1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
`define WIDTH 18
`define DEPTH 19
module test_sram_if
(
input clk,
input rst,
input [`WIDTH-1:0] RAM_D_pi,
output [`WIDTH-1:0] RAM_D_po,
output RAM_D_poe,
output [`DEPTH-1:0] RAM_A,
output RAM_WEn,
output RAM_CENn,
output RAM_LDn,
output RAM_OEn,
output RAM_CE1n,
output reg correct
);
reg [`DEPTH-1:0] write_count;
reg [`DEPTH-1:0] read_count;
reg enable;
reg write;
reg write_cycle;
reg read_cycle;
reg enable_reads;
reg [18:0] address;
reg [17:0] data_out;
wire [17:0] data_in;
wire data_in_valid;
reg [17:0] check_data;
reg [17:0] check_data_old;
reg [17:0] check_data_old2;
//
// Create counter that generates both external modulo 2^19 address and modulo 2^18 data to test RAM.
//
always @(posedge clk)
if (rst)
begin
write_count <= 19'h0;
read_count <= 19'h0;
end
else if (write_cycle) // Write cycle
if (write_count == 19'h7FFFF)
begin
write_count <= 19'h0;
end
else
begin
write_count <= write_count + 1'b1;
end
else if (read_cycle) // Read cycle
if (read_count == 19'h7FFFF)
begin
read_count <= 19'h0;
end
else
begin
read_count <= read_count + 1'b1;
end
always @(posedge clk)
if (rst)
begin
enable_reads <= 0;
read_cycle <= 0;
write_cycle <= 0;
end
else
begin
write_cycle <= ~write_cycle;
if (enable_reads)
read_cycle <= write_cycle;
if (write_count == 15) // Enable reads 15 writes after reset terminates.
enable_reads <= 1;
end // else: !if(rst)
always @(posedge clk)
if (rst)
begin
enable <= 0;
end
else if (write_cycle)
begin
address <= write_count;
data_out <= write_count[17:0];
enable <= 1;
write <= 1;
end
else if (read_cycle)
begin
address <= read_count;
check_data <= read_count[17:0];
check_data_old <= check_data;
check_data_old2 <= check_data_old;
enable <= 1;
write <= 0;
end
else
enable <= 0;
always @(posedge clk)
if (data_in_valid)
begin
correct <= (data_in == check_data_old2);
end
nobl_if nobl_if_i1
(
.clk(clk),
.rst(rst),
.RAM_D_pi(RAM_D_pi),
.RAM_D_po(RAM_D_po),
.RAM_D_poe(RAM_D_poe),
.RAM_A(RAM_A),
.RAM_WEn(RAM_WEn),
.RAM_CENn(RAM_CENn),
.RAM_LDn(RAM_LDn),
.RAM_OEn(RAM_OEn),
.RAM_CE1n(RAM_CE1n),
.address(address),
.data_out(data_out),
.data_in(data_in),
.data_in_valid(data_in_valid),
.write(write),
.enable(enable)
);
wire [35:0] CONTROL0;
reg [7:0] data_in_reg, data_out_reg, address_reg;
reg data_in_valid_reg,write_reg,enable_reg,correct_reg;
always @(posedge clk)
begin
data_in_reg <= data_in[7:0];
data_out_reg <= data_out[7:0];
data_in_valid_reg <= data_in_valid;
write_reg <= write;
enable_reg <= enable;
correct_reg <= correct;
address_reg <= address;
end
icon icon_i1
(
.CONTROL0(CONTROL0)
);
ila ila_i1
(
.CLK(clk),
.CONTROL(CONTROL0),
// .TRIG0(address_reg),
.TRIG0(data_in_reg[7:0]),
.TRIG1(data_out_reg[7:0]),
.TRIG2(address_reg[7:0]),
.TRIG3({data_in_valid_reg,write_reg,enable_reg,correct_reg})
);
endmodule // test_sram_if
|