1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
//
// Copyright 2011-2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
//! The USRP digital down-conversion chain
module ddc_chain
#(parameter BASE = 0)
(input clk, input rst,
input set_stb, input [7:0] set_addr, input [31:0] set_data,
// From RX frontend
input [23:0] rx_fe_i,
input [23:0] rx_fe_q,
// To RX control
output [31:0] sample,
input run,
output strobe,
output [31:0] debug
);
wire [31:0] phase_inc;
reg [31:0] phase;
wire [24:0] i_cordic, q_cordic;
wire [23:0] i_cordic_clip, q_cordic_clip;
wire [23:0] i_cic, q_cic;
wire [23:0] i_hb1, q_hb1;
wire [23:0] i_hb2, q_hb2;
wire strobe_cic, strobe_hb1, strobe_hb2;
wire enable_hb1, enable_hb2;
wire [7:0] cic_decim_rate;
reg [23:0] rx_fe_i_mux, rx_fe_q_mux;
wire realmode;
wire swap_iq;
setting_reg #(.my_addr(BASE+0)) sr_0
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(phase_inc),.changed());
/*
setting_reg #(.my_addr(BASE+1)) sr_1
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({scale_i,scale_q}),.changed());
*/
setting_reg #(.my_addr(BASE+2), .width(10)) sr_2
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({enable_hb1, enable_hb2, cic_decim_rate}),.changed());
setting_reg #(.my_addr(BASE+3), .width(2)) sr_3
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({realmode,swap_iq}),.changed());
// MUX so we can do realmode signals on either input
always @(posedge clk)
if(swap_iq)
begin
rx_fe_i_mux <= rx_fe_q;
rx_fe_q_mux <= realmode ? 24'd0 : rx_fe_i;
end
else
begin
rx_fe_i_mux <= rx_fe_i;
rx_fe_q_mux <= realmode ? 24'd0 : rx_fe_q;
end
// NCO
always @(posedge clk)
if(rst)
phase <= 0;
else if(~run)
phase <= 0;
else
phase <= phase + phase_inc;
// CORDIC 24-bit I/O
cordic_z24 #(.bitwidth(25))
cordic(.clock(clk), .reset(rst), .enable(run),
.xi({rx_fe_i_mux[23],rx_fe_i_mux}),. yi({rx_fe_q_mux[23],rx_fe_q_mux}), .zi(phase[31:8]),
.xo(i_cordic),.yo(q_cordic),.zo() );
clip_reg #(.bits_in(25), .bits_out(24)) clip_i
(.clk(clk), .in(i_cordic), .strobe_in(1'b1), .out(i_cordic_clip));
clip_reg #(.bits_in(25), .bits_out(24)) clip_q
(.clk(clk), .in(q_cordic), .strobe_in(1'b1), .out(q_cordic_clip));
// CIC decimator 24 bit I/O
cic_strober cic_strober(.clock(clk),.reset(rst),.enable(run),.rate(cic_decim_rate),
.strobe_fast(1),.strobe_slow(strobe_cic) );
cic_decim #(.bw(24))
decim_i (.clock(clk),.reset(rst),.enable(run),
.rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic),
.signal_in(i_cordic_clip),.signal_out(i_cic));
cic_decim #(.bw(24))
decim_q (.clock(clk),.reset(rst),.enable(run),
.rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic),
.signal_in(q_cordic_clip),.signal_out(q_cic));
// First (small) halfband 24 bit I/O
small_hb_dec #(.WIDTH(24)) small_hb_i
(.clk(clk),.rst(rst),.bypass(~enable_hb1),.run(run),
.stb_in(strobe_cic),.data_in(i_cic),.stb_out(strobe_hb1),.data_out(i_hb1));
small_hb_dec #(.WIDTH(24)) small_hb_q
(.clk(clk),.rst(rst),.bypass(~enable_hb1),.run(run),
.stb_in(strobe_cic),.data_in(q_cic),.stb_out(),.data_out(q_hb1));
// Second (large) halfband 24 bit I/O
wire [8:0] cpi_hb = enable_hb1 ? {cic_decim_rate,1'b0} : {1'b0,cic_decim_rate};
hb_dec #(.WIDTH(24)) hb_i
(.clk(clk),.rst(rst),.bypass(~enable_hb2),.run(run),.cpi(cpi_hb),
.stb_in(strobe_hb1),.data_in(i_hb1),.stb_out(strobe_hb2),.data_out(i_hb2));
hb_dec #(.WIDTH(24)) hb_q
(.clk(clk),.rst(rst),.bypass(~enable_hb2),.run(run),.cpi(cpi_hb),
.stb_in(strobe_hb1),.data_in(q_hb1),.stb_out(),.data_out(q_hb2));
// Round final answer to 16 bits
round_sd #(.WIDTH_IN(24),.WIDTH_OUT(16)) round_i
(.clk(clk),.reset(rst), .in(i_hb2),.strobe_in(strobe_hb2), .out(sample[31:16]), .strobe_out(strobe));
round_sd #(.WIDTH_IN(24),.WIDTH_OUT(16)) round_q
(.clk(clk),.reset(rst), .in(q_hb2),.strobe_in(strobe_hb2), .out(sample[15:0]), .strobe_out());
assign debug = {enable_hb1, enable_hb2, run, strobe, strobe_cic, strobe_hb1, strobe_hb2};
endmodule // ddc_chain
|