1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include <uhd/utils/paths.hpp>
#include <uhd/property_tree.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/usrp/dboard_eeprom.hpp>
#include <boost/filesystem.hpp>
#include <iostream>
#include <vector>
#include <complex>
#include <cmath>
#include <fstream>
namespace fs = boost::filesystem;
struct result_t{double freq, real_corr, imag_corr, sup;};
/***********************************************************************
* Constants
**********************************************************************/
static const double tau = 6.28318531;
static const double alpha = 0.0001; //very tight iir filter
static const size_t wave_table_len = 8192;
static const size_t num_search_steps = 5;
static const size_t num_search_iters = 7;
static const size_t skip_initial_samps = 20;
/***********************************************************************
* Sinusoid wave table
**********************************************************************/
static inline std::vector<std::complex<float> > gen_table(void){
std::vector<std::complex<float> > wave_table(wave_table_len);
for (size_t i = 0; i < wave_table_len; i++){
wave_table[i] = std::polar<float>(1.0, (tau*i)/wave_table_len);
}
return wave_table;
}
static inline std::complex<float> wave_table_lookup(const size_t index){
static const std::vector<std::complex<float> > wave_table = gen_table();
return wave_table[index % wave_table_len];
}
/***********************************************************************
* Compute power of a tone
**********************************************************************/
static inline double compute_tone_dbrms(
const std::vector<std::complex<float> > &samples,
const double freq //freq is fractional
){
//shift the samples so the tone at freq is down at DC
std::vector<std::complex<double> > shifted(samples.size() - skip_initial_samps);
for (size_t i = 0; i < shifted.size(); i++){
shifted[i] = std::complex<double>(samples[i+skip_initial_samps]) * std::polar<double>(1.0, -freq*tau*i);
}
//filter the samples with a narrow low pass
std::complex<double> iir_output = 0, iir_last = 0;
double output = 0;
for (size_t i = 0; i < shifted.size(); i++){
iir_output = alpha * shifted[i] + (1-alpha)*iir_last;
iir_last = iir_output;
output += std::abs(iir_output);
}
return 20*std::log10(output/shifted.size());
}
/***********************************************************************
* Write a dat file
**********************************************************************/
static inline void write_samples_to_file(
const std::vector<std::complex<float> > &samples, const std::string &file
){
std::ofstream outfile(file.c_str(), std::ofstream::binary);
outfile.write((const char*)&samples.front(), samples.size()*sizeof(std::complex<float>));
outfile.close();
}
/***********************************************************************
* Store data to file
**********************************************************************/
static void store_results(
uhd::usrp::multi_usrp::sptr usrp,
const std::vector<result_t> &results,
const std::string &XX,
const std::string &xx
){
//extract eeprom serial
uhd::property_tree::sptr tree = usrp->get_device()->get_tree();
const uhd::fs_path db_path = "/mboards/0/dboards/A/" + xx + "_eeprom";
const uhd::usrp::dboard_eeprom_t db_eeprom = tree->access<uhd::usrp::dboard_eeprom_t>(db_path).get();
if (db_eeprom.serial.empty()) throw std::runtime_error(XX + " dboard has empty serial!");
//make the calibration file path
fs::path cal_data_path = fs::path(uhd::get_app_path()) / ".uhd";
fs::create_directory(cal_data_path);
cal_data_path = cal_data_path / "cal";
fs::create_directory(cal_data_path);
cal_data_path = cal_data_path / (xx + "_fe_cal_v0.1_" + db_eeprom.serial + ".csv");
if (fs::exists(cal_data_path)){
fs::rename(cal_data_path, cal_data_path.string() + str(boost::format(".%d") % time(NULL)));
}
//fill the calibration file
std::ofstream cal_data(cal_data_path.string().c_str());
cal_data << boost::format("name, %s Frontend Calibration\n") % XX;
cal_data << boost::format("serial, %s\n") % db_eeprom.serial;
cal_data << boost::format("timestamp, %d\n") % time(NULL);
cal_data << boost::format("version, 0, 1\n");
cal_data << boost::format("DATA STARTS HERE\n");
cal_data << "lo_frequency, iq_correction_real, iq_correction_imag, measured_suppression\n";
for (size_t i = 0; i < results.size(); i++){
cal_data
<< results[i].freq << ", "
<< results[i].real_corr << ", "
<< results[i].imag_corr << ", "
<< results[i].sup << "\n"
;
}
std::cout << "wrote cal data to " << cal_data_path << std::endl;
}
|