LPC lsp_new[M_LP_FILTER_ORDER],
                      FIXP_SGL stab_fac, CAcelpChannelData *pAcelpData,
                      INT numLostSubframes, int lastLpcLost, int frameCnt,
                      FIXP_DBL synth[], int pT[], FIXP_DBL *pit_gain,
                      INT coreCoderFrameLength) {
  int i_subfr, subfr_nr, l_div, T;
  int T0 = -1, T0_frac = -1; /* mark invalid */

  int pit_gain_index = 0;

  const int PIT_MAX = PIT_MAX_12k8 + (6 * i_offset); /* maximum pitch lag */

  FIXP_COD *code;
  FIXP_DBL *exc2;
  FIXP_DBL *syn;
  FIXP_DBL *exc;
  FIXP_LPC A[M_LP_FILTER_ORDER];
  INT A_exp;

  FIXP_DBL period_fac;
  FIXP_SGL gain_pit;
  FIXP_DBL gain_code, gain_code_smooth, Ener_code;
  int Ener_code_e;
  int n;
  int bfi = (numLostSubframes > 0) ? 1 : 0;

  C_ALLOC_SCRATCH_START(
      exc_buf, FIXP_DBL,
      PIT_MAX_MAX + L_INTERPOL + L_DIV + 1); /* 411 + 17 + 256 + 1 = 685 */
  C_ALLOC_SCRATCH_START(syn_buf, FIXP_DBL,
                        M_LP_FILTER_ORDER + L_DIV); /* 16 + 256 = 272 */
  /* use same memory for code[L_SUBFR] and exc2[L_SUBFR] */
  C_ALLOC_SCRATCH_START(tmp_buf, FIXP_DBL, L_SUBFR); /* 64 */
  /* make sure they don't overlap if they are accessed alternatingly in
   * BuildAdaptiveExcitation() */
#if (COD_BITS == FRACT_BITS)
  code = (FIXP_COD *)(tmp_buf + L_SUBFR / 2);
#elif (COD_BITS == DFRACT_BITS)
  code = (FIXP_COD *)tmp_buf;
#endif
  exc2 = (FIXP_DBL *)tmp_buf;

  syn = syn_buf + M_LP_FILTER_ORDER;
  exc = exc_buf + PIT_MAX_MAX + L_INTERPOL;

  FDKmemcpy(syn_buf, acelp_mem->old_syn_mem,
            M_LP_FILTER_ORDER * sizeof(FIXP_DBL));
  FDKmemcpy(exc_buf, acelp_mem->old_exc_mem,
            (PIT_MAX_MAX + L_INTERPOL) * sizeof(FIXP_DBL));

  FDKmemclear(exc_buf + (PIT_MAX_MAX + L_INTERPOL),
              (L_DIV + 1) * sizeof(FIXP_DBL));

  l_div = coreCoderFrameLength / NB_DIV;

  for (i_subfr = 0, subfr_nr = 0; i_subfr < l_div;
       i_subfr += L_SUBFR, subfr_nr++) {
    /*-------------------------------------------------*
     * - Decode pitch lag (T0 and T0_frac)             *
     *-------------------------------------------------*/
    if (bfi) {
      ConcealPitchLag(acelp_mem, PIT_MAX, &T0, &T0_frac);
    } else {
      T0 = (int)pAcelpData->T0[subfr_nr];
      T0_frac = (int)pAcelpData->T0_frac[subfr_nr];
    }

    /*-------------------------------------------------*
     * - Find the pitch gain, the interpolation filter *
     *   and the adaptive codebook vector.             *
     *-------------------------------------------------*/
    Pred_lt4(&exc[i_subfr], T0, T0_frac);

    if ((!bfi && pAcelpData->ltp_filtering_flag[subfr_nr] == 0) ||
        (bfi && numLostSubframes == 1 && stab_fac < FL2FXCONST_SGL(0.25f))) {
      /* find pitch excitation with lp filter: v'(n) => v(n) */
      Pred_lt4_postfilter(&exc[i_subfr]);
    }

    /*-------------------------------------------------------*
     * - Decode innovative codebook.                         *
     * - Add the fixed-gain pitch contribution to code[].    *
     *-------------------------------------------------------*/
    if (bfi) {
      for (n = 0; n < L_SUBFR; n++) {
        code[n] =
            FX_SGL2FX_COD((FIXP_SGL)E_UTIL_random(&acelp_mem->seed_ace)) >> 4;
      }
    } else {
      int nbits = MapCoreMode2NBits((int)pAcelpData->acelp_core_mode);
      D_ACELP_decode_4t64(pAcelpData->icb_index[subfr_nr], nbits, &code[0]);
    }

    T = T0;
    if (T0_frac > 2) {
      T += 1;
    }

    Preemph_code(code);
    Pit_shrp(code, T);

    /* Output pitch lag for bass post-filter */
    if (T > PIT_MAX) {
      pT[subfr_nr] = PIT_MAX;
    } else {
      pT[subfr_nr] = T;
    }
    D_gain2_plus(
        pAcelpData->gains[subfr_nr],
        code,       /* (i)  : Innovative code vector, exponent = SF_CODE */
        &gain_pit,  /* (o)  : Quantized pitch gain, exponent = SF_GAIN_P */
        &gain_code, /* (o)  : Quantized codebook gain                    */
        pAcelpData
            ->mean_energy, /* (i)  : mean_ener defined in open-loop (2 bits) */
        bfi, &acelp_mem->past_gpit, &acelp_mem->past_gcode,
        &Ener_code,    /* (o)  : Innovative code vector energy              */
        &Ener_code_e); /* (o)  : Innovative code vector energy exponent     */

    pit_gain[pit_gain_index++] = FX_SGL2FX_DBL(gain_pit);

    /* calc periodicity factor r_v */
    period_fac =
        calc_period_factor(/* (o) : factor (-1=unvoiced to 1=voiced)    */
                           &exc[i_subfr], /* (i) : pitch excitation, exponent =
                                             SF_EXC */
                           gain_pit,      /* (i) : gain of pitch, exponent =
                                             SF_GAIN_P */
                           gain_code,     /* (i) : gain of code     */
                           Ener_code,     /* (i) : Energy of code[]     */
                           Ener_code_e);  /* (i) : Exponent of energy of code[]
                                           */

    if (lastLpcLost && frameCnt == 0) {
      if (gain_pit > FL2FXCONST_SGL(1.0f / (1 << SF_GAIN_P))) {
        gain_pit = FL2FXCONST_SGL(1.0f / (1 << SF_GAIN_P));
      }
    }

    gain_code_smooth =
        noise_enhancer(/* (o) : smoothed gain g_sc exponent = SF_GAIN_C */
                       gain_code,  /* (i) : Quantized codebook gain  */
                       period_fac, /* (i) : periodicity factor (-1=unvoiced to
                                      1=voiced)  */
                       stab_fac,   /* (i) : stability factor (0 <= ... < 1),
                                      exponent = 1 */
                       &acelp_mem->gc_threshold);

    /* Compute adaptive codebook update u'(n), pitch enhancement c'(n) and
     * post-processed excitation u(n). */
    BuildAdaptiveExcitation(code, exc + i_subfr, gain_pit, gain_code,
                            gain_code_smooth, period_fac, exc2);

    /* Interpolate filter coeffs for current subframe in lsp domain and convert
     * to LP domain */
    int_lpc_acelp(lsp_old,  /* input : LSPs from past frame              */
                  lsp_new,  /* input : LSPs from present frame           */
                  subfr_nr, /* input : ACELP subframe index              */
                  coreCoderFrameLength / L_DIV,
                  A, /* output: LP coefficients of this subframe  */
                  &A_exp);

    Syn_filt(A, /* (i) : a[m] prediction coefficients               */
             A_exp, L_SUBFR, /* (i) : length */
             exc2, /* (i) : input signal                               */
             &syn[i_subfr] /* (i/o) : filter states / output signal */
    );

  } /* end of subframe loop */

  /* update pitch value for bfi procedure */
  acelp_mem->old_T0_frac = T0_frac;
  acelp_mem->old_T0 = T0;

  /* save old excitation and old synthesis memory for next ACELP frame */
  FDKmemcpy(acelp_mem->old_exc_mem, exc + l_div - (PIT_MAX_MAX + L_INTERPOL),
            sizeof(FIXP_DBL) * (PIT_MAX_MAX + L_INTERPOL));
  FDKmemcpy(acelp_mem->old_syn_mem, syn_buf + l_div,
            sizeof(FIXP_DBL) * M_LP_FILTER_ORDER);

  Deemph(syn, synth, l_div,
         &acelp_mem->de_emph_mem); /* ref soft: mem = synth[-1] */

  scaleValues(synth, l_div, -ACELP_OUTSCALE);
  acelp_mem->deemph_mem_wsyn = acelp_mem->de_emph_mem;

  C_ALLOC_SCRATCH_END(tmp_buf, FIXP_DBL, L_SUBFR);
  C_ALLOC_SCRATCH_END(syn_buf, FIXP_DBL, M_LP_FILTER_ORDER + L_DIV);
  C_ALLOC_SCRATCH_END(exc_buf, FIXP_DBL, PIT_MAX_MAX + L_INTERPOL + L_DIV + 1);
  return;
}

void CLpd_AcelpReset(CAcelpStaticMem *acelp) {
  acelp->gc_threshold = (FIXP_DBL)0;

  acelp->past_gpit = (FIXP_SGL)0;
  acelp->past_gcode = (FIXP_DBL)0;
  acelp->old_T0 = 64;
  acelp->old_T0_frac = 0;
  acelp->deemph_mem_wsyn = (FIXP_DBL)0;
  acelp->wsyn_rms = (FIXP_DBL)0;
  acelp->seed_ace = 0;
}

/* TCX time domain concealment */
/*   Compare to figure 13a on page 54 in 3GPP TS 26.290 */
void CLpd_TcxTDConceal(CAcelpStaticMem *acelp_mem, SHORT *pitch,
                       const FIXP_LPC lsp_old[M_LP_FILTER_ORDER],
                       const FIXP_LPC lsp_new[M_LP_FILTER_ORDER],
                       const FIXP_SGL stab_fac, INT nLostSf, FIXP_DBL synth[],
                       INT coreCoderFrameLength, UCHAR last_tcx_noise_factor) {
  /* repeat past excitation with pitch from previous decoded TCX frame */
  C_ALLOC_SCRATCH_START(
      exc_buf, FIXP_DBL,
      PIT_MAX_MAX + L_INTERPOL + L_DIV); /* 411 +  17 + 256 + 1 =  */
  C_ALLOC_SCRATCH_START(syn_buf, FIXP_DBL,
                        M_LP_FILTER_ORDER + L_DIV); /* 256 +  16           =  */
                                                    /*                    +=  */
  FIXP_DBL ns_buf[L_DIV + 1];
  FIXP_DBL *syn = syn_buf + M_LP_FILTER_ORDER;
  FIXP_DBL *exc = exc_buf + PIT_MAX_MAX + L_INTERPOL;
  FIXP_DBL *ns = ns_buf + 1;
  FIXP_DBL tmp, fact_exc;
  INT T = fMin(*pitch, (SHORT)PIT_MAX_MAX);
  int i, i_subfr, subfr_nr;
  int lDiv = coreCoderFrameLength / NB_DIV;

  FDKmemcpy(syn_buf, acelp_mem->old_syn_mem,
            M_LP_FILTER_ORDER * sizeof(FIXP_DBL));
  FDKmemcpy(exc_buf, acelp_mem->old_exc_mem,
            (PIT_MAX_MAX + L_INTERPOL) * sizeof(FIXP_DBL));

  /* if we lost all packets (i.e. 1 packet of TCX-20 ms, 2 packets of
     the TCX-40 ms or 4 packets of the TCX-80ms), we lost the whole
     coded frame extrapolation strategy: repeat lost excitation and
     use extrapolated LSFs */

  /* AMR-WB+ like TCX TD concealment */

  /* number of lost frame cmpt */
  if (nLostSf < 2) {
    fact_exc = FL2FXCONST_DBL(0.8f);
  } else {
    fact_exc = FL2FXCONST_DBL(0.4f);
  }

  /* repeat past excitation */
  for (i = 0; i < lDiv; i++) {
    exc[i] = fMult(fact_exc, exc[i - T]);
  }

  tmp = fMult(fact_exc, acelp_mem->wsyn_rms);
  acelp_mem->wsyn_rms = tmp;

  /* init deemph_mem_wsyn */
  acelp_mem->deemph_mem_wsyn = exc[-1];

  ns[-1] = acelp_mem->deemph_mem_wsyn;

  for (i_subfr = 0, subfr_nr = 0; i_subfr < lDiv;
       i_subfr += L_SUBFR, subfr_nr++) {
    FIXP_DBL tRes[L_SUBFR];
    FIXP_LPC A[M_LP_FILTER_ORDER];
    INT A_exp;

    /* interpolate LPC coefficients */
    int_lpc_acelp(lsp_old, lsp_new, subfr_nr, lDiv / L_SUBFR, A, &A_exp);

    Syn_filt(A,              /* (i) : a[m] prediction coefficients         */
             A_exp, L_SUBFR, /* (i) : length                               */
             &exc[i_subfr],  /* (i) : input signal                         */
             &syn[i_subfr]   /* (i/o) : filter states / output signal      */
    );

    E_LPC_a_weight(
        A, A,
        M_LP_FILTER_ORDER); /* overwrite A as it is not needed any longer */

    E_UTIL_residu(A, A_exp, &syn[i_subfr], tRes, L_SUBFR);

    Deemph(tRes, &ns[i_subfr], L_SUBFR, &acelp_mem->deemph_mem_wsyn);

    /* Amplitude limiter (saturate at wsyn_rms) */
    for (i = i_subfr; i < i_subfr + L_SUBFR; i++) {
      if (ns[i] > tmp) {
        ns[i] = tmp;
      } else {
        if (ns[i] < -tmp) {
          ns[i] = -tmp;
        }
      }
    }

    E_UTIL_preemph(&ns[i_subfr], tRes, L_SUBFR);

    Syn_filt(A,              /* (i) : a[m] prediction coefficients         */
             A_exp, L_SUBFR, /* (i) : length                               */
             tRes,           /* (i) : input signal                         */
             &syn[i_subfr]   /* (i/o) : filter states / output signal      */
    );

    FDKmemmove(&synth[i_subfr], &syn[i_subfr], L_SUBFR * sizeof(FIXP_DBL));
  }

  /* save old excitation and old synthesis memory for next ACELP frame */
  FDKmemcpy(acelp_mem->old_exc_mem, exc + lDiv - (PIT_MAX_MAX + L_INTERPOL),
            sizeof(FIXP_DBL) * (PIT_MAX_MAX + L_INTERPOL));
  FDKmemcpy(acelp_mem->old_syn_mem, syn_buf + lDiv,
            sizeof(FIXP_DBL) * M_LP_FILTER_ORDER);
  acelp_mem->de_emph_mem = acelp_mem->deemph_mem_wsyn;

  C_ALLOC_SCRATCH_END(syn_buf, FIXP_DBL, M_LP_FILTER_ORDER + L_DIV);
  C_ALLOC_SCRATCH_END(exc_buf, FIXP_DBL, PIT_MAX_MAX + L_INTERPOL + L_DIV);
}

void Acelp_PreProcessing(FIXP_DBL *synth_buf, FIXP_DBL *old_synth, INT *pitch,
                         INT *old_T_pf, FIXP_DBL *pit_gain,
                         FIXP_DBL *old_gain_pf, INT samplingRate, INT *i_offset,
                         INT coreCoderFrameLength, INT synSfd,
                         INT nbSubfrSuperfr) {
  int n;

  /* init beginning of synth_buf with old synthesis from previous frame */
  FDKmemcpy(synth_buf, old_synth, sizeof(FIXP_DBL) * (PIT_MAX_MAX - BPF_DELAY));

  /* calculate pitch lag offset for ACELP decoder */
  *i_offset =
      (samplingRate * PIT_MIN_12k8 + (FSCALE_DENOM / 2)) / FSCALE_DENOM -
      PIT_MIN_12k8;

  /* for bass postfilter */
  for (n = 0; n < synSfd; n++) {
    pitch[n] = old_T_pf[n];
    pit_gain[n] = old_gain_pf[n];
  }
  for (n = 0; n < nbSubfrSuperfr; n++) {
    pitch[n + synSfd] = L_SUBFR;
    pit_gain[n + synSfd] = (FIXP_DBL)0;
  }
}

void Acelp_PostProcessing(FIXP_DBL *synth_buf, FIXP_DBL *old_synth, INT *pitch,
                          INT *old_T_pf, INT coreCoderFrameLength, INT synSfd,
                          INT nbSubfrSuperfr) {
  int n;

  /* store last part of synth_buf (which is not handled by the IMDCT overlap)
   * for next frame */
  FDKmemcpy(old_synth, synth_buf + coreCoderFrameLength,
            sizeof(FIXP_DBL) * (PIT_MAX_MAX - BPF_DELAY));

  /* for bass postfilter */
  for (n = 0; n < synSfd; n++) {
    old_T_pf[n] = pitch[nbSubfrSuperfr + n];
  }
}

#define L_FAC_ZIR (LFAC)

void CLpd_Acelp_Zir(const FIXP_LPC A[], const INT A_exp,
                    CAcelpStaticMem *acelp_mem, const INT length,
                    FIXP_DBL zir[], int doDeemph) {
  C_ALLOC_SCRATCH_START(tmp_buf, FIXP_DBL, L_FAC_ZIR + M_LP_FILTER_ORDER);
  FDK_ASSERT(length <= L_FAC_ZIR);

  FDKmemcpy(tmp_buf, acelp_mem->old_syn_mem,
            M_LP_FILTER_ORDER * sizeof(FIXP_DBL));
  FDKmemset(tmp_buf + M_LP_FILTER_ORDER, 0, L_FAC_ZIR * sizeof(FIXP_DBL));

  Syn_filt(A, A_exp, length, &tmp_buf[M_LP_FILTER_ORDER],
           &tmp_buf[M_LP_FILTER_ORDER]);
  if (!doDeemph) {
    /* if last lpd mode was TD concealment, then bypass deemph */
    FDKmemcpy(zir, tmp_buf, length * sizeof(*zir));
  } else {
    Deemph(&tmp_buf[M_LP_FILTER_ORDER], &zir[0], length,
           &acelp_mem->de_emph_mem);
    scaleValues(zir, length, -ACELP_OUTSCALE);
  }
  C_ALLOC_SCRATCH_END(tmp_buf, FIXP_DBL, L_FAC_ZIR + M_LP_FILTER_ORDER);
}

void CLpd_AcelpPrepareInternalMem(const FIXP_DBL *synth, UCHAR last_lpd_mode,
                                  UCHAR last_last_lpd_mode,
                                  const FIXP_LPC *A_new, const INT A_new_exp,
                                  const FIXP_LPC *A_old, const INT A_old_exp,
                                  CAcelpStaticMem *acelp_mem,
                                  INT coreCoderFrameLength, INT clearOldExc,
                                  UCHAR lpd_mode) {
  int l_div =
      coreCoderFrameLength / NB_DIV; /* length of one ACELP/TCX20 frame */
  int l_div_partial;
  FIXP_DBL *syn, *old_exc_mem;

  C_ALLOC_SCRATCH_START(synth_buf, FIXP_DBL,
                        PIT_MAX_MAX + L_INTERPOL + M_LP_FILTER_ORDER);
  syn = &synth_buf[M_LP_FILTER_ORDER];

  l_div_partial = PIT_MAX_MAX + L_INTERPOL - l_div;
  old_exc_mem = acelp_mem->old_exc_mem;

  if (lpd_mode == 4) {
    /* Bypass Domain conversion. TCXTD Concealment does no deemphasis in the
     * end. */
    FDKmemcpy(
        synth_buf, &synth[-(PIT_MAX_MAX + L_INTERPOL + M_LP_FILTER_ORDER)],
        (PIT_MAX_MAX + L_INTERPOL + M_LP_FILTER_ORDER) * sizeof(FIXP_DBL));
    /* Set deemphasis memory state for TD concealment */
    acelp_mem->deemph_mem_wsyn = scaleValueSaturate(synth[-1], ACELP_OUTSCALE);
  } else {
    /* convert past [PIT_MAX_MAX+L_INTERPOL+M_LP_FILTER_ORDER] synthesis to
     * preemph domain */
    E_UTIL_preemph(&synth[-(PIT_MAX_MAX + L_INTERPOL + M_LP_FILTER_ORDER)],
                   synth_buf, PIT_MAX_MAX + L_INTERPOL + M_LP_FILTER_ORDER);
    scaleValuesSaturate(synth_buf, PIT_MAX_MAX + L_INTERPOL + M_LP_FILTER_ORDER,
                        ACELP_OUTSCALE);
  }

  /* Set deemphasis memory state */
  acelp_mem->de_emph_mem = scaleValueSaturate(synth[-1], ACELP_OUTSCALE);

  /* update acelp synth filter memory */
  FDKmemcpy(acelp_mem->old_syn_mem,
            &syn[PIT_MAX_MAX + L_INTERPOL - M_LP_FILTER_ORDER],
            M_LP_FILTER_ORDER * sizeof(FIXP_DBL));

  if (clearOldExc) {
    FDKmemclear(old_exc_mem, (PIT_MAX_MAX + L_INTERPOL) * sizeof(FIXP_DBL));
    C_ALLOC_SCRATCH_END(synth_buf, FIXP_DBL,
                        PIT_MAX_MAX + L_INTERPOL + M_LP_FILTER_ORDER);
    return;
  }

  /* update past [PIT_MAX_MAX+L_INTERPOL] samples of exc memory */
  if (last_lpd_mode == 1) {        /* last frame was TCX20 */
    if (last_last_lpd_mode == 0) { /* ACELP -> TCX20 -> ACELP transition */
      /* Delay valid part of excitation buffer (from previous ACELP frame) by
       * l_div samples */
      FDKmemmove(old_exc_mem, old_exc_mem + l_div,
                 sizeof(FIXP_DBL) * l_div_partial);
    } else if (last_last_lpd_mode > 0) { /* TCX -> TCX20 -> ACELP transition */
      E_UTIL_residu(A_old, A_old_exp, syn, old_exc_mem, l_div_partial);
    }
    E_UTIL_residu(A_new, A_new_exp, syn + l_div_partial,
                  old_exc_mem + l_div_partial, l_div);
  } else { /* prev frame was FD, TCX40 or TCX80 */
    int exc_A_new_length = (coreCoderFrameLength / 2 > PIT_MAX_MAX + L_INTERPOL)
                               ? PIT_MAX_MAX + L_INTERPOL
                               : coreCoderFrameLength / 2;
    int exc_A_old_length = PIT_MAX_MAX + L_INTERPOL - exc_A_new_length;
    E_UTIL_residu(A_old, A_old_exp, syn, old_exc_mem, exc_A_old_length);
    E_UTIL_residu(A_new, A_new_exp, &syn[exc_A_old_length],
                  &old_exc_mem[exc_A_old_length], exc_A_new_length);
  }
  C_ALLOC_SCRATCH_END(synth_buf, FIXP_DBL,
                      PIT_MAX_MAX + L_INTERPOL + M_LP_FILTER_ORDER);

  return;
}

FIXP_DBL *CLpd_ACELP_GetFreeExcMem(CAcelpStaticMem *acelp_mem, INT length) {
  FDK_ASSERT(length <= PIT_MAX_MAX + L_INTERPOL);
  return acelp_mem->old_exc_mem;
}

INT CLpd_AcelpRead(HANDLE_FDK_BITSTREAM hBs, CAcelpChannelData *acelp,
                   INT acelp_core_mode, INT coreCoderFrameLength,
                   INT i_offset) {
  int nb_subfr = coreCoderFrameLength / L_DIV;
  const UCHAR *num_acb_index_bits =
      (nb_subfr == 4) ? num_acb_idx_bits_table[0] : num_acb_idx_bits_table[1];
  int nbits;
  int error = 0;

  const int PIT_MIN = PIT_MIN_12k8 + i_offset;
  const int PIT_FR2 = PIT_FR2_12k8 - i_offset;
  const int PIT_FR1 = PIT_FR1_12k8;
  const int PIT_MAX = PIT_MAX_12k8 + (6 * i_offset);
  int T0, T0_frac, T0_min = 0, T0_max;

  if (PIT_MAX > PIT_MAX_MAX) {
    error = AAC_DEC_DECODE_FRAME_ERROR;
    goto bail;
  }

  acelp->acelp_core_mode = acelp_core_mode;

  nbits = MapCoreMode2NBits(acelp_core_mode);

  /* decode mean energy with 2 bits : 18, 30, 42 or 54 dB */
  acelp->mean_energy = FDKreadBits(hBs, 2);

  for (int sfr = 0; sfr < nb_subfr; sfr++) {
    /* read ACB index and store T0 and T0_frac for each ACELP subframe. */
    error = DecodePitchLag(hBs, num_acb_index_bits[sfr], PIT_MIN, PIT_FR2,
                           PIT_FR1, PIT_MAX, &T0, &T0_frac, &T0_min, &T0_max);
    if (error) {
      goto bail;
    }
    acelp->T0[sfr] = (USHORT)T0;
    acelp->T0_frac[sfr] = (UCHAR)T0_frac;
    acelp->ltp_filtering_flag[sfr] = FDKreadBits(hBs, 1);
    switch (nbits) {
      case 12: /* 12 bits AMR-WB codebook is used */
        acelp->icb_index[sfr][0] = FDKreadBits(hBs, 1);
        acelp->icb_index[sfr][1] = FDKreadBits(hBs, 5);
        acelp->icb_index[sfr][2] = FDKreadBits(hBs, 1);
        acelp->icb_index[sfr][3] = FDKreadBits(hBs, 5);
        break;
      case 16: /* 16 bits AMR-WB codebook is used */
        acelp->icb_index[sfr][0] = FDKreadBits(hBs, 1);
        acelp->icb_index[sfr][1] = FDKreadBits(hBs, 5);
        acelp->icb_index[sfr][2] = FDKreadBits(hBs, 5);
        acelp->icb_index[sfr][3] = FDKreadBits(hBs, 5);
        break;
      case 20: /* 20 bits AMR-WB codebook is used */
        acelp->icb_index[sfr][0] = FDKreadBits(hBs, 5);
        acelp->icb_index[sfr][1] = FDKreadBits(hBs, 5);
        acelp->icb_index[sfr][2] = FDKreadBits(hBs, 5);
        acelp->icb_index[sfr][3] = FDKreadBits(hBs, 5);
        break;
      case 28: /* 28 bits AMR-WB codebook is used */
        acelp->icb_index[sfr][0] = FDKreadBits(hBs, 9);
        acelp->icb_index[sfr][1] = FDKreadBits(hBs, 9);
        acelp->icb_index[sfr][2] = FDKreadBits(hBs, 5);
        acelp->icb_index[sfr][3] = FDKreadBits(hBs, 5);
        break;
      case 36: /* 36 bits AMR-WB codebook is used */
        acelp->icb_index[sfr][0] = FDKreadBits(hBs, 9);
        acelp->icb_index[sfr][1] = FDKreadBits(hBs, 9);
        acelp->icb_index[sfr][2] = FDKreadBits(hBs, 9);
        acelp->icb_index[sfr][3] = FDKreadBits(hBs, 9);
        break;
      case 44: /* 44 bits AMR-WB codebook is used */
        acelp->icb_index[sfr][0] = FDKreadBits(hBs, 13);
        acelp->icb_index[sfr][1] = FDKreadBits(hBs, 13);
        acelp->icb_index[sfr][2] = FDKreadBits(hBs, 9);
        acelp->icb_index[sfr][3] = FDKreadBits(hBs, 9);
        break;
      case 52: /* 52 bits AMR-WB codebook is used */
        acelp->icb_index[sfr][0] = FDKreadBits(hBs, 13);
        acelp->icb_index[sfr][1] = FDKreadBits(hBs, 13);
        acelp->icb_index[sfr][2] = FDKreadBits(hBs, 13);
        acelp->icb_index[sfr][3] = FDKreadBits(hBs, 13);
        break;
      case 64: /* 64 bits AMR-WB codebook is used */
        acelp->icb_index[sfr][0] = FDKreadBits(hBs, 2);
        acelp->icb_index[sfr][1] = FDKreadBits(hBs, 2);
        acelp->icb_index[sfr][2] = FDKreadBits(hBs, 2);
        acelp->icb_index[sfr][3] = FDKreadBits(hBs, 2);
        acelp->icb_index[sfr][4] = FDKreadBits(hBs, 14);
        acelp->icb_index[sfr][5] = FDKreadBits(hBs, 14);
        acelp->icb_index[sfr][6] = FDKreadBits(hBs, 14);
        acelp->icb_index[sfr][7] = FDKreadBits(hBs, 14);
        break;
      default:
        FDK_ASSERT(0);
        break;
    }
    acelp->gains[sfr] = FDKreadBits(hBs, 7);
  }

bail:
  return error;
}