aboutsummaryrefslogtreecommitdiffstats
path: root/fdk-aac/libAACenc/src/sf_estim.cpp
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2019-11-11 11:38:02 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2019-11-11 11:38:02 +0100
commit0e5af65c467b2423a0b857ae3ad98c91acc1e190 (patch)
treed07f69550d8886271e44fe79c4dcfb299cafbd38 /fdk-aac/libAACenc/src/sf_estim.cpp
parentefe406d9724f959c8bc2a31802559ca6d41fd897 (diff)
downloadODR-AudioEnc-0e5af65c467b2423a0b857ae3ad98c91acc1e190.tar.gz
ODR-AudioEnc-0e5af65c467b2423a0b857ae3ad98c91acc1e190.tar.bz2
ODR-AudioEnc-0e5af65c467b2423a0b857ae3ad98c91acc1e190.zip
Include patched FDK-AAC in the repository
The initial idea was to get the DAB+ patch into upstream, but since that follows the android source releases, there is no place for a custom DAB+ patch there. So instead of having to maintain a patched fdk-aac that has to have the same .so version as the distribution package on which it is installed, we prefer having a separate fdk-aac-dab library to avoid collision. At that point, there's no reason to keep fdk-aac in a separate repository, as odr-audioenc is the only tool that needs DAB+ encoding support. Including it here simplifies installation, and makes it consistent with toolame-dab, also shipped in this repository. DAB+ decoding support (needed by ODR-SourceCompanion, dablin, etisnoop, welle.io and others) can be done using upstream FDK-AAC.
Diffstat (limited to 'fdk-aac/libAACenc/src/sf_estim.cpp')
-rw-r--r--fdk-aac/libAACenc/src/sf_estim.cpp1292
1 files changed, 1292 insertions, 0 deletions
diff --git a/fdk-aac/libAACenc/src/sf_estim.cpp b/fdk-aac/libAACenc/src/sf_estim.cpp
new file mode 100644
index 0000000..17a8ae2
--- /dev/null
+++ b/fdk-aac/libAACenc/src/sf_estim.cpp
@@ -0,0 +1,1292 @@
+/* -----------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
+Forschung e.V. All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
+that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
+scheme for digital audio. This FDK AAC Codec software is intended to be used on
+a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
+general perceptual audio codecs. AAC-ELD is considered the best-performing
+full-bandwidth communications codec by independent studies and is widely
+deployed. AAC has been standardized by ISO and IEC as part of the MPEG
+specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including
+those of Fraunhofer) may be obtained through Via Licensing
+(www.vialicensing.com) or through the respective patent owners individually for
+the purpose of encoding or decoding bit streams in products that are compliant
+with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
+Android devices already license these patent claims through Via Licensing or
+directly from the patent owners, and therefore FDK AAC Codec software may
+already be covered under those patent licenses when it is used for those
+licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions
+with enhanced sound quality, are also available from Fraunhofer. Users are
+encouraged to check the Fraunhofer website for additional applications
+information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted without payment of copyright license fees provided that you
+satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of
+the FDK AAC Codec or your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation
+and/or other materials provided with redistributions of the FDK AAC Codec or
+your modifications thereto in binary form. You must make available free of
+charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived
+from this library without prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute
+the FDK AAC Codec software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating
+that you changed the software and the date of any change. For modified versions
+of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
+must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
+AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
+limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
+Fraunhofer provides no warranty of patent non-infringement with respect to this
+software.
+
+You may use this FDK AAC Codec software or modifications thereto only for
+purposes that are authorized by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
+holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
+including but not limited to the implied warranties of merchantability and
+fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
+or consequential damages, including but not limited to procurement of substitute
+goods or services; loss of use, data, or profits, or business interruption,
+however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of
+this software, even if advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------- */
+
+/**************************** AAC encoder library ******************************
+
+ Author(s): M. Werner
+
+ Description: Scale factor estimation
+
+*******************************************************************************/
+
+#include "sf_estim.h"
+#include "aacEnc_rom.h"
+#include "quantize.h"
+#include "bit_cnt.h"
+
+#ifdef __arm__
+#endif
+
+#define UPCOUNT_LIMIT 1
+#define AS_PE_FAC_SHIFT 7
+#define DIST_FAC_SHIFT 3
+#define AS_PE_FAC_FLOAT (float)(1 << AS_PE_FAC_SHIFT)
+static const INT MAX_SCF_DELTA = 60;
+
+static const FIXP_DBL PE_C1 = FL2FXCONST_DBL(
+ 3.0f / AS_PE_FAC_FLOAT); /* (log(8.0)/log(2)) >> AS_PE_FAC_SHIFT */
+static const FIXP_DBL PE_C2 = FL2FXCONST_DBL(
+ 1.3219281f / AS_PE_FAC_FLOAT); /* (log(2.5)/log(2)) >> AS_PE_FAC_SHIFT */
+static const FIXP_DBL PE_C3 = FL2FXCONST_DBL(0.5593573f); /* 1-C2/C1 */
+
+/*
+ Function; FDKaacEnc_FDKaacEnc_CalcFormFactorChannel
+
+ Description: Calculates the formfactor
+
+ sf: scale factor of the mdct spectrum
+ sfbFormFactorLdData is scaled with the factor 1/(((2^sf)^0.5) *
+ (2^FORM_FAC_SHIFT))
+*/
+static void FDKaacEnc_FDKaacEnc_CalcFormFactorChannel(
+ FIXP_DBL *RESTRICT sfbFormFactorLdData,
+ PSY_OUT_CHANNEL *RESTRICT psyOutChan) {
+ INT j, sfb, sfbGrp;
+ FIXP_DBL formFactor;
+
+ int tmp0 = psyOutChan->sfbCnt;
+ int tmp1 = psyOutChan->maxSfbPerGroup;
+ int step = psyOutChan->sfbPerGroup;
+ for (sfbGrp = 0; sfbGrp < tmp0; sfbGrp += step) {
+ for (sfb = 0; sfb < tmp1; sfb++) {
+ formFactor = FL2FXCONST_DBL(0.0f);
+ /* calc sum of sqrt(spec) */
+ for (j = psyOutChan->sfbOffsets[sfbGrp + sfb];
+ j < psyOutChan->sfbOffsets[sfbGrp + sfb + 1]; j++) {
+ formFactor +=
+ sqrtFixp(fixp_abs(psyOutChan->mdctSpectrum[j])) >> FORM_FAC_SHIFT;
+ }
+ sfbFormFactorLdData[sfbGrp + sfb] = CalcLdData(formFactor);
+ }
+ /* set sfbFormFactor for sfbs with zero spec to zero. Just for debugging. */
+ for (; sfb < psyOutChan->sfbPerGroup; sfb++) {
+ sfbFormFactorLdData[sfbGrp + sfb] = FL2FXCONST_DBL(-1.0f);
+ }
+ }
+}
+
+/*
+ Function: FDKaacEnc_CalcFormFactor
+
+ Description: Calls FDKaacEnc_FDKaacEnc_CalcFormFactorChannel() for each
+ channel
+*/
+
+void FDKaacEnc_CalcFormFactor(QC_OUT_CHANNEL *qcOutChannel[(2)],
+ PSY_OUT_CHANNEL *psyOutChannel[(2)],
+ const INT nChannels) {
+ INT j;
+ for (j = 0; j < nChannels; j++) {
+ FDKaacEnc_FDKaacEnc_CalcFormFactorChannel(
+ qcOutChannel[j]->sfbFormFactorLdData, psyOutChannel[j]);
+ }
+}
+
+/*
+ Function: FDKaacEnc_calcSfbRelevantLines
+
+ Description: Calculates sfbNRelevantLines
+
+ sfbNRelevantLines is scaled with the factor 1/((2^FORM_FAC_SHIFT) * 2.0)
+*/
+static void FDKaacEnc_calcSfbRelevantLines(
+ const FIXP_DBL *const sfbFormFactorLdData,
+ const FIXP_DBL *const sfbEnergyLdData,
+ const FIXP_DBL *const sfbThresholdLdData, const INT *const sfbOffsets,
+ const INT sfbCnt, const INT sfbPerGroup, const INT maxSfbPerGroup,
+ FIXP_DBL *sfbNRelevantLines) {
+ INT sfbOffs, sfb;
+ FIXP_DBL sfbWidthLdData;
+ FIXP_DBL asPeFacLdData =
+ FL2FXCONST_DBL(0.109375); /* AS_PE_FAC_SHIFT*ld64(2) */
+ FIXP_DBL accu;
+
+ /* sfbNRelevantLines[i] = 2^( (sfbFormFactorLdData[i] - 0.25 *
+ * (sfbEnergyLdData[i] - ld64(sfbWidth[i]/(2^7)) - AS_PE_FAC_SHIFT*ld64(2)) *
+ * 64); */
+
+ FDKmemclear(sfbNRelevantLines, sfbCnt * sizeof(FIXP_DBL));
+
+ for (sfbOffs = 0; sfbOffs < sfbCnt; sfbOffs += sfbPerGroup) {
+ for (sfb = 0; sfb < maxSfbPerGroup; sfb++) {
+ /* calc sum of sqrt(spec) */
+ if ((FIXP_DBL)sfbEnergyLdData[sfbOffs + sfb] >
+ (FIXP_DBL)sfbThresholdLdData[sfbOffs + sfb]) {
+ INT sfbWidth =
+ sfbOffsets[sfbOffs + sfb + 1] - sfbOffsets[sfbOffs + sfb];
+
+ /* avgFormFactorLdData =
+ * sqrtFixp(sqrtFixp(sfbEnergyLdData[sfbOffs+sfb]/sfbWidth)); */
+ /* sfbNRelevantLines[sfbOffs+sfb] = sfbFormFactor[sfbOffs+sfb] /
+ * avgFormFactorLdData; */
+ sfbWidthLdData =
+ (FIXP_DBL)(sfbWidth << (DFRACT_BITS - 1 - AS_PE_FAC_SHIFT));
+ sfbWidthLdData = CalcLdData(sfbWidthLdData);
+
+ accu = sfbEnergyLdData[sfbOffs + sfb] - sfbWidthLdData - asPeFacLdData;
+ accu = sfbFormFactorLdData[sfbOffs + sfb] - (accu >> 2);
+
+ sfbNRelevantLines[sfbOffs + sfb] = CalcInvLdData(accu) >> 1;
+ }
+ }
+ }
+}
+
+/*
+ Function: FDKaacEnc_countSingleScfBits
+
+ Description:
+
+ scfBitsFract is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
+*/
+static FIXP_DBL FDKaacEnc_countSingleScfBits(INT scf, INT scfLeft,
+ INT scfRight) {
+ FIXP_DBL scfBitsFract;
+
+ scfBitsFract = (FIXP_DBL)(FDKaacEnc_bitCountScalefactorDelta(scfLeft - scf) +
+ FDKaacEnc_bitCountScalefactorDelta(scf - scfRight));
+
+ scfBitsFract = scfBitsFract << (DFRACT_BITS - 1 - (2 * AS_PE_FAC_SHIFT));
+
+ return scfBitsFract; /* output scaled by 1/(2^(2*AS_PE_FAC)) */
+}
+
+/*
+ Function: FDKaacEnc_calcSingleSpecPe
+
+ specPe is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
+*/
+static FIXP_DBL FDKaacEnc_calcSingleSpecPe(INT scf, FIXP_DBL sfbConstPePart,
+ FIXP_DBL nLines) {
+ FIXP_DBL specPe = FL2FXCONST_DBL(0.0f);
+ FIXP_DBL ldRatio;
+ FIXP_DBL scfFract;
+
+ scfFract = (FIXP_DBL)(scf << (DFRACT_BITS - 1 - AS_PE_FAC_SHIFT));
+
+ ldRatio = sfbConstPePart - fMult(FL2FXCONST_DBL(0.375f), scfFract);
+
+ if (ldRatio >= PE_C1) {
+ specPe = fMult(FL2FXCONST_DBL(0.7f), fMult(nLines, ldRatio));
+ } else {
+ specPe = fMult(FL2FXCONST_DBL(0.7f),
+ fMult(nLines, (PE_C2 + fMult(PE_C3, ldRatio))));
+ }
+
+ return specPe; /* output scaled by 1/(2^(2*AS_PE_FAC)) */
+}
+
+/*
+ Function: FDKaacEnc_countScfBitsDiff
+
+ scfBitsDiff is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
+*/
+static FIXP_DBL FDKaacEnc_countScfBitsDiff(INT *scfOld, INT *scfNew, INT sfbCnt,
+ INT startSfb, INT stopSfb) {
+ FIXP_DBL scfBitsFract;
+ INT scfBitsDiff = 0;
+ INT sfb = 0, sfbLast;
+ INT sfbPrev, sfbNext;
+
+ /* search for first relevant sfb */
+ sfbLast = startSfb;
+ while ((sfbLast < stopSfb) && (scfOld[sfbLast] == FDK_INT_MIN)) sfbLast++;
+ /* search for previous relevant sfb and count diff */
+ sfbPrev = startSfb - 1;
+ while ((sfbPrev >= 0) && (scfOld[sfbPrev] == FDK_INT_MIN)) sfbPrev--;
+ if (sfbPrev >= 0)
+ scfBitsDiff +=
+ FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbPrev] - scfNew[sfbLast]) -
+ FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbPrev] - scfOld[sfbLast]);
+ /* now loop through all sfbs and count diffs of relevant sfbs */
+ for (sfb = sfbLast + 1; sfb < stopSfb; sfb++) {
+ if (scfOld[sfb] != FDK_INT_MIN) {
+ scfBitsDiff +=
+ FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbLast] - scfNew[sfb]) -
+ FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbLast] - scfOld[sfb]);
+ sfbLast = sfb;
+ }
+ }
+ /* search for next relevant sfb and count diff */
+ sfbNext = stopSfb;
+ while ((sfbNext < sfbCnt) && (scfOld[sfbNext] == FDK_INT_MIN)) sfbNext++;
+ if (sfbNext < sfbCnt)
+ scfBitsDiff +=
+ FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbLast] - scfNew[sfbNext]) -
+ FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbLast] - scfOld[sfbNext]);
+
+ scfBitsFract =
+ (FIXP_DBL)(scfBitsDiff << (DFRACT_BITS - 1 - (2 * AS_PE_FAC_SHIFT)));
+
+ return scfBitsFract;
+}
+
+/*
+ Function: FDKaacEnc_calcSpecPeDiff
+
+ specPeDiff is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))
+*/
+static FIXP_DBL FDKaacEnc_calcSpecPeDiff(
+ PSY_OUT_CHANNEL *psyOutChan, QC_OUT_CHANNEL *qcOutChannel, INT *scfOld,
+ INT *scfNew, FIXP_DBL *sfbConstPePart, FIXP_DBL *sfbFormFactorLdData,
+ FIXP_DBL *sfbNRelevantLines, INT startSfb, INT stopSfb) {
+ FIXP_DBL specPeDiff = FL2FXCONST_DBL(0.0f);
+ FIXP_DBL scfFract = FL2FXCONST_DBL(0.0f);
+ INT sfb;
+
+ /* loop through all sfbs and count pe difference */
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scfOld[sfb] != FDK_INT_MIN) {
+ FIXP_DBL ldRatioOld, ldRatioNew, pOld, pNew;
+
+ /* sfbConstPePart[sfb] = (float)log(psyOutChan->sfbEnergy[sfb] * 6.75f /
+ * sfbFormFactor[sfb]) * LOG2_1; */
+ /* 0.02152255861f = log(6.75)/log(2)/AS_PE_FAC_FLOAT; LOG2_1 is 1.0 for
+ * log2 */
+ /* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */
+ if (sfbConstPePart[sfb] == (FIXP_DBL)FDK_INT_MIN)
+ sfbConstPePart[sfb] =
+ ((psyOutChan->sfbEnergyLdData[sfb] - sfbFormFactorLdData[sfb] -
+ FL2FXCONST_DBL(0.09375f)) >>
+ 1) +
+ FL2FXCONST_DBL(0.02152255861f);
+
+ scfFract = (FIXP_DBL)(scfOld[sfb] << (DFRACT_BITS - 1 - AS_PE_FAC_SHIFT));
+ ldRatioOld =
+ sfbConstPePart[sfb] - fMult(FL2FXCONST_DBL(0.375f), scfFract);
+
+ scfFract = (FIXP_DBL)(scfNew[sfb] << (DFRACT_BITS - 1 - AS_PE_FAC_SHIFT));
+ ldRatioNew =
+ sfbConstPePart[sfb] - fMult(FL2FXCONST_DBL(0.375f), scfFract);
+
+ if (ldRatioOld >= PE_C1)
+ pOld = ldRatioOld;
+ else
+ pOld = PE_C2 + fMult(PE_C3, ldRatioOld);
+
+ if (ldRatioNew >= PE_C1)
+ pNew = ldRatioNew;
+ else
+ pNew = PE_C2 + fMult(PE_C3, ldRatioNew);
+
+ specPeDiff += fMult(FL2FXCONST_DBL(0.7f),
+ fMult(sfbNRelevantLines[sfb], (pNew - pOld)));
+ }
+ }
+
+ return specPeDiff;
+}
+
+/*
+ Function: FDKaacEnc_improveScf
+
+ Description: Calculate the distortion by quantization and inverse quantization
+ of the spectrum with various scalefactors. The scalefactor which provides the
+ best results will be used.
+*/
+static INT FDKaacEnc_improveScf(const FIXP_DBL *spec, SHORT *quantSpec,
+ SHORT *quantSpecTmp, INT sfbWidth,
+ FIXP_DBL threshLdData, INT scf, INT minScf,
+ FIXP_DBL *distLdData, INT *minScfCalculated,
+ INT dZoneQuantEnable) {
+ FIXP_DBL sfbDistLdData;
+ INT scfBest = scf;
+ INT k;
+ FIXP_DBL distFactorLdData = FL2FXCONST_DBL(-0.0050301265); /* ld64(1/1.25) */
+
+ /* calc real distortion */
+ sfbDistLdData =
+ FDKaacEnc_calcSfbDist(spec, quantSpec, sfbWidth, scf, dZoneQuantEnable);
+ *minScfCalculated = scf;
+ /* nmr > 1.25 -> try to improve nmr */
+ if (sfbDistLdData > (threshLdData - distFactorLdData)) {
+ INT scfEstimated = scf;
+ FIXP_DBL sfbDistBestLdData = sfbDistLdData;
+ INT cnt;
+ /* improve by bigger scf ? */
+ cnt = 0;
+
+ while ((sfbDistLdData > (threshLdData - distFactorLdData)) &&
+ (cnt++ < UPCOUNT_LIMIT)) {
+ scf++;
+ sfbDistLdData = FDKaacEnc_calcSfbDist(spec, quantSpecTmp, sfbWidth, scf,
+ dZoneQuantEnable);
+
+ if (sfbDistLdData < sfbDistBestLdData) {
+ scfBest = scf;
+ sfbDistBestLdData = sfbDistLdData;
+ for (k = 0; k < sfbWidth; k++) quantSpec[k] = quantSpecTmp[k];
+ }
+ }
+ /* improve by smaller scf ? */
+ cnt = 0;
+ scf = scfEstimated;
+ sfbDistLdData = sfbDistBestLdData;
+ while ((sfbDistLdData > (threshLdData - distFactorLdData)) && (cnt++ < 1) &&
+ (scf > minScf)) {
+ scf--;
+ sfbDistLdData = FDKaacEnc_calcSfbDist(spec, quantSpecTmp, sfbWidth, scf,
+ dZoneQuantEnable);
+
+ if (sfbDistLdData < sfbDistBestLdData) {
+ scfBest = scf;
+ sfbDistBestLdData = sfbDistLdData;
+ for (k = 0; k < sfbWidth; k++) quantSpec[k] = quantSpecTmp[k];
+ }
+ *minScfCalculated = scf;
+ }
+ *distLdData = sfbDistBestLdData;
+ } else { /* nmr <= 1.25 -> try to find bigger scf to use less bits */
+ FIXP_DBL sfbDistBestLdData = sfbDistLdData;
+ FIXP_DBL sfbDistAllowedLdData =
+ fixMin(sfbDistLdData - distFactorLdData, threshLdData);
+ int cnt;
+ for (cnt = 0; cnt < UPCOUNT_LIMIT; cnt++) {
+ scf++;
+ sfbDistLdData = FDKaacEnc_calcSfbDist(spec, quantSpecTmp, sfbWidth, scf,
+ dZoneQuantEnable);
+
+ if (sfbDistLdData < sfbDistAllowedLdData) {
+ *minScfCalculated = scfBest + 1;
+ scfBest = scf;
+ sfbDistBestLdData = sfbDistLdData;
+ for (k = 0; k < sfbWidth; k++) quantSpec[k] = quantSpecTmp[k];
+ }
+ }
+ *distLdData = sfbDistBestLdData;
+ }
+
+ /* return best scalefactor */
+ return scfBest;
+}
+
+/*
+ Function: FDKaacEnc_assimilateSingleScf
+
+*/
+static void FDKaacEnc_assimilateSingleScf(
+ const PSY_OUT_CHANNEL *psyOutChan, const QC_OUT_CHANNEL *qcOutChannel,
+ SHORT *quantSpec, SHORT *quantSpecTmp, INT dZoneQuantEnable, INT *scf,
+ const INT *minScf, FIXP_DBL *sfbDist, FIXP_DBL *sfbConstPePart,
+ const FIXP_DBL *sfbFormFactorLdData, const FIXP_DBL *sfbNRelevantLines,
+ INT *minScfCalculated, INT restartOnSuccess) {
+ INT sfbLast, sfbAct, sfbNext;
+ INT scfAct, *scfLast, *scfNext, scfMin, scfMax;
+ INT sfbWidth, sfbOffs;
+ FIXP_DBL enLdData;
+ FIXP_DBL sfbPeOld, sfbPeNew;
+ FIXP_DBL sfbDistNew;
+ INT i, k;
+ INT success = 0;
+ FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f);
+ FIXP_DBL deltaPeNew, deltaPeTmp;
+ INT prevScfLast[MAX_GROUPED_SFB], prevScfNext[MAX_GROUPED_SFB];
+ FIXP_DBL deltaPeLast[MAX_GROUPED_SFB];
+ INT updateMinScfCalculated;
+
+ for (i = 0; i < psyOutChan->sfbCnt; i++) {
+ prevScfLast[i] = FDK_INT_MAX;
+ prevScfNext[i] = FDK_INT_MAX;
+ deltaPeLast[i] = (FIXP_DBL)FDK_INT_MAX;
+ }
+
+ sfbLast = -1;
+ sfbAct = -1;
+ sfbNext = -1;
+ scfLast = 0;
+ scfNext = 0;
+ scfMin = FDK_INT_MAX;
+ scfMax = FDK_INT_MAX;
+ do {
+ /* search for new relevant sfb */
+ sfbNext++;
+ while ((sfbNext < psyOutChan->sfbCnt) && (scf[sfbNext] == FDK_INT_MIN))
+ sfbNext++;
+ if ((sfbLast >= 0) && (sfbAct >= 0) && (sfbNext < psyOutChan->sfbCnt)) {
+ /* relevant scfs to the left and to the right */
+ scfAct = scf[sfbAct];
+ scfLast = scf + sfbLast;
+ scfNext = scf + sfbNext;
+ scfMin = fixMin(*scfLast, *scfNext);
+ scfMax = fixMax(*scfLast, *scfNext);
+ } else if ((sfbLast == -1) && (sfbAct >= 0) &&
+ (sfbNext < psyOutChan->sfbCnt)) {
+ /* first relevant scf */
+ scfAct = scf[sfbAct];
+ scfLast = &scfAct;
+ scfNext = scf + sfbNext;
+ scfMin = *scfNext;
+ scfMax = *scfNext;
+ } else if ((sfbLast >= 0) && (sfbAct >= 0) &&
+ (sfbNext == psyOutChan->sfbCnt)) {
+ /* last relevant scf */
+ scfAct = scf[sfbAct];
+ scfLast = scf + sfbLast;
+ scfNext = &scfAct;
+ scfMin = *scfLast;
+ scfMax = *scfLast;
+ }
+ if (sfbAct >= 0) scfMin = fixMax(scfMin, minScf[sfbAct]);
+
+ if ((sfbAct >= 0) && (sfbLast >= 0 || sfbNext < psyOutChan->sfbCnt) &&
+ (scfAct > scfMin) && (scfAct <= scfMin + MAX_SCF_DELTA) &&
+ (scfAct >= scfMax - MAX_SCF_DELTA) &&
+ (scfAct <=
+ fixMin(scfMin, fixMin(*scfLast, *scfNext)) + MAX_SCF_DELTA) &&
+ (*scfLast != prevScfLast[sfbAct] || *scfNext != prevScfNext[sfbAct] ||
+ deltaPe < deltaPeLast[sfbAct])) {
+ /* bigger than neighbouring scf found, try to use smaller scf */
+ success = 0;
+
+ sfbWidth =
+ psyOutChan->sfbOffsets[sfbAct + 1] - psyOutChan->sfbOffsets[sfbAct];
+ sfbOffs = psyOutChan->sfbOffsets[sfbAct];
+
+ /* estimate required bits for actual scf */
+ enLdData = qcOutChannel->sfbEnergyLdData[sfbAct];
+
+ /* sfbConstPePart[sfbAct] = (float)log(6.75f*en/sfbFormFactor[sfbAct]) *
+ * LOG2_1; */
+ /* 0.02152255861f = log(6.75)/log(2)/AS_PE_FAC_FLOAT; LOG2_1 is 1.0 for
+ * log2 */
+ /* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */
+ if (sfbConstPePart[sfbAct] == (FIXP_DBL)FDK_INT_MIN) {
+ sfbConstPePart[sfbAct] = ((enLdData - sfbFormFactorLdData[sfbAct] -
+ FL2FXCONST_DBL(0.09375f)) >>
+ 1) +
+ FL2FXCONST_DBL(0.02152255861f);
+ }
+
+ sfbPeOld = FDKaacEnc_calcSingleSpecPe(scfAct, sfbConstPePart[sfbAct],
+ sfbNRelevantLines[sfbAct]) +
+ FDKaacEnc_countSingleScfBits(scfAct, *scfLast, *scfNext);
+
+ deltaPeNew = deltaPe;
+ updateMinScfCalculated = 1;
+
+ do {
+ /* estimate required bits for smaller scf */
+ scfAct--;
+ /* check only if the same check was not done before */
+ if (scfAct < minScfCalculated[sfbAct] &&
+ scfAct >= scfMax - MAX_SCF_DELTA) {
+ /* estimate required bits for new scf */
+ sfbPeNew = FDKaacEnc_calcSingleSpecPe(scfAct, sfbConstPePart[sfbAct],
+ sfbNRelevantLines[sfbAct]) +
+ FDKaacEnc_countSingleScfBits(scfAct, *scfLast, *scfNext);
+
+ /* use new scf if no increase in pe and
+ quantization error is smaller */
+ deltaPeTmp = deltaPe + sfbPeNew - sfbPeOld;
+ /* 0.0006103515625f = 10.0f/(2^(2*AS_PE_FAC_SHIFT)) */
+ if (deltaPeTmp < FL2FXCONST_DBL(0.0006103515625f)) {
+ /* distortion of new scf */
+ sfbDistNew = FDKaacEnc_calcSfbDist(
+ qcOutChannel->mdctSpectrum + sfbOffs, quantSpecTmp + sfbOffs,
+ sfbWidth, scfAct, dZoneQuantEnable);
+
+ if (sfbDistNew < sfbDist[sfbAct]) {
+ /* success, replace scf by new one */
+ scf[sfbAct] = scfAct;
+ sfbDist[sfbAct] = sfbDistNew;
+
+ for (k = 0; k < sfbWidth; k++)
+ quantSpec[sfbOffs + k] = quantSpecTmp[sfbOffs + k];
+
+ deltaPeNew = deltaPeTmp;
+ success = 1;
+ }
+ /* mark as already checked */
+ if (updateMinScfCalculated) minScfCalculated[sfbAct] = scfAct;
+ } else {
+ /* from this scf value on not all new values have been checked */
+ updateMinScfCalculated = 0;
+ }
+ }
+ } while (scfAct > scfMin);
+
+ deltaPe = deltaPeNew;
+
+ /* save parameters to avoid multiple computations of the same sfb */
+ prevScfLast[sfbAct] = *scfLast;
+ prevScfNext[sfbAct] = *scfNext;
+ deltaPeLast[sfbAct] = deltaPe;
+ }
+
+ if (success && restartOnSuccess) {
+ /* start again at first sfb */
+ sfbLast = -1;
+ sfbAct = -1;
+ sfbNext = -1;
+ scfLast = 0;
+ scfNext = 0;
+ scfMin = FDK_INT_MAX;
+ scfMax = FDK_INT_MAX;
+ success = 0;
+ } else {
+ /* shift sfbs for next band */
+ sfbLast = sfbAct;
+ sfbAct = sfbNext;
+ }
+ } while (sfbNext < psyOutChan->sfbCnt);
+}
+
+/*
+ Function: FDKaacEnc_assimilateMultipleScf
+
+*/
+static void FDKaacEnc_assimilateMultipleScf(
+ PSY_OUT_CHANNEL *psyOutChan, QC_OUT_CHANNEL *qcOutChannel, SHORT *quantSpec,
+ SHORT *quantSpecTmp, INT dZoneQuantEnable, INT *scf, const INT *minScf,
+ FIXP_DBL *sfbDist, FIXP_DBL *sfbConstPePart, FIXP_DBL *sfbFormFactorLdData,
+ FIXP_DBL *sfbNRelevantLines) {
+ INT sfb, startSfb, stopSfb;
+ INT scfTmp[MAX_GROUPED_SFB], scfMin, scfMax, scfAct;
+ INT possibleRegionFound;
+ INT sfbWidth, sfbOffs, i, k;
+ FIXP_DBL sfbDistNew[MAX_GROUPED_SFB], distOldSum, distNewSum;
+ INT deltaScfBits;
+ FIXP_DBL deltaSpecPe;
+ FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f);
+ FIXP_DBL deltaPeNew;
+ INT sfbCnt = psyOutChan->sfbCnt;
+
+ /* calc min and max scalfactors */
+ scfMin = FDK_INT_MAX;
+ scfMax = FDK_INT_MIN;
+ for (sfb = 0; sfb < sfbCnt; sfb++) {
+ if (scf[sfb] != FDK_INT_MIN) {
+ scfMin = fixMin(scfMin, scf[sfb]);
+ scfMax = fixMax(scfMax, scf[sfb]);
+ }
+ }
+
+ if (scfMax != FDK_INT_MIN && scfMax <= scfMin + MAX_SCF_DELTA) {
+ scfAct = scfMax;
+
+ do {
+ /* try smaller scf */
+ scfAct--;
+ for (i = 0; i < MAX_GROUPED_SFB; i++) scfTmp[i] = scf[i];
+ stopSfb = 0;
+ do {
+ /* search for region where all scfs are bigger than scfAct */
+ sfb = stopSfb;
+ while (sfb < sfbCnt && (scf[sfb] == FDK_INT_MIN || scf[sfb] <= scfAct))
+ sfb++;
+ startSfb = sfb;
+ sfb++;
+ while (sfb < sfbCnt && (scf[sfb] == FDK_INT_MIN || scf[sfb] > scfAct))
+ sfb++;
+ stopSfb = sfb;
+
+ /* check if in all sfb of a valid region scfAct >= minScf[sfb] */
+ possibleRegionFound = 0;
+ if (startSfb < sfbCnt) {
+ possibleRegionFound = 1;
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scf[sfb] != FDK_INT_MIN)
+ if (scfAct < minScf[sfb]) {
+ possibleRegionFound = 0;
+ break;
+ }
+ }
+ }
+
+ if (possibleRegionFound) { /* region found */
+
+ /* replace scfs in region by scfAct */
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN) scfTmp[sfb] = scfAct;
+ }
+
+ /* estimate change in bit demand for new scfs */
+ deltaScfBits = FDKaacEnc_countScfBitsDiff(scf, scfTmp, sfbCnt,
+ startSfb, stopSfb);
+
+ deltaSpecPe = FDKaacEnc_calcSpecPeDiff(
+ psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
+ sfbFormFactorLdData, sfbNRelevantLines, startSfb, stopSfb);
+
+ deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;
+
+ /* new bit demand small enough ? */
+ /* 0.0006103515625f = 10.0f/(2^(2*AS_PE_FAC_SHIFT)) */
+ if (deltaPeNew < FL2FXCONST_DBL(0.0006103515625f)) {
+ /* quantize and calc sum of new distortion */
+ distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN) {
+ distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;
+
+ sfbWidth = psyOutChan->sfbOffsets[sfb + 1] -
+ psyOutChan->sfbOffsets[sfb];
+ sfbOffs = psyOutChan->sfbOffsets[sfb];
+
+ sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(
+ qcOutChannel->mdctSpectrum + sfbOffs,
+ quantSpecTmp + sfbOffs, sfbWidth, scfAct, dZoneQuantEnable);
+
+ if (sfbDistNew[sfb] > qcOutChannel->sfbThresholdLdData[sfb]) {
+ /* no improvement, skip further dist. calculations */
+ distNewSum = distOldSum << 1;
+ break;
+ }
+ distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT;
+ }
+ }
+ /* distortion smaller ? -> use new scalefactors */
+ if (distNewSum < distOldSum) {
+ deltaPe = deltaPeNew;
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scf[sfb] != FDK_INT_MIN) {
+ sfbWidth = psyOutChan->sfbOffsets[sfb + 1] -
+ psyOutChan->sfbOffsets[sfb];
+ sfbOffs = psyOutChan->sfbOffsets[sfb];
+ scf[sfb] = scfAct;
+ sfbDist[sfb] = sfbDistNew[sfb];
+
+ for (k = 0; k < sfbWidth; k++)
+ quantSpec[sfbOffs + k] = quantSpecTmp[sfbOffs + k];
+ }
+ }
+ }
+ }
+ }
+
+ } while (stopSfb <= sfbCnt);
+
+ } while (scfAct > scfMin);
+ }
+}
+
+/*
+ Function: FDKaacEnc_FDKaacEnc_assimilateMultipleScf2
+
+*/
+static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(
+ PSY_OUT_CHANNEL *psyOutChan, QC_OUT_CHANNEL *qcOutChannel, SHORT *quantSpec,
+ SHORT *quantSpecTmp, INT dZoneQuantEnable, INT *scf, const INT *minScf,
+ FIXP_DBL *sfbDist, FIXP_DBL *sfbConstPePart, FIXP_DBL *sfbFormFactorLdData,
+ FIXP_DBL *sfbNRelevantLines) {
+ INT sfb, startSfb, stopSfb;
+ INT scfTmp[MAX_GROUPED_SFB], scfAct, scfNew;
+ INT scfPrev, scfNext, scfPrevNextMin, scfPrevNextMax, scfLo, scfHi;
+ INT scfMin, scfMax;
+ INT *sfbOffs = psyOutChan->sfbOffsets;
+ FIXP_DBL sfbDistNew[MAX_GROUPED_SFB], sfbDistMax[MAX_GROUPED_SFB];
+ FIXP_DBL distOldSum, distNewSum;
+ INT deltaScfBits;
+ FIXP_DBL deltaSpecPe;
+ FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f);
+ FIXP_DBL deltaPeNew = FL2FXCONST_DBL(0.0f);
+ INT sfbCnt = psyOutChan->sfbCnt;
+ INT bSuccess, bCheckScf;
+ INT i, k;
+
+ /* calc min and max scalfactors */
+ scfMin = FDK_INT_MAX;
+ scfMax = FDK_INT_MIN;
+ for (sfb = 0; sfb < sfbCnt; sfb++) {
+ if (scf[sfb] != FDK_INT_MIN) {
+ scfMin = fixMin(scfMin, scf[sfb]);
+ scfMax = fixMax(scfMax, scf[sfb]);
+ }
+ }
+
+ stopSfb = 0;
+ scfAct = FDK_INT_MIN;
+ do {
+ /* search for region with same scf values scfAct */
+ scfPrev = scfAct;
+
+ sfb = stopSfb;
+ while (sfb < sfbCnt && (scf[sfb] == FDK_INT_MIN)) sfb++;
+ startSfb = sfb;
+ scfAct = scf[startSfb];
+ sfb++;
+ while (sfb < sfbCnt &&
+ ((scf[sfb] == FDK_INT_MIN) || (scf[sfb] == scf[startSfb])))
+ sfb++;
+ stopSfb = sfb;
+
+ if (stopSfb < sfbCnt)
+ scfNext = scf[stopSfb];
+ else
+ scfNext = scfAct;
+
+ if (scfPrev == FDK_INT_MIN) scfPrev = scfAct;
+
+ scfPrevNextMax = fixMax(scfPrev, scfNext);
+ scfPrevNextMin = fixMin(scfPrev, scfNext);
+
+ /* try to reduce bits by checking scf values in the range
+ scf[startSfb]...scfHi */
+ scfHi = fixMax(scfPrevNextMax, scfAct);
+ /* try to find a better solution by reducing the scf difference to
+ the nearest possible lower scf */
+ if (scfPrevNextMax >= scfAct)
+ scfLo = fixMin(scfAct, scfPrevNextMin);
+ else
+ scfLo = scfPrevNextMax;
+
+ if (startSfb < sfbCnt &&
+ scfHi - scfLo <= MAX_SCF_DELTA) { /* region found */
+ /* 1. try to save bits by coarser quantization */
+ if (scfHi > scf[startSfb]) {
+ /* calculate the allowed distortion */
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scf[sfb] != FDK_INT_MIN) {
+ /* sfbDistMax[sfb] =
+ * (float)pow(qcOutChannel->sfbThreshold[sfb]*sfbDist[sfb]*sfbDist[sfb],1.0f/3.0f);
+ */
+ /* sfbDistMax[sfb] =
+ * fixMax(sfbDistMax[sfb],qcOutChannel->sfbEnergy[sfb]*FL2FXCONST_DBL(1.e-3f));
+ */
+ /* -0.15571537944 = ld64(1.e-3f)*/
+ sfbDistMax[sfb] = fMult(FL2FXCONST_DBL(1.0f / 3.0f),
+ qcOutChannel->sfbThresholdLdData[sfb]) +
+ fMult(FL2FXCONST_DBL(1.0f / 3.0f), sfbDist[sfb]) +
+ fMult(FL2FXCONST_DBL(1.0f / 3.0f), sfbDist[sfb]);
+ sfbDistMax[sfb] =
+ fixMax(sfbDistMax[sfb], qcOutChannel->sfbEnergyLdData[sfb] -
+ FL2FXCONST_DBL(0.15571537944));
+ sfbDistMax[sfb] =
+ fixMin(sfbDistMax[sfb], qcOutChannel->sfbThresholdLdData[sfb]);
+ }
+ }
+
+ /* loop over all possible scf values for this region */
+ bCheckScf = 1;
+ for (scfNew = scf[startSfb] + 1; scfNew <= scfHi; scfNew++) {
+ for (k = 0; k < MAX_GROUPED_SFB; k++) scfTmp[k] = scf[k];
+
+ /* replace scfs in region by scfNew */
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN) scfTmp[sfb] = scfNew;
+ }
+
+ /* estimate change in bit demand for new scfs */
+ deltaScfBits = FDKaacEnc_countScfBitsDiff(scf, scfTmp, sfbCnt,
+ startSfb, stopSfb);
+
+ deltaSpecPe = FDKaacEnc_calcSpecPeDiff(
+ psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
+ sfbFormFactorLdData, sfbNRelevantLines, startSfb, stopSfb);
+
+ deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;
+
+ /* new bit demand small enough ? */
+ if (deltaPeNew < FL2FXCONST_DBL(0.0f)) {
+ bSuccess = 1;
+
+ /* quantize and calc sum of new distortion */
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN) {
+ sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(
+ qcOutChannel->mdctSpectrum + sfbOffs[sfb],
+ quantSpecTmp + sfbOffs[sfb],
+ sfbOffs[sfb + 1] - sfbOffs[sfb], scfNew, dZoneQuantEnable);
+
+ if (sfbDistNew[sfb] > sfbDistMax[sfb]) {
+ /* no improvement, skip further dist. calculations */
+ bSuccess = 0;
+ if (sfbDistNew[sfb] == qcOutChannel->sfbEnergyLdData[sfb]) {
+ /* if whole sfb is already quantized to 0, further
+ checks with even coarser quant. are useless*/
+ bCheckScf = 0;
+ }
+ break;
+ }
+ }
+ }
+ if (bCheckScf == 0) /* further calculations useless ? */
+ break;
+ /* distortion small enough ? -> use new scalefactors */
+ if (bSuccess) {
+ deltaPe = deltaPeNew;
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scf[sfb] != FDK_INT_MIN) {
+ scf[sfb] = scfNew;
+ sfbDist[sfb] = sfbDistNew[sfb];
+
+ for (k = 0; k < sfbOffs[sfb + 1] - sfbOffs[sfb]; k++)
+ quantSpec[sfbOffs[sfb] + k] =
+ quantSpecTmp[sfbOffs[sfb] + k];
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /* 2. only if coarser quantization was not successful, try to find
+ a better solution by finer quantization and reducing bits for
+ scalefactor coding */
+ if (scfAct == scf[startSfb] && scfLo < scfAct &&
+ scfMax - scfMin <= MAX_SCF_DELTA) {
+ int bminScfViolation = 0;
+
+ for (k = 0; k < MAX_GROUPED_SFB; k++) scfTmp[k] = scf[k];
+
+ scfNew = scfLo;
+
+ /* replace scfs in region by scfNew and
+ check if in all sfb scfNew >= minScf[sfb] */
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN) {
+ scfTmp[sfb] = scfNew;
+ if (scfNew < minScf[sfb]) bminScfViolation = 1;
+ }
+ }
+
+ if (!bminScfViolation) {
+ /* estimate change in bit demand for new scfs */
+ deltaScfBits = FDKaacEnc_countScfBitsDiff(scf, scfTmp, sfbCnt,
+ startSfb, stopSfb);
+
+ deltaSpecPe = FDKaacEnc_calcSpecPeDiff(
+ psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,
+ sfbFormFactorLdData, sfbNRelevantLines, startSfb, stopSfb);
+
+ deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;
+ }
+
+ /* new bit demand small enough ? */
+ if (!bminScfViolation && deltaPeNew < FL2FXCONST_DBL(0.0f)) {
+ /* quantize and calc sum of new distortion */
+ distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN) {
+ distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;
+
+ sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(
+ qcOutChannel->mdctSpectrum + sfbOffs[sfb],
+ quantSpecTmp + sfbOffs[sfb], sfbOffs[sfb + 1] - sfbOffs[sfb],
+ scfNew, dZoneQuantEnable);
+
+ if (sfbDistNew[sfb] > qcOutChannel->sfbThresholdLdData[sfb]) {
+ /* no improvement, skip further dist. calculations */
+ distNewSum = distOldSum << 1;
+ break;
+ }
+ distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT;
+ }
+ }
+ /* distortion smaller ? -> use new scalefactors */
+ if (distNewSum < fMult(FL2FXCONST_DBL(0.8f), distOldSum)) {
+ deltaPe = deltaPeNew;
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scf[sfb] != FDK_INT_MIN) {
+ scf[sfb] = scfNew;
+ sfbDist[sfb] = sfbDistNew[sfb];
+
+ for (k = 0; k < sfbOffs[sfb + 1] - sfbOffs[sfb]; k++)
+ quantSpec[sfbOffs[sfb] + k] = quantSpecTmp[sfbOffs[sfb] + k];
+ }
+ }
+ }
+ }
+ }
+
+ /* 3. try to find a better solution (save bits) by only reducing the
+ scalefactor without new quantization */
+ if (scfMax - scfMin <=
+ MAX_SCF_DELTA - 3) { /* 3 bec. scf is reduced 3 times,
+ see for loop below */
+
+ for (k = 0; k < sfbCnt; k++) scfTmp[k] = scf[k];
+
+ for (i = 0; i < 3; i++) {
+ scfNew = scfTmp[startSfb] - 1;
+ /* replace scfs in region by scfNew */
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN) scfTmp[sfb] = scfNew;
+ }
+ /* estimate change in bit demand for new scfs */
+ deltaScfBits = FDKaacEnc_countScfBitsDiff(scf, scfTmp, sfbCnt,
+ startSfb, stopSfb);
+ deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits;
+ /* new bit demand small enough ? */
+ if (deltaPeNew <= FL2FXCONST_DBL(0.0f)) {
+ bSuccess = 1;
+ distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scfTmp[sfb] != FDK_INT_MIN) {
+ FIXP_DBL sfbEnQ;
+ /* calc the energy and distortion of the quantized spectrum for
+ a smaller scf */
+ FDKaacEnc_calcSfbQuantEnergyAndDist(
+ qcOutChannel->mdctSpectrum + sfbOffs[sfb],
+ quantSpec + sfbOffs[sfb], sfbOffs[sfb + 1] - sfbOffs[sfb],
+ scfNew, &sfbEnQ, &sfbDistNew[sfb]);
+
+ distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;
+ distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT;
+
+ /* 0.00259488556167 = ld64(1.122f) */
+ /* -0.00778722686652 = ld64(0.7079f) */
+ if ((sfbDistNew[sfb] >
+ (sfbDist[sfb] + FL2FXCONST_DBL(0.00259488556167f))) ||
+ (sfbEnQ < (qcOutChannel->sfbEnergyLdData[sfb] -
+ FL2FXCONST_DBL(0.00778722686652f)))) {
+ bSuccess = 0;
+ break;
+ }
+ }
+ }
+ /* distortion smaller ? -> use new scalefactors */
+ if (distNewSum < distOldSum && bSuccess) {
+ deltaPe = deltaPeNew;
+ for (sfb = startSfb; sfb < stopSfb; sfb++) {
+ if (scf[sfb] != FDK_INT_MIN) {
+ scf[sfb] = scfNew;
+ sfbDist[sfb] = sfbDistNew[sfb];
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ } while (stopSfb <= sfbCnt);
+}
+
+static void FDKaacEnc_EstimateScaleFactorsChannel(
+ QC_OUT_CHANNEL *qcOutChannel, PSY_OUT_CHANNEL *psyOutChannel,
+ INT *RESTRICT scf, INT *RESTRICT globalGain,
+ FIXP_DBL *RESTRICT sfbFormFactorLdData, const INT invQuant,
+ SHORT *RESTRICT quantSpec, const INT dZoneQuantEnable) {
+ INT i, j, sfb, sfbOffs;
+ INT scfInt;
+ INT maxSf;
+ INT minSf;
+ FIXP_DBL threshLdData;
+ FIXP_DBL energyLdData;
+ FIXP_DBL energyPartLdData;
+ FIXP_DBL thresholdPartLdData;
+ FIXP_DBL scfFract;
+ FIXP_DBL maxSpec;
+ INT minScfCalculated[MAX_GROUPED_SFB];
+ FIXP_DBL sfbDistLdData[MAX_GROUPED_SFB];
+ C_ALLOC_SCRATCH_START(quantSpecTmp, SHORT, (1024))
+ INT minSfMaxQuant[MAX_GROUPED_SFB];
+
+ FIXP_DBL threshConstLdData =
+ FL2FXCONST_DBL(0.04304511722f); /* log10(6.75)/log10(2.0)/64.0 */
+ FIXP_DBL convConst = FL2FXCONST_DBL(0.30102999566f); /* log10(2.0) */
+ FIXP_DBL c1Const =
+ FL2FXCONST_DBL(-0.27083183594f); /* C1 = -69.33295 => C1/2^8 */
+
+ if (invQuant > 0) {
+ FDKmemclear(quantSpec, (1024) * sizeof(SHORT));
+ }
+
+ /* scfs without energy or with thresh>energy are marked with FDK_INT_MIN */
+ for (i = 0; i < psyOutChannel->sfbCnt; i++) {
+ scf[i] = FDK_INT_MIN;
+ }
+
+ for (i = 0; i < MAX_GROUPED_SFB; i++) {
+ minSfMaxQuant[i] = FDK_INT_MIN;
+ }
+
+ for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
+ sfbOffs += psyOutChannel->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
+ threshLdData = qcOutChannel->sfbThresholdLdData[sfbOffs + sfb];
+ energyLdData = qcOutChannel->sfbEnergyLdData[sfbOffs + sfb];
+
+ sfbDistLdData[sfbOffs + sfb] = energyLdData;
+
+ if (energyLdData > threshLdData) {
+ FIXP_DBL tmp;
+
+ /* energyPart = (float)log10(sfbFormFactor[sfbOffs+sfb]); */
+ /* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */
+ energyPartLdData =
+ sfbFormFactorLdData[sfbOffs + sfb] + FL2FXCONST_DBL(0.09375f);
+
+ /* influence of allowed distortion */
+ /* thresholdPart = (float)log10(6.75*thresh+FLT_MIN); */
+ thresholdPartLdData = threshConstLdData + threshLdData;
+
+ /* scf calc */
+ /* scfFloat = 8.8585f * (thresholdPart - energyPart); */
+ scfFract = thresholdPartLdData - energyPartLdData;
+ /* conversion from log2 to log10 */
+ scfFract = fMult(convConst, scfFract);
+ /* (8.8585f * scfFract)/8 = 8/8 * scfFract + 0.8585 * scfFract/8 */
+ scfFract = scfFract + fMult(FL2FXCONST_DBL(0.8585f), scfFract >> 3);
+
+ /* integer scalefactor */
+ /* scfInt = (int)floor(scfFloat); */
+ scfInt =
+ (INT)(scfFract >>
+ ((DFRACT_BITS - 1) - 3 -
+ LD_DATA_SHIFT)); /* 3 bits => scfFract/8.0; 6 bits => ld64 */
+
+ /* maximum of spectrum */
+ maxSpec = FL2FXCONST_DBL(0.0f);
+
+ /* Unroll by 4, allow dual memory access */
+ DWORD_ALIGNED(qcOutChannel->mdctSpectrum);
+ for (j = psyOutChannel->sfbOffsets[sfbOffs + sfb];
+ j < psyOutChannel->sfbOffsets[sfbOffs + sfb + 1]; j += 4) {
+ maxSpec = fMax(maxSpec,
+ fMax(fMax(fAbs(qcOutChannel->mdctSpectrum[j + 0]),
+ fAbs(qcOutChannel->mdctSpectrum[j + 1])),
+ fMax(fAbs(qcOutChannel->mdctSpectrum[j + 2]),
+ fAbs(qcOutChannel->mdctSpectrum[j + 3]))));
+ }
+ /* lower scf limit to avoid quantized values bigger than MAX_QUANT */
+ /* C1 = -69.33295f, C2 = 5.77078f = 4/log(2) */
+ /* minSfMaxQuant[sfbOffs+sfb] = (int)ceil(C1 + C2*log(maxSpec)); */
+ /* C1/2^8 + 4/log(2.0)*log(maxSpec)/2^8 => C1/2^8 +
+ * log(maxSpec)/log(2.0)*4/2^8 => C1/2^8 + log(maxSpec)/log(2.0)/64.0 */
+
+ // minSfMaxQuant[sfbOffs+sfb] = ((INT) ((c1Const + CalcLdData(maxSpec))
+ // >> ((DFRACT_BITS-1)-8))) + 1;
+ tmp = CalcLdData(maxSpec);
+ if (c1Const > FL2FXCONST_DBL(-1.f) - tmp) {
+ minSfMaxQuant[sfbOffs + sfb] =
+ ((INT)((c1Const + tmp) >> ((DFRACT_BITS - 1) - 8))) + 1;
+ } else {
+ minSfMaxQuant[sfbOffs + sfb] =
+ ((INT)(FL2FXCONST_DBL(-1.f) >> ((DFRACT_BITS - 1) - 8))) + 1;
+ }
+
+ scfInt = fixMax(scfInt, minSfMaxQuant[sfbOffs + sfb]);
+
+ /* find better scalefactor with analysis by synthesis */
+ if (invQuant > 0) {
+ scfInt = FDKaacEnc_improveScf(
+ qcOutChannel->mdctSpectrum +
+ psyOutChannel->sfbOffsets[sfbOffs + sfb],
+ quantSpec + psyOutChannel->sfbOffsets[sfbOffs + sfb],
+ quantSpecTmp + psyOutChannel->sfbOffsets[sfbOffs + sfb],
+ psyOutChannel->sfbOffsets[sfbOffs + sfb + 1] -
+ psyOutChannel->sfbOffsets[sfbOffs + sfb],
+ threshLdData, scfInt, minSfMaxQuant[sfbOffs + sfb],
+ &sfbDistLdData[sfbOffs + sfb], &minScfCalculated[sfbOffs + sfb],
+ dZoneQuantEnable);
+ }
+ scf[sfbOffs + sfb] = scfInt;
+ }
+ }
+ }
+
+ if (invQuant > 0) {
+ /* try to decrease scf differences */
+ FIXP_DBL sfbConstPePart[MAX_GROUPED_SFB];
+ FIXP_DBL sfbNRelevantLines[MAX_GROUPED_SFB];
+
+ for (i = 0; i < psyOutChannel->sfbCnt; i++)
+ sfbConstPePart[i] = (FIXP_DBL)FDK_INT_MIN;
+
+ FDKaacEnc_calcSfbRelevantLines(
+ sfbFormFactorLdData, qcOutChannel->sfbEnergyLdData,
+ qcOutChannel->sfbThresholdLdData, psyOutChannel->sfbOffsets,
+ psyOutChannel->sfbCnt, psyOutChannel->sfbPerGroup,
+ psyOutChannel->maxSfbPerGroup, sfbNRelevantLines);
+
+ FDKaacEnc_assimilateSingleScf(
+ psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp, dZoneQuantEnable,
+ scf, minSfMaxQuant, sfbDistLdData, sfbConstPePart, sfbFormFactorLdData,
+ sfbNRelevantLines, minScfCalculated, 1);
+
+ if (invQuant > 1) {
+ FDKaacEnc_assimilateMultipleScf(
+ psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp,
+ dZoneQuantEnable, scf, minSfMaxQuant, sfbDistLdData, sfbConstPePart,
+ sfbFormFactorLdData, sfbNRelevantLines);
+
+ FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(
+ psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp,
+ dZoneQuantEnable, scf, minSfMaxQuant, sfbDistLdData, sfbConstPePart,
+ sfbFormFactorLdData, sfbNRelevantLines);
+ }
+ }
+
+ /* get min scalefac */
+ minSf = FDK_INT_MAX;
+ for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
+ sfbOffs += psyOutChannel->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
+ if (scf[sfbOffs + sfb] != FDK_INT_MIN)
+ minSf = fixMin(minSf, scf[sfbOffs + sfb]);
+ }
+ }
+
+ /* limit scf delta */
+ for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
+ sfbOffs += psyOutChannel->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
+ if ((scf[sfbOffs + sfb] != FDK_INT_MIN) &&
+ (minSf + MAX_SCF_DELTA) < scf[sfbOffs + sfb]) {
+ scf[sfbOffs + sfb] = minSf + MAX_SCF_DELTA;
+ if (invQuant > 0) { /* changed bands need to be quantized again */
+ sfbDistLdData[sfbOffs + sfb] = FDKaacEnc_calcSfbDist(
+ qcOutChannel->mdctSpectrum +
+ psyOutChannel->sfbOffsets[sfbOffs + sfb],
+ quantSpec + psyOutChannel->sfbOffsets[sfbOffs + sfb],
+ psyOutChannel->sfbOffsets[sfbOffs + sfb + 1] -
+ psyOutChannel->sfbOffsets[sfbOffs + sfb],
+ scf[sfbOffs + sfb], dZoneQuantEnable);
+ }
+ }
+ }
+ }
+
+ /* get max scalefac for global gain */
+ maxSf = FDK_INT_MIN;
+ for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
+ sfbOffs += psyOutChannel->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
+ maxSf = fixMax(maxSf, scf[sfbOffs + sfb]);
+ }
+ }
+
+ /* calc loop scalefactors, if spec is not all zero (i.e. maxSf == -99) */
+ if (maxSf > FDK_INT_MIN) {
+ *globalGain = maxSf;
+ for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
+ sfbOffs += psyOutChannel->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
+ if (scf[sfbOffs + sfb] == FDK_INT_MIN) {
+ scf[sfbOffs + sfb] = 0;
+ /* set band explicitely to zero */
+ for (j = psyOutChannel->sfbOffsets[sfbOffs + sfb];
+ j < psyOutChannel->sfbOffsets[sfbOffs + sfb + 1]; j++) {
+ qcOutChannel->mdctSpectrum[j] = FL2FXCONST_DBL(0.0f);
+ }
+ } else {
+ scf[sfbOffs + sfb] = maxSf - scf[sfbOffs + sfb];
+ }
+ }
+ }
+ } else {
+ *globalGain = 0;
+ /* set spectrum explicitely to zero */
+ for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;
+ sfbOffs += psyOutChannel->sfbPerGroup) {
+ for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) {
+ scf[sfbOffs + sfb] = 0;
+ /* set band explicitely to zero */
+ for (j = psyOutChannel->sfbOffsets[sfbOffs + sfb];
+ j < psyOutChannel->sfbOffsets[sfbOffs + sfb + 1]; j++) {
+ qcOutChannel->mdctSpectrum[j] = FL2FXCONST_DBL(0.0f);
+ }
+ }
+ }
+ }
+
+ /* free quantSpecTmp from scratch */
+ C_ALLOC_SCRATCH_END(quantSpecTmp, SHORT, (1024))
+}
+
+void FDKaacEnc_EstimateScaleFactors(PSY_OUT_CHANNEL *psyOutChannel[],
+ QC_OUT_CHANNEL *qcOutChannel[],
+ const INT invQuant,
+ const INT dZoneQuantEnable,
+ const INT nChannels) {
+ int ch;
+
+ for (ch = 0; ch < nChannels; ch++) {
+ FDKaacEnc_EstimateScaleFactorsChannel(
+ qcOutChannel[ch], psyOutChannel[ch], qcOutChannel[ch]->scf,
+ &qcOutChannel[ch]->globalGain, qcOutChannel[ch]->sfbFormFactorLdData,
+ invQuant, qcOutChannel[ch]->quantSpec, dZoneQuantEnable);
+ }
+}