aboutsummaryrefslogtreecommitdiffstats
path: root/libFDK/src/FDK_hybrid.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libFDK/src/FDK_hybrid.cpp')
-rw-r--r--libFDK/src/FDK_hybrid.cpp709
1 files changed, 0 insertions, 709 deletions
diff --git a/libFDK/src/FDK_hybrid.cpp b/libFDK/src/FDK_hybrid.cpp
deleted file mode 100644
index 20816f5..0000000
--- a/libFDK/src/FDK_hybrid.cpp
+++ /dev/null
@@ -1,709 +0,0 @@
-
-/* -----------------------------------------------------------------------------------------------------------
-Software License for The Fraunhofer FDK AAC Codec Library for Android
-
-© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- All rights reserved.
-
- 1. INTRODUCTION
-The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
-the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
-This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
-
-AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
-audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
-independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
-of the MPEG specifications.
-
-Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
-may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
-individually for the purpose of encoding or decoding bit streams in products that are compliant with
-the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
-these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
-software may already be covered under those patent licenses when it is used for those licensed purposes only.
-
-Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
-are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
-applications information and documentation.
-
-2. COPYRIGHT LICENSE
-
-Redistribution and use in source and binary forms, with or without modification, are permitted without
-payment of copyright license fees provided that you satisfy the following conditions:
-
-You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
-your modifications thereto in source code form.
-
-You must retain the complete text of this software license in the documentation and/or other materials
-provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
-You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
-modifications thereto to recipients of copies in binary form.
-
-The name of Fraunhofer may not be used to endorse or promote products derived from this library without
-prior written permission.
-
-You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
-software or your modifications thereto.
-
-Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
-and the date of any change. For modified versions of the FDK AAC Codec, the term
-"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
-"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
-
-3. NO PATENT LICENSE
-
-NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
-ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
-respect to this software.
-
-You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
-by appropriate patent licenses.
-
-4. DISCLAIMER
-
-This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
-"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
-of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
-CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
-including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
-or business interruption, however caused and on any theory of liability, whether in contract, strict
-liability, or tort (including negligence), arising in any way out of the use of this software, even if
-advised of the possibility of such damage.
-
-5. CONTACT INFORMATION
-
-Fraunhofer Institute for Integrated Circuits IIS
-Attention: Audio and Multimedia Departments - FDK AAC LL
-Am Wolfsmantel 33
-91058 Erlangen, Germany
-
-www.iis.fraunhofer.de/amm
-amm-info@iis.fraunhofer.de
------------------------------------------------------------------------------------------------------------ */
-
-/*************************** Fraunhofer IIS FDK Tools **********************
-
- Author(s): Markus Lohwasser
- Description: FDK Tools Hybrid Filterbank
-
-******************************************************************************/
-
-#include "FDK_hybrid.h"
-
-
-#include "fft.h"
-
-/*--------------- defines -----------------------------*/
-#define FFT_IDX_R(a) (2*a)
-#define FFT_IDX_I(a) (2*a+1)
-
-#define HYB_COEF8_0 ( 0.00746082949812f )
-#define HYB_COEF8_1 ( 0.02270420949825f )
-#define HYB_COEF8_2 ( 0.04546865930473f )
-#define HYB_COEF8_3 ( 0.07266113929591f )
-#define HYB_COEF8_4 ( 0.09885108575264f )
-#define HYB_COEF8_5 ( 0.11793710567217f )
-#define HYB_COEF8_6 ( 0.12500000000000f )
-#define HYB_COEF8_7 ( HYB_COEF8_5 )
-#define HYB_COEF8_8 ( HYB_COEF8_4 )
-#define HYB_COEF8_9 ( HYB_COEF8_3 )
-#define HYB_COEF8_10 ( HYB_COEF8_2 )
-#define HYB_COEF8_11 ( HYB_COEF8_1 )
-#define HYB_COEF8_12 ( HYB_COEF8_0 )
-
-
-/*--------------- structure definitions ---------------*/
-
-#if defined(ARCH_PREFER_MULT_32x16)
- #define FIXP_HTB FIXP_SGL /* SGL data type. */
- #define FIXP_HTP FIXP_SPK /* Packed SGL data type. */
- #define HTC(a) (FX_DBL2FXCONST_SGL(a)) /* Cast to SGL */
- #define FL2FXCONST_HTB FL2FXCONST_SGL
-#else
- #define FIXP_HTB FIXP_DBL /* SGL data type. */
- #define FIXP_HTP FIXP_DPK /* Packed DBL data type. */
- #define HTC(a) ((FIXP_DBL)(LONG)(a)) /* Cast to DBL */
- #define FL2FXCONST_HTB FL2FXCONST_DBL
-#endif
-
-#define HTCP(real,imag) { { HTC(real), HTC(imag) } } /* How to arrange the packed values. */
-
-
-struct FDK_HYBRID_SETUP
-{
- UCHAR nrQmfBands; /*!< Number of QMF bands to be converted to hybrid. */
- UCHAR nHybBands[3]; /*!< Number of Hybrid bands generated by nrQmfBands. */
- SCHAR kHybrid[3]; /*!< Filter configuration of each QMF band. */
- UCHAR protoLen; /*!< Prototype filter length. */
- UCHAR filterDelay; /*!< Delay caused by hybrid filter. */
- const INT *pReadIdxTable; /*!< Helper table to access input data ringbuffer. */
-
-};
-
-/*--------------- constants ---------------------------*/
-static const INT ringbuffIdxTab[2*13] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };
-
-static const FDK_HYBRID_SETUP setup_3_16 = { 3, { 8, 4, 4}, { 8, 4, 4}, 13, (13-1)/2, ringbuffIdxTab};
-static const FDK_HYBRID_SETUP setup_3_12 = { 3, { 8, 2, 2}, { 8, 2, 2}, 13, (13-1)/2, ringbuffIdxTab};
-static const FDK_HYBRID_SETUP setup_3_10 = { 3, { 6, 2, 2}, { -8, -2, 2}, 13, (13-1)/2, ringbuffIdxTab};
-
-
-static const FIXP_HTP HybFilterCoef8[] = {
- HTCP(0x10000000, 0x00000000), HTCP(0x0df26407, 0xfa391882), HTCP(0xff532109, 0x00acdef7), HTCP(0x08f26d36, 0xf70d92ca),
- HTCP(0xfee34b5f, 0x02af570f), HTCP(0x038f276e, 0xf7684793), HTCP(0x00000000, 0x05d1eac2), HTCP(0x00000000, 0x05d1eac2),
- HTCP(0x038f276e, 0x0897b86d), HTCP(0xfee34b5f, 0xfd50a8f1), HTCP(0x08f26d36, 0x08f26d36), HTCP(0xff532109, 0xff532109),
- HTCP(0x0df26407, 0x05c6e77e)
-};
-
-static const FIXP_HTB HybFilterCoef2[13] = {
- FL2FXCONST_HTB( 0.00000000000000f), FL2FXCONST_HTB( 0.01899487526049f), FL2FXCONST_HTB( 0.00000000000000f), FL2FXCONST_HTB(-0.07293139167538f), FL2FXCONST_HTB( 0.00000000000000f), FL2FXCONST_HTB( 0.30596630545168f),
- FL2FXCONST_HTB( 0.50000000000000f), FL2FXCONST_HTB( 0.30596630545168f), FL2FXCONST_HTB( 0.00000000000000f), FL2FXCONST_HTB(-0.07293139167538f), FL2FXCONST_HTB( 0.00000000000000f), FL2FXCONST_HTB( 0.01899487526049f),
- FL2FXCONST_HTB( 0.00000000000000f)
-};
-
-static const FIXP_HTB HybFilterCoef4[13] = {
- FL2FXCONST_HTB(-0.00305151927305f), FL2FXCONST_HTB(-0.00794862316203f), FL2FXCONST_HTB( 0.0f), FL2FXCONST_HTB( 0.04318924038756f), FL2FXCONST_HTB( 0.12542448210445f), FL2FXCONST_HTB( 0.21227807049160f),
- FL2FXCONST_HTB( 0.25f), FL2FXCONST_HTB( 0.21227807049160f), FL2FXCONST_HTB( 0.12542448210445f), FL2FXCONST_HTB( 0.04318924038756f), FL2FXCONST_HTB( 0.0f), FL2FXCONST_HTB(-0.00794862316203f),
- FL2FXCONST_HTB(-0.00305151927305f)
-};
-
-/*--------------- function declarations ---------------*/
-static INT kChannelFiltering(
- const FIXP_DBL *const pQmfReal,
- const FIXP_DBL *const pQmfImag,
- const INT *const pReadIdx,
- FIXP_DBL *const mHybridReal,
- FIXP_DBL *const mHybridImag,
- const SCHAR hybridConfig
- );
-
-
-/*--------------- function definitions ----------------*/
-
-INT FDKhybridAnalysisOpen(
- HANDLE_FDK_ANA_HYB_FILTER hAnalysisHybFilter,
- FIXP_DBL *const pLFmemory,
- const UINT LFmemorySize,
- FIXP_DBL *const pHFmemory,
- const UINT HFmemorySize
- )
-{
- INT err = 0;
-
- /* Save pointer to extern memory. */
- hAnalysisHybFilter->pLFmemory = pLFmemory;
- hAnalysisHybFilter->LFmemorySize = LFmemorySize;
-
- hAnalysisHybFilter->pHFmemory = pHFmemory;
- hAnalysisHybFilter->HFmemorySize = HFmemorySize;
-
- return err;
-}
-
-INT FDKhybridAnalysisInit(
- HANDLE_FDK_ANA_HYB_FILTER hAnalysisHybFilter,
- const FDK_HYBRID_MODE mode,
- const INT qmfBands,
- const INT cplxBands,
- const INT initStatesFlag
- )
-{
- int k;
- INT err = 0;
- FIXP_DBL *pMem = NULL;
- HANDLE_FDK_HYBRID_SETUP setup = NULL;
-
- switch (mode) {
- case THREE_TO_TEN: setup = (HANDLE_FDK_HYBRID_SETUP)&setup_3_10; break;
- case THREE_TO_TWELVE: setup = (HANDLE_FDK_HYBRID_SETUP)&setup_3_12; break;
- case THREE_TO_SIXTEEN: setup = (HANDLE_FDK_HYBRID_SETUP)&setup_3_16; break;
- default: err = -1; goto bail;
- }
-
- /* Initialize handle. */
- hAnalysisHybFilter->pSetup = setup;
- hAnalysisHybFilter->bufferLFpos = setup->protoLen-1;
- hAnalysisHybFilter->bufferHFpos = 0;
- hAnalysisHybFilter->nrBands = qmfBands;
- hAnalysisHybFilter->cplxBands = cplxBands;
- hAnalysisHybFilter->hfMode = 0;
-
- /* Check available memory. */
- if ( ((2*setup->nrQmfBands*setup->protoLen*sizeof(FIXP_DBL)) > hAnalysisHybFilter->LFmemorySize)
- || ((setup->filterDelay*((qmfBands-setup->nrQmfBands)+(cplxBands-setup->nrQmfBands))*sizeof(FIXP_DBL)) > hAnalysisHybFilter->HFmemorySize) )
- {
- err = -2;
- goto bail;
- }
-
- /* Distribut LF memory. */
- pMem = hAnalysisHybFilter->pLFmemory;
- for (k=0; k<setup->nrQmfBands; k++) {
- hAnalysisHybFilter->bufferLFReal[k] = pMem; pMem += setup->protoLen;
- hAnalysisHybFilter->bufferLFImag[k] = pMem; pMem += setup->protoLen;
- }
-
- /* Distribut HF memory. */
- pMem = hAnalysisHybFilter->pHFmemory;
- for (k=0; k<setup->filterDelay; k++) {
- hAnalysisHybFilter->bufferHFReal[k] = pMem; pMem += (qmfBands-setup->nrQmfBands);
- hAnalysisHybFilter->bufferHFImag[k] = pMem; pMem += (cplxBands-setup->nrQmfBands);
- }
-
- if (initStatesFlag) {
- /* Clear LF buffer */
- for (k=0; k<setup->nrQmfBands; k++) {
- FDKmemclear(hAnalysisHybFilter->bufferLFReal[k], setup->protoLen*sizeof(FIXP_DBL));
- FDKmemclear(hAnalysisHybFilter->bufferLFImag[k], setup->protoLen*sizeof(FIXP_DBL));
- }
-
- if (qmfBands > setup->nrQmfBands) {
- /* Clear HF buffer */
- for (k=0; k<setup->filterDelay; k++) {
- FDKmemclear(hAnalysisHybFilter->bufferHFReal[k], (qmfBands-setup->nrQmfBands)*sizeof(FIXP_DBL));
- FDKmemclear(hAnalysisHybFilter->bufferHFImag[k], (cplxBands-setup->nrQmfBands)*sizeof(FIXP_DBL));
- }
- }
- }
-
-bail:
- return err;
-}
-
-INT FDKhybridAnalysisScaleStates(
- HANDLE_FDK_ANA_HYB_FILTER hAnalysisHybFilter,
- const INT scalingValue
- )
-{
- INT err = 0;
-
- if (hAnalysisHybFilter==NULL) {
- err = 1; /* invalid handle */
- }
- else {
- int k;
- HANDLE_FDK_HYBRID_SETUP setup = hAnalysisHybFilter->pSetup;
-
- /* Scale LF buffer */
- for (k=0; k<setup->nrQmfBands; k++) {
- scaleValues(hAnalysisHybFilter->bufferLFReal[k], setup->protoLen, scalingValue);
- scaleValues(hAnalysisHybFilter->bufferLFImag[k], setup->protoLen, scalingValue);
- }
- if (hAnalysisHybFilter->nrBands > setup->nrQmfBands) {
- /* Scale HF buffer */
- for (k=0; k<setup->filterDelay; k++) {
- scaleValues(hAnalysisHybFilter->bufferHFReal[k], (hAnalysisHybFilter->nrBands-setup->nrQmfBands), scalingValue);
- scaleValues(hAnalysisHybFilter->bufferHFImag[k], (hAnalysisHybFilter->cplxBands-setup->nrQmfBands), scalingValue);
- }
- }
- }
- return err;
-}
-
-INT FDKhybridAnalysisApply(
- HANDLE_FDK_ANA_HYB_FILTER hAnalysisHybFilter,
- const FIXP_DBL *const pQmfReal,
- const FIXP_DBL *const pQmfImag,
- FIXP_DBL *const pHybridReal,
- FIXP_DBL *const pHybridImag)
-{
- int k, hybOffset = 0;
- INT err = 0;
- const int nrQmfBandsLF = hAnalysisHybFilter->pSetup->nrQmfBands; /* number of QMF bands to be converted to hybrid */
-
- const int writIndex = hAnalysisHybFilter->bufferLFpos;
- int readIndex = hAnalysisHybFilter->bufferLFpos;
-
- if (++readIndex>=hAnalysisHybFilter->pSetup->protoLen) readIndex = 0;
- const INT* pBufferLFreadIdx = &hAnalysisHybFilter->pSetup->pReadIdxTable[readIndex];
-
- /*
- * LF buffer.
- */
- for (k=0; k<nrQmfBandsLF; k++) {
- /* New input sample. */
- hAnalysisHybFilter->bufferLFReal[k][writIndex] = pQmfReal[k];
- hAnalysisHybFilter->bufferLFImag[k][writIndex] = pQmfImag[k];
-
- /* Perform hybrid filtering. */
- kChannelFiltering(
- hAnalysisHybFilter->bufferLFReal[k],
- hAnalysisHybFilter->bufferLFImag[k],
- pBufferLFreadIdx,
- pHybridReal+hybOffset,
- pHybridImag+hybOffset,
- hAnalysisHybFilter->pSetup->kHybrid[k]);
-
- hybOffset += hAnalysisHybFilter->pSetup->nHybBands[k];
- }
-
- hAnalysisHybFilter->bufferLFpos = readIndex; /* Index where to write next input sample. */
-
- if (hAnalysisHybFilter->nrBands > nrQmfBandsLF) {
- /*
- * HF buffer.
- */
- if (hAnalysisHybFilter->hfMode!=0) {
- /* HF delay compensation was applied outside. */
- FDKmemcpy(pHybridReal+hybOffset, &pQmfReal[nrQmfBandsLF], (hAnalysisHybFilter->nrBands-nrQmfBandsLF)*sizeof(FIXP_DBL));
- FDKmemcpy(pHybridImag+hybOffset, &pQmfImag[nrQmfBandsLF], (hAnalysisHybFilter->cplxBands-nrQmfBandsLF)*sizeof(FIXP_DBL));
- }
- else {
- /* HF delay compensation, filterlength/2. */
- FDKmemcpy(pHybridReal+hybOffset, hAnalysisHybFilter->bufferHFReal[hAnalysisHybFilter->bufferHFpos], (hAnalysisHybFilter->nrBands-nrQmfBandsLF)*sizeof(FIXP_DBL));
- FDKmemcpy(pHybridImag+hybOffset, hAnalysisHybFilter->bufferHFImag[hAnalysisHybFilter->bufferHFpos], (hAnalysisHybFilter->cplxBands-nrQmfBandsLF)*sizeof(FIXP_DBL));
-
- FDKmemcpy(hAnalysisHybFilter->bufferHFReal[hAnalysisHybFilter->bufferHFpos], &pQmfReal[nrQmfBandsLF], (hAnalysisHybFilter->nrBands-nrQmfBandsLF)*sizeof(FIXP_DBL));
- FDKmemcpy(hAnalysisHybFilter->bufferHFImag[hAnalysisHybFilter->bufferHFpos], &pQmfImag[nrQmfBandsLF], (hAnalysisHybFilter->cplxBands-nrQmfBandsLF)*sizeof(FIXP_DBL));
-
- if (++hAnalysisHybFilter->bufferHFpos>=hAnalysisHybFilter->pSetup->filterDelay) hAnalysisHybFilter->bufferHFpos = 0;
- }
- } /* process HF part*/
-
- return err;
-}
-
-INT FDKhybridAnalysisClose(
- HANDLE_FDK_ANA_HYB_FILTER hAnalysisHybFilter
- )
-{
- INT err = 0;
-
- if (hAnalysisHybFilter != NULL) {
- hAnalysisHybFilter->pLFmemory = NULL;
- hAnalysisHybFilter->pHFmemory = NULL;
- hAnalysisHybFilter->LFmemorySize = 0;
- hAnalysisHybFilter->HFmemorySize = 0;
- }
-
- return err;
-}
-
-INT FDKhybridSynthesisInit(
- HANDLE_FDK_SYN_HYB_FILTER hSynthesisHybFilter,
- const FDK_HYBRID_MODE mode,
- const INT qmfBands,
- const INT cplxBands
- )
-{
- INT err = 0;
- HANDLE_FDK_HYBRID_SETUP setup = NULL;
-
- switch (mode) {
- case THREE_TO_TEN: setup = (HANDLE_FDK_HYBRID_SETUP)&setup_3_10; break;
- case THREE_TO_TWELVE: setup = (HANDLE_FDK_HYBRID_SETUP)&setup_3_12; break;
- case THREE_TO_SIXTEEN: setup = (HANDLE_FDK_HYBRID_SETUP)&setup_3_16; break;
- default: err = -1; goto bail;
- }
-
- hSynthesisHybFilter->pSetup = setup;
- hSynthesisHybFilter->nrBands = qmfBands;
- hSynthesisHybFilter->cplxBands = cplxBands;
-
-bail:
- return err;
-}
-
-
-INT FDKhybridSynthesisApply(
- HANDLE_FDK_SYN_HYB_FILTER hSynthesisHybFilter,
- const FIXP_DBL *const pHybridReal,
- const FIXP_DBL *const pHybridImag,
- FIXP_DBL *const pQmfReal,
- FIXP_DBL *const pQmfImag
- )
-{
- int k, n, hybOffset=0;
- INT err = 0;
- const INT nrQmfBandsLF = hSynthesisHybFilter->pSetup->nrQmfBands;
-
- /*
- * LF buffer.
- */
- for (k=0; k<nrQmfBandsLF; k++) {
- const int nHybBands = hSynthesisHybFilter->pSetup->nHybBands[k];
-
- FIXP_DBL accu1 = FL2FXCONST_DBL(0.f);
- FIXP_DBL accu2 = FL2FXCONST_DBL(0.f);
-
- /* Perform hybrid filtering. */
- for (n=0; n<nHybBands; n++) {
- accu1 += pHybridReal[hybOffset+n];
- accu2 += pHybridImag[hybOffset+n];
- }
- pQmfReal[k] = accu1;
- pQmfImag[k] = accu2;
-
- hybOffset += nHybBands;
- }
-
- if (hSynthesisHybFilter->nrBands > nrQmfBandsLF) {
- /*
- * HF buffer.
- */
- FDKmemcpy(&pQmfReal[nrQmfBandsLF], &pHybridReal[hybOffset], (hSynthesisHybFilter->nrBands-nrQmfBandsLF)*sizeof(FIXP_DBL));
- FDKmemcpy(&pQmfImag[nrQmfBandsLF], &pHybridImag[hybOffset], (hSynthesisHybFilter->cplxBands-nrQmfBandsLF)*sizeof(FIXP_DBL));
- }
-
- return err;
-}
-
-static void dualChannelFiltering(
- const FIXP_DBL *const pQmfReal,
- const FIXP_DBL *const pQmfImag,
- const INT *const pReadIdx,
- FIXP_DBL *const mHybridReal,
- FIXP_DBL *const mHybridImag,
- const INT invert
- )
-{
- const FIXP_HTB *p = HybFilterCoef2;
-
- FIXP_DBL r1, r6;
- FIXP_DBL i1, i6;
-
- /* symmetric filter coefficients */
- r1 = fMultDiv2(p[1], pQmfReal[pReadIdx[1]]) + fMultDiv2(p[1], pQmfReal[pReadIdx[11]]) ;
- i1 = fMultDiv2(p[1], pQmfImag[pReadIdx[1]]) + fMultDiv2(p[1], pQmfImag[pReadIdx[11]]) ;
- r1 += fMultDiv2(p[3], pQmfReal[pReadIdx[3]]) + fMultDiv2(p[3], pQmfReal[pReadIdx[ 9]]) ;
- i1 += fMultDiv2(p[3], pQmfImag[pReadIdx[3]]) + fMultDiv2(p[3], pQmfImag[pReadIdx[ 9]]) ;
- r1 += fMultDiv2(p[5], pQmfReal[pReadIdx[5]]) + fMultDiv2(p[5], pQmfReal[pReadIdx[ 7]]) ;
- i1 += fMultDiv2(p[5], pQmfImag[pReadIdx[5]]) + fMultDiv2(p[5], pQmfImag[pReadIdx[ 7]]) ;
- r6 = fMultDiv2(p[6], pQmfReal[pReadIdx[6]]) ;
- i6 = fMultDiv2(p[6], pQmfImag[pReadIdx[6]]) ;
-
- if (invert) {
- mHybridReal[1] = (r1 + r6) << 1;
- mHybridImag[1] = (i1 + i6) << 1;
-
- mHybridReal[0] = (r6 - r1) << 1;
- mHybridImag[0] = (i6 - i1) << 1;
- }
- else {
- mHybridReal[0] = (r1 + r6) << 1;
- mHybridImag[0] = (i1 + i6) << 1;
-
- mHybridReal[1] = (r6 - r1) << 1;
- mHybridImag[1] = (i6 - i1) << 1;
- }
-}
-
-static void fourChannelFiltering(
- const FIXP_DBL *const pQmfReal,
- const FIXP_DBL *const pQmfImag,
- const INT *const pReadIdx,
- FIXP_DBL *const mHybridReal,
- FIXP_DBL *const mHybridImag,
- const INT invert
- )
-{
- const FIXP_HTB *p = HybFilterCoef4;
-
- FIXP_DBL fft[8];
-
- static const FIXP_DBL cr[13] = {
- FL2FXCONST_DBL( 0.f), FL2FXCONST_DBL(-0.70710678118655f), FL2FXCONST_DBL( -1.f),
- FL2FXCONST_DBL(-0.70710678118655f), FL2FXCONST_DBL( 0.f), FL2FXCONST_DBL( 0.70710678118655f),
- FL2FXCONST_DBL( 1.f),
- FL2FXCONST_DBL( 0.70710678118655f), FL2FXCONST_DBL( 0.f), FL2FXCONST_DBL(-0.70710678118655f),
- FL2FXCONST_DBL( -1.f), FL2FXCONST_DBL(-0.70710678118655f), FL2FXCONST_DBL( 0.f)
- };
- static const FIXP_DBL ci[13] = {
- FL2FXCONST_DBL( -1.f), FL2FXCONST_DBL(-0.70710678118655f), FL2FXCONST_DBL( 0.f),
- FL2FXCONST_DBL( 0.70710678118655f), FL2FXCONST_DBL( 1.f), FL2FXCONST_DBL( 0.70710678118655f),
- FL2FXCONST_DBL( 0.f),
- FL2FXCONST_DBL(-0.70710678118655f), FL2FXCONST_DBL( -1.f), FL2FXCONST_DBL(-0.70710678118655f),
- FL2FXCONST_DBL( 0.f), FL2FXCONST_DBL( 0.70710678118655f), FL2FXCONST_DBL( 1.f)
- };
-
-
- /* FIR filter. */
- /* pre twiddeling with pre-twiddling coefficients c[n] */
- /* multiplication with filter coefficients p[n] */
- /* hint: (a + ib)*(c + id) = (a*c - b*d) + i(a*d + b*c) */
- /* write to fft coefficient n' */
- fft[FFT_IDX_R(0)] = ( fMult(p[10], ( fMultSub(fMultDiv2(cr[ 2], pQmfReal[pReadIdx[ 2]]), ci[ 2], pQmfImag[pReadIdx[ 2]]))) +
- fMult(p[ 6], ( fMultSub(fMultDiv2(cr[ 6], pQmfReal[pReadIdx[ 6]]), ci[ 6], pQmfImag[pReadIdx[ 6]]))) +
- fMult(p[ 2], ( fMultSub(fMultDiv2(cr[10], pQmfReal[pReadIdx[10]]), ci[10], pQmfImag[pReadIdx[10]]))) );
- fft[FFT_IDX_I(0)] = ( fMult(p[10], ( fMultAdd(fMultDiv2(ci[ 2], pQmfReal[pReadIdx[ 2]]), cr[ 2], pQmfImag[pReadIdx[ 2]]))) +
- fMult(p[ 6], ( fMultAdd(fMultDiv2(ci[ 6], pQmfReal[pReadIdx[ 6]]), cr[ 6], pQmfImag[pReadIdx[ 6]]))) +
- fMult(p[ 2], ( fMultAdd(fMultDiv2(ci[10], pQmfReal[pReadIdx[10]]), cr[10], pQmfImag[pReadIdx[10]]))) );
-
- /* twiddle dee dum */
- fft[FFT_IDX_R(1)] = ( fMult(p[ 9], ( fMultSub(fMultDiv2(cr[ 3], pQmfReal[pReadIdx[ 3]]), ci[ 3], pQmfImag[pReadIdx[ 3]]))) +
- fMult(p[ 5], ( fMultSub(fMultDiv2(cr[ 7], pQmfReal[pReadIdx[ 7]]), ci[ 7], pQmfImag[pReadIdx[ 7]]))) +
- fMult(p[ 1], ( fMultSub(fMultDiv2(cr[11], pQmfReal[pReadIdx[11]]), ci[11], pQmfImag[pReadIdx[11]]))) );
- fft[FFT_IDX_I(1)] = ( fMult(p[ 9], ( fMultAdd(fMultDiv2(ci[ 3], pQmfReal[pReadIdx[ 3]]), cr[ 3], pQmfImag[pReadIdx[ 3]]))) +
- fMult(p[ 5], ( fMultAdd(fMultDiv2(ci[ 7], pQmfReal[pReadIdx[ 7]]), cr[ 7], pQmfImag[pReadIdx[ 7]]))) +
- fMult(p[ 1], ( fMultAdd(fMultDiv2(ci[11], pQmfReal[pReadIdx[11]]), cr[11], pQmfImag[pReadIdx[11]]))) );
-
- /* twiddle dee dee */
- fft[FFT_IDX_R(2)] = ( fMult(p[12], ( fMultSub(fMultDiv2(cr[ 0], pQmfReal[pReadIdx[ 0]]), ci[ 0], pQmfImag[pReadIdx[ 0]]))) +
- fMult(p[ 8], ( fMultSub(fMultDiv2(cr[ 4], pQmfReal[pReadIdx[ 4]]), ci[ 4], pQmfImag[pReadIdx[ 4]]))) +
- fMult(p[ 4], ( fMultSub(fMultDiv2(cr[ 8], pQmfReal[pReadIdx[ 8]]), ci[ 8], pQmfImag[pReadIdx[ 8]]))) +
- fMult(p[ 0], ( fMultSub(fMultDiv2(cr[12], pQmfReal[pReadIdx[12]]), ci[12], pQmfImag[pReadIdx[12]]))) );
- fft[FFT_IDX_I(2)] = ( fMult(p[12], ( fMultAdd(fMultDiv2(ci[ 0], pQmfReal[pReadIdx[ 0]]), cr[ 0], pQmfImag[pReadIdx[ 0]]))) +
- fMult(p[ 8], ( fMultAdd(fMultDiv2(ci[ 4], pQmfReal[pReadIdx[ 4]]), cr[ 4], pQmfImag[pReadIdx[ 4]]))) +
- fMult(p[ 4], ( fMultAdd(fMultDiv2(ci[ 8], pQmfReal[pReadIdx[ 8]]), cr[ 8], pQmfImag[pReadIdx[ 8]]))) +
- fMult(p[ 0], ( fMultAdd(fMultDiv2(ci[12], pQmfReal[pReadIdx[12]]), cr[12], pQmfImag[pReadIdx[12]]))) );
-
- fft[FFT_IDX_R(3)] = ( fMult(p[11], ( fMultSub(fMultDiv2(cr[ 1], pQmfReal[pReadIdx[ 1]]), ci[ 1], pQmfImag[pReadIdx[ 1]]))) +
- fMult(p[ 7], ( fMultSub(fMultDiv2(cr[ 5], pQmfReal[pReadIdx[ 5]]), ci[ 5], pQmfImag[pReadIdx[ 5]]))) +
- fMult(p[ 3], ( fMultSub(fMultDiv2(cr[ 9], pQmfReal[pReadIdx[ 9]]), ci[ 9], pQmfImag[pReadIdx[ 9]]))) );
- fft[FFT_IDX_I(3)] = ( fMult(p[11], ( fMultAdd(fMultDiv2(ci[ 1], pQmfReal[pReadIdx[ 1]]), cr[ 1], pQmfImag[pReadIdx[ 1]]))) +
- fMult(p[ 7], ( fMultAdd(fMultDiv2(ci[ 5], pQmfReal[pReadIdx[ 5]]), cr[ 5], pQmfImag[pReadIdx[ 5]]))) +
- fMult(p[ 3], ( fMultAdd(fMultDiv2(ci[ 9], pQmfReal[pReadIdx[ 9]]), cr[ 9], pQmfImag[pReadIdx[ 9]]))) );
-
- /* fft modulation */
- /* here: fast manual fft modulation for a fft of length M=4 */
- /* fft_4{x[n]} = x[0]*exp(-i*2*pi/4*m*0) + x[1]*exp(-i*2*pi/4*m*1) +
- x[2]*exp(-i*2*pi/4*m*2) + x[3]*exp(-i*2*pi/4*m*3) */
-
- /*
- fft bin m=0:
- X[0, n] = x[0] + x[1] + x[2] + x[3]
- */
- mHybridReal[0] = fft[FFT_IDX_R(0)] + fft[FFT_IDX_R(1)] + fft[FFT_IDX_R(2)] + fft[FFT_IDX_R(3)];
- mHybridImag[0] = fft[FFT_IDX_I(0)] + fft[FFT_IDX_I(1)] + fft[FFT_IDX_I(2)] + fft[FFT_IDX_I(3)];
-
- /*
- fft bin m=1:
- X[1, n] = x[0] - i*x[1] - x[2] + i*x[3]
- */
- mHybridReal[1] = fft[FFT_IDX_R(0)] + fft[FFT_IDX_I(1)] - fft[FFT_IDX_R(2)] - fft[FFT_IDX_I(3)];
- mHybridImag[1] = fft[FFT_IDX_I(0)] - fft[FFT_IDX_R(1)] - fft[FFT_IDX_I(2)] + fft[FFT_IDX_R(3)];
-
- /*
- fft bin m=2:
- X[2, n] = x[0] - x[1] + x[2] - x[3]
- */
- mHybridReal[2] = fft[FFT_IDX_R(0)] - fft[FFT_IDX_R(1)] + fft[FFT_IDX_R(2)] - fft[FFT_IDX_R(3)];
- mHybridImag[2] = fft[FFT_IDX_I(0)] - fft[FFT_IDX_I(1)] + fft[FFT_IDX_I(2)] - fft[FFT_IDX_I(3)];
-
- /*
- fft bin m=3:
- X[3, n] = x[0] + j*x[1] - x[2] - j*x[3]
- */
- mHybridReal[3] = fft[FFT_IDX_R(0)] - fft[FFT_IDX_I(1)] - fft[FFT_IDX_R(2)] + fft[FFT_IDX_I(3)];
- mHybridImag[3] = fft[FFT_IDX_I(0)] + fft[FFT_IDX_R(1)] - fft[FFT_IDX_I(2)] - fft[FFT_IDX_R(3)];
-}
-
-
-static void eightChannelFiltering(
- const FIXP_DBL *const pQmfReal,
- const FIXP_DBL *const pQmfImag,
- const INT *const pReadIdx,
- FIXP_DBL *const mHybridReal,
- FIXP_DBL *const mHybridImag,
- const INT invert
- )
-{
- const FIXP_HTP *p = HybFilterCoef8;
- INT k, sc;
-
- FIXP_DBL mfft[16+ALIGNMENT_DEFAULT];
- FIXP_DBL *pfft = (FIXP_DBL*)ALIGN_PTR(mfft);
-
- FIXP_DBL accu1, accu2, accu3, accu4;
-
- /* pre twiddeling */
- pfft[FFT_IDX_R(0)] = fMultDiv2(p[0].v.re, pQmfReal[pReadIdx[6]]);
- pfft[FFT_IDX_I(0)] = fMultDiv2(p[0].v.re, pQmfImag[pReadIdx[6]]);
-
- cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[7]], pQmfImag[pReadIdx[7]], p[1]);
- pfft[FFT_IDX_R(1)] = accu1;
- pfft[FFT_IDX_I(1)] = accu2;
-
- cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[0]], pQmfImag[pReadIdx[0]], p[2]);
- cplxMultDiv2(&accu3, &accu4, pQmfReal[pReadIdx[8]], pQmfImag[pReadIdx[8]], p[3]);
- pfft[FFT_IDX_R(2)] = accu1 + accu3;
- pfft[FFT_IDX_I(2)] = accu2 + accu4;
-
- cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[1]], pQmfImag[pReadIdx[1]], p[4]);
- cplxMultDiv2(&accu3, &accu4, pQmfReal[pReadIdx[9]], pQmfImag[pReadIdx[9]], p[5]);
- pfft[FFT_IDX_R(3)] = accu1 + accu3;
- pfft[FFT_IDX_I(3)] = accu2 + accu4;
-
- pfft[FFT_IDX_R(4)] = fMultDiv2(pQmfImag[pReadIdx[10]], p[7].v.im) - fMultDiv2(pQmfImag[pReadIdx[ 2]], p[6].v.im);
- pfft[FFT_IDX_I(4)] = fMultDiv2(pQmfReal[pReadIdx[ 2]], p[6].v.im) - fMultDiv2(pQmfReal[pReadIdx[10]], p[7].v.im);
-
- cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[ 3]], pQmfImag[pReadIdx[ 3]], p[8]);
- cplxMultDiv2(&accu3, &accu4, pQmfReal[pReadIdx[11]], pQmfImag[pReadIdx[11]], p[9]);
- pfft[FFT_IDX_R(5)] = accu1 + accu3;
- pfft[FFT_IDX_I(5)] = accu2 + accu4;
-
- cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[ 4]], pQmfImag[pReadIdx[ 4]], p[10]);
- cplxMultDiv2(&accu3, &accu4, pQmfReal[pReadIdx[12]], pQmfImag[pReadIdx[12]], p[11]);
- pfft[FFT_IDX_R(6)] = accu1 + accu3;
- pfft[FFT_IDX_I(6)] = accu2 + accu4;
-
- cplxMultDiv2(&accu1, &accu2, pQmfReal[pReadIdx[ 5]], pQmfImag[pReadIdx[ 5]], p[12]);
- pfft[FFT_IDX_R(7)] = accu1;
- pfft[FFT_IDX_I(7)] = accu2;
-
- /* fft modulation */
- fft_8 (pfft);
- sc = 1 + 2;
-
- if (invert) {
- mHybridReal[0] = pfft[FFT_IDX_R(7)] << sc;
- mHybridImag[0] = pfft[FFT_IDX_I(7)] << sc;
- mHybridReal[1] = pfft[FFT_IDX_R(0)] << sc;
- mHybridImag[1] = pfft[FFT_IDX_I(0)] << sc;
-
- mHybridReal[2] = pfft[FFT_IDX_R(6)] << sc;
- mHybridImag[2] = pfft[FFT_IDX_I(6)] << sc;
- mHybridReal[3] = pfft[FFT_IDX_R(1)] << sc;
- mHybridImag[3] = pfft[FFT_IDX_I(1)] << sc;
-
- mHybridReal[4] = pfft[FFT_IDX_R(2)] << sc;
- mHybridReal[4] += pfft[FFT_IDX_R(5)] << sc;
- mHybridImag[4] = pfft[FFT_IDX_I(2)] << sc;
- mHybridImag[4] += pfft[FFT_IDX_I(5)] << sc;
-
- mHybridReal[5] = pfft[FFT_IDX_R(3)] << sc;
- mHybridReal[5] += pfft[FFT_IDX_R(4)] << sc;
- mHybridImag[5] = pfft[FFT_IDX_I(3)] << sc;
- mHybridImag[5] += pfft[FFT_IDX_I(4)] << sc;
- }
- else {
- for(k=0; k<8;k++ ) {
- mHybridReal[k] = pfft[FFT_IDX_R(k)] << sc;
- mHybridImag[k] = pfft[FFT_IDX_I(k)] << sc;
- }
- }
-}
-
-static INT kChannelFiltering(
- const FIXP_DBL *const pQmfReal,
- const FIXP_DBL *const pQmfImag,
- const INT *const pReadIdx,
- FIXP_DBL *const mHybridReal,
- FIXP_DBL *const mHybridImag,
- const SCHAR hybridConfig
- )
-{
- INT err = 0;
-
- switch (hybridConfig) {
- case 2:
- case -2:
- dualChannelFiltering(pQmfReal, pQmfImag, pReadIdx, mHybridReal, mHybridImag, (hybridConfig<0) ? 1 : 0 );
- break;
- case 4:
- case -4:
- fourChannelFiltering(pQmfReal, pQmfImag, pReadIdx, mHybridReal, mHybridImag, (hybridConfig<0) ? 1 : 0 );
- break;
- case 8:
- case -8:
- eightChannelFiltering(pQmfReal, pQmfImag, pReadIdx, mHybridReal, mHybridImag, (hybridConfig<0) ? 1 : 0 );
- break;
- default:
- err = -1;
- }
-
- return err;
-}
-
-
-