1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
// -*- verilog -*-
//
// USRP - Universal Software Radio Peripheral
//
// Copyright (C) 2003 Matt Ettus
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
module rx_chain_dual
(input clock,
input clock_2x,
input reset,
input enable,
input wire [7:0] decim_rate,
input sample_strobe,
input decimator_strobe,
input wire [31:0] freq0,
input wire [15:0] i_in0,
input wire [15:0] q_in0,
output wire [15:0] i_out0,
output wire [15:0] q_out0,
input wire [31:0] freq1,
input wire [15:0] i_in1,
input wire [15:0] q_in1,
output wire [15:0] i_out1,
output wire [15:0] q_out1
);
wire [15:0] phase;
wire [15:0] bb_i, bb_q;
wire [15:0] i_in, q_in;
wire [31:0] phase0;
wire [31:0] phase1;
reg [15:0] bb_i0, bb_q0;
reg [15:0] bb_i1, bb_q1;
// We want to time-share the CORDIC by double-clocking it
phase_acc rx_phase_acc_0
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq0),.phase(phase0) );
phase_acc rx_phase_acc_1
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq1),.phase(phase1) );
assign phase = clock ? phase0[31:16] : phase1[31:16];
assign i_in = clock ? i_in0 : i_in1;
assign q_in = clock ? q_in0 : q_in1;
// This appears reversed because of the number of CORDIC stages
always @(posedge clock_2x)
if(clock)
begin
bb_i1 <= #1 bb_i;
bb_q1 <= #1 bb_q;
end
else
begin
bb_i0 <= #1 bb_i;
bb_q0 <= #1 bb_q;
end
cordic rx_cordic
( .clock(clock_2x),.reset(reset),.enable(enable),
.xi(i_in),.yi(q_in),.zi(phase),
.xo(bb_i),.yo(bb_q),.zo() );
cic_decim cic_decim_i_0
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_i0),.signal_out(i_out0) );
cic_decim cic_decim_q_0
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_q0),.signal_out(q_out0) );
cic_decim cic_decim_i_1
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_i1),.signal_out(i_out1) );
cic_decim cic_decim_q_1
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_q1),.signal_out(q_out1) );
endmodule // rx_chain
|