1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
//
// Copyright 2011-2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
//! The USRP digital up-conversion chain
module duc_chain
#(parameter BASE = 0)
(input clk, input rst,
input set_stb, input [7:0] set_addr, input [31:0] set_data,
// From TX frontend
output [23:0] tx_fe_i,
output [23:0] tx_fe_q,
// To TX control
input [31:0] sample,
input run,
output strobe,
output [31:0] debug
);
wire [15:0] i, q, scale_i, scale_q;
wire [31:0] phase_inc;
reg [31:0] phase;
wire [7:0] interp_rate;
wire [3:0] tx_femux_a, tx_femux_b;
wire enable_hb1, enable_hb2;
wire rate_change;
setting_reg #(.my_addr(BASE+0)) sr_0
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(phase_inc),.changed());
setting_reg #(.my_addr(BASE+1)) sr_1
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({scale_i,scale_q}),.changed());
setting_reg #(.my_addr(BASE+2), .width(10)) sr_2
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({enable_hb1, enable_hb2, interp_rate}),.changed(rate_change));
// Strobes are all now delayed by 1 cycle for timing reasons
wire strobe_cic_pre, strobe_hb1_pre, strobe_hb2_pre;
reg strobe_cic = 1;
reg strobe_hb1 = 1;
reg strobe_hb2 = 1;
cic_strober #(.WIDTH(8))
cic_strober(.clock(clk),.reset(rst),.enable(run & ~rate_change),.rate(interp_rate),
.strobe_fast(1),.strobe_slow(strobe_cic_pre) );
cic_strober #(.WIDTH(2))
hb2_strober(.clock(clk),.reset(rst),.enable(run & ~rate_change),.rate(enable_hb2 ? 2 : 1),
.strobe_fast(strobe_cic_pre),.strobe_slow(strobe_hb2_pre) );
cic_strober #(.WIDTH(2))
hb1_strober(.clock(clk),.reset(rst),.enable(run & ~rate_change),.rate(enable_hb1 ? 2 : 1),
.strobe_fast(strobe_hb2_pre),.strobe_slow(strobe_hb1_pre) );
always @(posedge clk) strobe_hb1 <= strobe_hb1_pre;
always @(posedge clk) strobe_hb2 <= strobe_hb2_pre;
always @(posedge clk) strobe_cic <= strobe_cic_pre;
// NCO
always @(posedge clk)
if(rst)
phase <= 0;
else if(~run)
phase <= 0;
else
phase <= phase + phase_inc;
wire signed [17:0] da, db;
wire signed [35:0] prod_i, prod_q;
wire [17:0] bb_i = {sample[31:16],2'b0};
wire [17:0] bb_q = {sample[15:0],2'b0};
wire [17:0] i_interp, q_interp;
wire [17:0] hb1_i, hb1_q, hb2_i, hb2_q;
wire [7:0] cpo = enable_hb2 ? ({interp_rate,1'b0}) : interp_rate;
// Note that max CIC rate is 128, which would give an overflow on cpo if enable_hb2 is true,
// but the default case inside hb_interp handles this
hb_interp #(.IWIDTH(18),.OWIDTH(18),.ACCWIDTH(24)) hb_interp_i
(.clk(clk),.rst(rst),.bypass(~enable_hb1),.cpo(cpo),.stb_in(strobe_hb1),.data_in(bb_i),.stb_out(strobe_hb2),.data_out(hb1_i));
hb_interp #(.IWIDTH(18),.OWIDTH(18),.ACCWIDTH(24)) hb_interp_q
(.clk(clk),.rst(rst),.bypass(~enable_hb1),.cpo(cpo),.stb_in(strobe_hb1),.data_in(bb_q),.stb_out(strobe_hb2),.data_out(hb1_q));
small_hb_int #(.WIDTH(18)) small_hb_interp_i
(.clk(clk),.rst(rst),.bypass(~enable_hb2),.stb_in(strobe_hb2),.data_in(hb1_i),
.output_rate(interp_rate),.stb_out(strobe_cic),.data_out(hb2_i));
small_hb_int #(.WIDTH(18)) small_hb_interp_q
(.clk(clk),.rst(rst),.bypass(~enable_hb2),.stb_in(strobe_hb2),.data_in(hb1_q),
.output_rate(interp_rate),.stb_out(strobe_cic),.data_out(hb2_q));
cic_interp #(.bw(18),.N(4),.log2_of_max_rate(7))
cic_interp_i(.clock(clk),.reset(rst),.enable(run & ~rate_change),.rate(interp_rate),
.strobe_in(strobe_cic),.strobe_out(1),
.signal_in(hb2_i),.signal_out(i_interp));
cic_interp #(.bw(18),.N(4),.log2_of_max_rate(7))
cic_interp_q(.clock(clk),.reset(rst),.enable(run & ~rate_change),.rate(interp_rate),
.strobe_in(strobe_cic),.strobe_out(1),
.signal_in(hb2_q),.signal_out(q_interp));
assign strobe = strobe_hb1;
localparam cwidth = 24; // was 18
localparam zwidth = 24; // was 16
wire [cwidth-1:0] da_c, db_c;
cordic_z24 #(.bitwidth(cwidth))
cordic(.clock(clk), .reset(rst), .enable(run),
.xi({i_interp,{(cwidth-18){1'b0}}}),.yi({q_interp,{(cwidth-18){1'b0}}}),
.zi(phase[31:32-zwidth]),
.xo(da_c),.yo(db_c),.zo() );
MULT18X18S MULT18X18S_inst
(.P(prod_i), // 36-bit multiplier output
.A(da_c[cwidth-1:cwidth-18]), // 18-bit multiplier input
.B({{2{scale_i[15]}},scale_i}), // 18-bit multiplier input
.C(clk), // Clock input
.CE(1), // Clock enable input
.R(rst) // Synchronous reset input
);
MULT18X18S MULT18X18S_inst_2
(.P(prod_q), // 36-bit multiplier output
.A(db_c[cwidth-1:cwidth-18]), // 18-bit multiplier input
.B({{2{scale_q[15]}},scale_q}), // 18-bit multiplier input
.C(clk), // Clock input
.CE(1), // Clock enable input
.R(rst) // Synchronous reset input
);
assign tx_fe_i = prod_i[28:5];
assign tx_fe_q = prod_q[28:5];
assign debug = {strobe_cic, strobe_hb1, strobe_hb2,run};
endmodule // dsp_core
|