1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
|
// SERDES Interface
// LS-Byte is sent first, MS-Byte is second
// Invalid K Codes
// K0.0 000-00000 Error detected
// K31.7 111-11111 Loss of input signal
// Valid K Codes
// K28.0 000-11100
// K28.1 001-11100 Alternate COMMA?
// K28.2 010-11100
// K28.3 011-11100
// K28.4 100-11100
// K28.5 101-11100 Standard COMMA?
// K28.6 110-11100
// K28.7 111-11100 Bad COMMA?
// K23.7 111-10111
// K27.7 111-11011
// K29.7 111-11101
// K30.7 111-11110
module serdes_rx
#(parameter FIFOSIZE = 9)
(input clk,
input rst,
// RX HW Interface
input ser_rx_clk,
input [15:0] ser_r,
input ser_rklsb,
input ser_rkmsb,
output [31:0] wr_dat_o,
output wr_write_o,
output wr_done_o,
output wr_error_o,
input wr_ready_i,
input wr_full_i,
output [15:0] fifo_space,
output xon_rcvd, output xoff_rcvd,
output [15:0] fifo_occupied, output fifo_full, output fifo_empty,
output reg serdes_link_up,
output [31:0] debug
);
localparam K_COMMA = 8'b101_11100; // 0xBC K28.5
localparam K_IDLE = 8'b001_11100; // 0x3C K28.1
localparam K_PKT_START = 8'b110_11100; // 0xDC K28.6
localparam K_PKT_END = 8'b100_11100; // 0x9C K28.4
localparam K_XON = 8'b010_11100; // 0x5C K28.2
localparam K_XOFF = 8'b011_11100; // 0x7C K28.3
localparam K_LOS = 8'b111_11111; // 0xFF K31.7
localparam K_ERROR = 8'b000_00000; // 0x00 K00.0
localparam D_56 = 8'b110_00101; // 0xC5 D05.6
localparam IDLE = 3'd0;
localparam FIRSTLINE1 = 3'd1;
localparam FIRSTLINE2 = 3'd2;
localparam PKT1 = 3'd3;
localparam PKT2 = 3'd4;
localparam CRC_CHECK = 3'd5;
localparam ERROR = 3'd6;
localparam DONE = 3'd7;
wire [17:0] even_data;
reg [17:0] odd_data;
wire [17:0] chosen_data;
reg odd;
reg [31:0] line_i;
reg sop_i, eop_i, error_i;
wire error_o, sop_o, eop_o, write, read, empty, full;
reg [15:0] halfline;
reg [8:0] holder;
wire [31:0] line_o;
reg [2:0] state;
reg [15:0] CRC;
wire [15:0] nextCRC;
reg write_d;
oneshot_2clk rst_1s(.clk_in(clk),.in(rst),.clk_out(ser_rx_clk),.out(rst_rxclk));
/*
ss_rcvr #(.WIDTH(18)) ss_rcvr
(.rxclk(ser_rx_clk),.sysclk(clk),.rst(rst),
.data_in({ser_rkmsb,ser_rklsb,ser_r}),.data_out(even_data),
.clock_present());
*/
assign even_data = {ser_rkmsb,ser_rklsb,ser_r};
always @(posedge ser_rx_clk)
if(rst_rxclk)
holder <= 9'd0;
else
holder <= {even_data[17],even_data[15:8]};
always @(posedge ser_rx_clk)
if(rst_rxclk)
odd_data <= 18'd0;
else
odd_data <= {even_data[16],holder[8],even_data[7:0],holder[7:0]};
assign chosen_data = odd ? odd_data : even_data;
// Transfer xon and xoff info to the main system clock for flow control purposes
reg xon_rcvd_rxclk, xoff_rcvd_rxclk;
always @(posedge ser_rx_clk)
xon_rcvd_rxclk = ({1'b1,K_XON} == {ser_rkmsb,ser_r[15:8]}) | ({1'b1,K_XON} == {ser_rklsb,ser_r[7:0]} );
always @(posedge ser_rx_clk)
xoff_rcvd_rxclk = ({1'b1,K_XOFF} == {ser_rkmsb,ser_r[15:8]}) | ({1'b1,K_XOFF} == {ser_rklsb,ser_r[7:0]} );
oneshot_2clk xon_1s(.clk_in(ser_rx_clk),.in(xon_rcvd_rxclk),.clk_out(clk),.out(xon_rcvd));
oneshot_2clk xoff_1s(.clk_in(ser_rx_clk),.in(xoff_rcvd_rxclk),.clk_out(clk),.out(xoff_rcvd));
// If the other side is sending xon or xoff, or is flow controlled (b/c we told them to be), don't fill the fifos
wire wait_here = ((chosen_data == {2'b10,K_COMMA,D_56})||
(chosen_data == {2'b11,K_XON,K_XON})||
(chosen_data == {2'b11,K_XOFF,K_XOFF}) );
always @(posedge ser_rx_clk)
if(rst_rxclk) sop_i <= 0;
else if(state == FIRSTLINE1) sop_i <= 1;
else if(write_d) sop_i <= 0;
reg write_pre;
always @(posedge ser_rx_clk)
if(rst_rxclk)
begin
state <= IDLE;
odd <= 0;
halfline <= 0;
line_i <= 0;
eop_i <= 0;
error_i <= 0;
write_pre <= 0;
end
else
case(state)
IDLE :
begin
error_i <= 0;
write_pre <= 0;
if(even_data == {2'b11,K_PKT_START,K_PKT_START})
begin
state <= FIRSTLINE1;
odd <= 0;
end
else if(odd_data == {2'b11,K_PKT_START,K_PKT_START})
begin
state <= FIRSTLINE1;
odd <= 1;
end
end
FIRSTLINE1 :
if(chosen_data[17:16] == 0)
begin
halfline <= chosen_data[15:0];
state <= FIRSTLINE2;
end
else if(wait_here)
; // Flow Controlled, so wait here and do nothing
else
state <= ERROR;
FIRSTLINE2 :
if(chosen_data[17:16] == 0)
begin
line_i <= {chosen_data[15:0],halfline};
if(full) // No space to write to! Should have been avoided by flow control
state <= ERROR;
else
begin
state <= PKT1;
write_pre <= 1;
end
end // if (chosen_data[17:16] == 0)
else if(wait_here)
; // Flow Controlled, so wait here and do nothing
else
state <= ERROR;
PKT1 :
begin
write_pre <= 0;
if(chosen_data[17:16] == 0)
begin
halfline <= chosen_data[15:0];
state <= PKT2;
end
else if(wait_here)
; // Flow Controlled
else if(chosen_data == {2'b11,K_PKT_END,K_PKT_END})
state <= CRC_CHECK;
else
state <= ERROR;
end // case: PKT1
PKT2 :
if(chosen_data[17:16] == 0)
begin
line_i <= {1'b0,1'b0,1'b0,chosen_data[15:0],halfline};
if(full) // No space to write to!
state <= ERROR;
else
begin
state <= PKT1;
write_pre <= 1;
end
end // if (chosen_data[17:16] == 0)
else if(wait_here)
; // Flow Controlled
else
state <= ERROR;
CRC_CHECK :
if(chosen_data[17:0] == {2'b00,CRC})
begin
if(full)
state <= ERROR;
else
begin
eop_i <= 1;
state <= DONE;
end
end
else if(wait_here)
;
else
state <= ERROR;
ERROR :
begin
error_i <= 1;
if(~full)
state <= IDLE;
end
DONE :
begin
state <= IDLE;
eop_i <= 0;
end
endcase // case(state)
always @(posedge ser_rx_clk)
if(rst_rxclk)
CRC <= 16'hFFFF;
else if(state == IDLE)
CRC <= 16'hFFFF;
else if(chosen_data[17:16] == 2'b00)
CRC <= nextCRC;
CRC16_D16 crc_blk(chosen_data[15:0],CRC,nextCRC);
always @(posedge ser_rx_clk)
if(rst_rxclk) write_d <= 0;
else write_d <= write_pre;
// Internal FIFO, size 9 is 2K, size 10 is 4K Bytes
assign write = eop_i | (error_i & ~full) | (write_d & (state != CRC_CHECK));
//`define CASC 1
`define MYFIFO 1
//`define XILFIFO 1
`ifdef CASC
cascadefifo2 #(.WIDTH(35),.SIZE(FIFOSIZE)) serdes_rx_fifo
(.clk(clk),.rst(rst),.clear(0),
.datain({error_i,sop_i,eop_i,line_i}), .write(write), .full(full),
.dataout({error_o,sop_o,eop_o,line_o}), .read(read), .empty(empty),
.space(fifo_space),.occupied(fifo_occupied) );
assign fifo_full = full;
assign fifo_empty = empty;
`endif
`ifdef MYFIFO
wire [FIFOSIZE-1:0] level;
fifo_2clock_casc #(.DWIDTH(35),.AWIDTH(FIFOSIZE)) serdes_rx_fifo
(.arst(rst),
.wclk(ser_rx_clk),.datain({error_i,sop_i,eop_i,line_i}), .write(write), .full(full),
.rclk(clk),.dataout({error_o,sop_o,eop_o,line_o}), .read(read), .empty(empty),
.level_rclk(level) );
assign fifo_space = {{(16-FIFOSIZE){1'b0}},{FIFOSIZE{1'b1}}} -
{{(16-FIFOSIZE){1'b0}},level};
assign fifo_occupied = { {(16-FIFOSIZE){1'b0}} ,level};
assign fifo_full = full; // Note -- fifo_full is in the wrong clock domain
assign fifo_empty = empty;
`endif
`ifdef XILFIFO
wire [FIFOSIZE-1:0] level;
fifo_generator_v4_1 ser_rx_fifo
(.din({error_i,sop_i,eop_i,line_i}),
.rd_clk(clk),
.rd_en(read),
.rst(rst),
.wr_clk(ser_rx_clk),
.wr_en(write),
.dout({error_o,sop_o,eop_o,line_o}),
.empty(empty),
.full(full),
.rd_data_count(level),
.wr_data_count() );
assign fifo_space = {{(16-FIFOSIZE){1'b0}},{FIFOSIZE{1'b1}}} -
{{(16-FIFOSIZE){1'b0}},level};
assign fifo_occupied = { {(16-FIFOSIZE){1'b0}}, level };
assign fifo_full = full; // Note -- fifo_full is in the wrong clock domain
assign fifo_empty = empty;
`endif // `ifdef XILFIFO
// Internal FIFO to Buffer interface
reg xfer_active;
always @(posedge clk)
if(rst)
xfer_active <= 0;
else if(xfer_active & ~empty & (eop_o | wr_full_i | error_o))
xfer_active <= 0;
else if(wr_ready_i & sop_o)
xfer_active <= 1;
assign read = (xfer_active | ~sop_o) & ~empty;
assign wr_write_o = xfer_active & ~empty;
assign wr_done_o = eop_o & ~empty & xfer_active;
//assign wr_error_o = xfer_active & ((wr_full_i & ~eop_o & ~empty)|error_o);
assign wr_error_o = xfer_active & ~empty & error_o;
assign wr_dat_o = line_o;
wire slu = ~({2'b11,K_ERROR,K_ERROR}=={ser_rkmsb,ser_rklsb,ser_r});
reg [3:0] slu_reg;
always @(posedge clk)
if(rst) slu_reg <= 0;
else slu_reg <= {slu_reg[2:0],slu};
always @(posedge clk)
serdes_link_up <= &slu_reg[3:1];
assign debug = { full, empty, odd, xfer_active, sop_i, eop_i, error_i, state[2:0] };
endmodule // serdes_rx
|