1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
#
# Copyright 2017 Ettus Research, a National Instruments Company
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
"""
BufferFS. Serialization mini-library meant for use with EEPROMs.
"""
from __future__ import print_function, division
import copy
import struct
import zlib
from collections import OrderedDict
from builtins import str
from six import itervalues
DEFAULT_ALIGNMENT = 1024 # bytes
def align_addr(addr, align_to):
"""
Align an address to an alignment boundary, rounding upwards.
>>> align_addr(5, 8)
8
>>> align_addr(21, 8)
24
>>> align_addr(16, 16)
16
"""
div, mod = divmod(addr, align_to)
return (div + (1 if mod else 0)) * align_to
def _normalize_byte_str(identifier, length=8, pad=b'\0'):
" Guarantees that identifier is byte-string of length 'length' "
identifier = bytes(identifier, 'ascii')
if len(identifier) < length:
identifier = identifier + pad * (length - len(identifier))
return identifier[:length]
class BufferFS(object):
"""
Buffer-FS -- Map dictionaries of arbitrary byte strings into a buffer.
This can be useful for storing arbitrary blobs in EEPROMs, but the
implementation is not specific to EEPROMS.
Effectively, this is a serialization class with some CRC checking and byte-
alignment. Something like pickle will often also do the trick.
Arguments:
raw_data_buffer -- A copy of the original buffer
max_size -- Max length of the buffer in bytes. raw_data_buffer may be
smaller than this.
alignment -- This will align blobs to certain address boundaries.
log -- Logger object. If none is given, one will be created.
"""
magic = b'TofC'
default_header = ("!4s I", ('magic', 'version'))
default_version = 0
# Version 0 TOC:
# --------------
# 4 bytes magic number
# 4 bytes magic version (note: Up to here, all versions of the TOC will
# look the same)
# 4 bytes num entries
# <entries>
# 4 bytes CRC of entire TOC
#
# Version 0 Entry:
# --------------
# 4 bytes base address
# 4 bytes length in bytes
# 4 bytes CRC of entry
# 8 bytes identifier (string, can use nulls to be shorter than 8 bytes)
entry = {
0: ("!I I I 8s", ('base', 'length', 'CRC', 'id')),
}
def __init__(self, raw_data_buffer, max_size=None, alignment=None, log=None):
assert isinstance(raw_data_buffer, bytes)
self.max_size = len(raw_data_buffer) if max_size is None else max_size
self.raw_data_buffer = raw_data_buffer[:self.max_size]
self.alignment = alignment or DEFAULT_ALIGNMENT
self.pad = b'\xFF'
if log is None:
from usrp_mpm import mpmlog
self.log = mpmlog.get_main_logger().getChild("EEPROMFS")
else:
self.log = log
header = self._parse_header(raw_data_buffer)
self.log.trace("EEPROM-FS header has {} valid entries.".format(
len(header.get('entries', []))))
self.entries = OrderedDict({
str(x['id'], encoding='ascii'): x for x in header.get('entries', [])
})
self.buffer = self._trunc_buffer(raw_data_buffer, self.entries)
self.log.trace("Truncated buffer to length %d", len(self.buffer))
# Start storing entries at 128
self.entries_base = 128
# We can only store so many entries before running out of TOC space
self.max_entries = (128 - 16) // 20
# TODO -- these last two shouldn't be hard coded
self.log.trace(
"This BufferFS has {} max entries, starting at {}".format(
self.max_entries, self.entries_base))
def _parse_header(self, buf):
"""
Read the buffer and return header info as a list of dictionaries.
"""
default_hdr_struct = struct.Struct(self.default_header[0])
if len(buf) < default_hdr_struct.size + 8:
return {}
default_hdr_unpacked = default_hdr_struct.unpack_from(buf)
hdr = dict(list(zip(self.default_header[1], default_hdr_unpacked)))
# There might be no EEPROM-FS, that's legit:
if hdr['magic'] != self.magic:
self.log.trace(
"No Buffer-FS magic found (was: `{}'), " \
"returning empty dict.".format(hdr['magic']))
return {}
self.log.trace("Buffer has correct magic word...")
# The rest of this function assumes version is 0:
toc_version = int(hdr['version'])
self.log.trace("Found ToC version: 0x{}".format(toc_version))
assert toc_version == 0
num_entries_struct = struct.Struct('!I')
num_entries = num_entries_struct.unpack_from(
buf, offset=default_hdr_struct.size
)[0]
self.log.trace("Header declares num entries: {}".format(num_entries))
toc_offset = default_hdr_struct.size + num_entries_struct.size
self.log.trace("TOC offset: {}".format(toc_offset))
entry_struct = struct.Struct(self.entry[toc_version][0])
entries = []
for entry_idx in range(num_entries):
entry_offset = toc_offset+entry_idx*entry_struct.size
entry_unpacked = \
entry_struct.unpack_from(
buf,
offset=entry_offset
)
entries.append(
dict(list(zip(self.entry[toc_version][1], entry_unpacked)))
)
entries[-1]['id'] = entries[-1]['id'].rstrip(b'\0')
self.log.trace("TOC has %d entries (CRC un-checked)", len(entries))
crc_offset = toc_offset + num_entries * entry_struct.size
self.log.trace("TOC CRC offset: %d", crc_offset)
crc_struct = struct.Struct('!I')
crc = crc_struct.unpack_from(buf, offset=crc_offset)[0]
self.log.trace("Calculating TOC CRC32 on %d bytes...", crc_offset)
expected_crc = zlib.crc32(buf[:crc_offset])
if crc != expected_crc:
self.log.warning(
"EEPROM-FS Header CRC failed! " \
"Read: {:08X} Expected: {:08X}".format(crc, expected_crc))
return hdr
self.log.trace("CRC32 matches.")
hdr['entries'] = entries
return hdr
def _trunc_buffer(self, buf, entries):
"""
Return the shortest possible buf that contains all entries.
"""
max_len = max([
x['base'] + x['length'] for x in itervalues(entries)
] + [0])
return buf[:max_len]
def get_blob(self, identifier, entries=None, buf=None):
"""
Return blob by ID.
By default, will use the internal entries table and buffer.
"""
entries = entries or self.entries
buf = buf or self.buffer
if identifier not in entries:
raise RuntimeError("Requesting non-existent blob {}!".format(
identifier))
entry_info = entries[identifier]
entry_base = entry_info['base']
entry_len = entry_info['length']
entry_buf = buf[entry_base:entry_base+entry_len]
entry_crc = zlib.crc32(entry_buf)
self.log.trace("Calculating blob CRC32 on %d bytes...", len(entry_buf))
if entry_crc != entry_info['CRC']:
raise RuntimeError(
"Entry `{}' has CRC mismatch! " \
"Calculated {:08X}, expected {:08X}.".format(
identifier, entry_crc, entry_info['CRC']
)
)
return entry_buf
def has_blob(self, identifier):
"""
Returns True if the blob 'identifier' exists.
"""
return self.entries.has_key(identifier)
def set_blob(self, identifier, blob):
"""
Add a blob to the list.
"""
self.log.trace("Attempting to add new blob `{}'...".format(identifier))
identifier = _normalize_byte_str(identifier, length=8)
identifier_str = str(identifier.rstrip(b'\0'), encoding='ascii')
if identifier_str not in self.entries and \
len(self.entries) >= self.max_entries:
self.log.error("Exceeded entry limit.")
raise RuntimeError("Exceeded entry limit.")
entry_info = {
'CRC': zlib.crc32(blob),
'length': len(blob),
'id': identifier,
}
alignment = self.alignment
self.log.trace("Byte-alignment is {}".format(alignment))
new_entries = copy.copy(self.entries)
entry_base = self._find_base(entry_info, new_entries,
alignment=alignment)
self.log.trace("First attempt at finding a base yields: {}".format(
entry_base
))
new_entries.pop(identifier, None)
if entry_base is None:
self.log.trace("First attempt to find a spot failed.")
space_occupied = self._calc_space_occupied(
new_entries,
alignment=alignment
)
self.log.trace("Current blobs are occupying {} bytes.".format(
space_occupied
))
if space_occupied + entry_info['length'] > self.max_size:
raise RuntimeError("Not enough space to store blob!")
new_entries, new_buffer = \
self._pack_entries(new_entries, self.buffer, alignment)
entry_base = self._find_base(
entry_info,
new_entries,
alignment=alignment
)
self.log.trace("2nd attempt at finding a base yields: {}".format(
entry_base
))
if entry_base is None:
raise RuntimeError("Unexpected failure trying to park new blob!")
self.buffer, self.entries = new_buffer, new_entries
entry_info['base'] = entry_base
if len(self.buffer) < entry_base:
self.buffer += self.pad * (entry_base - len(self.buffer))
assert len(self.buffer) >= entry_base
self.entries[identifier_str] = entry_info
buf_base = \
self.buffer[:self.entries_base] + \
self.pad * (self.entries_base - len(self.buffer[:self.entries_base]))
assert len(buf_base) == self.entries_base
self.log.trace("Updating TOC...")
buf_base = self._update_toc(self.entries, buf_base)
self.log.trace("Splicing new blob into buffer...")
assert len(buf_base) == self.entries_base
self.buffer = self._trunc_buffer(
buf_base \
+ self.buffer[len(buf_base):entry_base] \
+ blob \
+ self.buffer[entry_base+entry_info['length']:],
self.entries,
)
def _find_base(self, new_entry, entries, alignment):
"""
Find a spot to park a new entry.
If it's actually the same ID as an existing entry, try and re-use that
space. If the previous entry was smaller, and there's another entry
following, move the entry towards the end.
If it can't overwrite an existing entry, or append (because of space
limitations), don't try and be smart. Just return None.
"""
entry_id = str(new_entry['id'].rstrip(b'\0'), encoding='ascii')
entry_len = new_entry['length']
self.log.trace(
"Trying to find a spot for blob `%s' of length %d",
entry_id, entry_len
)
if entry_id in entries and \
(entry_len <= entries[entry_id]['length'] or \
entries[entry_id]['base'] == \
max((x['base'] for x in itervalues(entries)))
):
self.log.trace(
"Blob was already in index, reusing address %d",
entries[entry_id]['base'],
)
return entries[entry_id]['base']
last_base = \
max([x['base'] + x['length'] for x in itervalues(entries)] \
+ [self.entries_base])
self.log.trace("New entry needs to go after address %d", last_base)
new_base = align_addr(last_base, alignment)
self.log.trace("New address is: %d (Alignment is: %d)",
new_base, alignment)
if new_base + entry_len < self.max_size:
return new_base
self.log.debug(
"New base address %d and length %d would exceed EEPROM size",
new_base, entry_len
)
return None
def _calc_space_occupied(self, entries, alignment):
"""
Returns the number of bytes required to store TOC and entries, given
a certain alignment.
"""
return sum(
[align_addr(x['length'], alignment) for x in itervalues(entries)],
align_addr(self.entries_base, alignment),
)
def _pack_entries(self, entries_, buf, alignment):
"""
Reorder entries to minimize fragmentation, then return a new buf
Note: This is not going to try and be smart. In whatever order the
blobs are stored, they will stay in that order. Reordering could be
better given a certain alignment, but that's "room for improvement".
"""
raise NotImplementedError("tbi") # FIXME
# Algorithm is fairly simple:
# - Copy all entries_ into a new dict entries
# entries = copy.copy(entries_)
# - Read all blobs from buf, make another dictionary id -> blob,
# storing all the blobs
# - Go through the entries in order, recalculate base addresses such
# that they are maximally packed.
# First address is self.entries_base, second base address is
# align_addr(first_entry_base + len(first_blob)), third address is
# align_addr(second_entry_base + len(second_blob)), and so on
# - Then, create a string that consists of a new TOC, and all the blobs
# with appropriate padding
def _update_toc(self, entries, toc_buf):
"""
Returns a new TOC buffer based on entries.
"""
toc_version = 0 # This method is hardcoded to version 0
# Not a great example of generic SW design
entries_sorted = sorted(entries.values(), key=lambda x: x['base'])
new_toc = \
struct.Struct(self.default_header[0]).pack(self.magic, 0) + \
struct.Struct('!I').pack(len(entries))
entry_struct = struct.Struct(self.entry[toc_version][0])
for entry_info in entries_sorted:
new_toc += entry_struct.pack(
entry_info['base'],
entry_info['length'],
entry_info['CRC'],
entry_info['id'],
)
self.log.trace("Calculating new TOC CRC32 on %d bytes...", len(new_toc))
new_toc_crc = zlib.crc32(new_toc)
new_toc += struct.Struct('!I').pack(new_toc_crc)
assert len(new_toc) < self.entries_base
return new_toc + toc_buf[len(new_toc):]
|