aboutsummaryrefslogtreecommitdiffstats
path: root/host/utils/converter_benchmark.cpp
blob: 07aec917020ccfd77b0e582dd95220b20113cb4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
//
// Copyright 2015-2016 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#include <uhd/convert.hpp>
#include <uhd/exception.hpp>
#include <uhd/types/dict.hpp>
#include <uhd/utils/safe_main.hpp>
#include <stdint.h>
#include <boost/algorithm/string.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/program_options.hpp>
#include <boost/timer.hpp>
#include <complex>
#include <iomanip>
#include <iostream>
#include <map>

namespace po = boost::program_options;
using namespace uhd::convert;

enum buf_init_t { RANDOM, INC };

// Convert `sc16_item32_le' -> `sc16'
// Finds the first _ in format and returns the string
// until then. Returns the entire string if no _ is found.
std::string format_to_type(const std::string& format)
{
    std::string ret_val = "";
    for (size_t i = 0; i < format.length(); i++) {
        if (format[i] == '_') {
            return ret_val;
        }
        ret_val.append(1, format[i]);
    }

    return ret_val;
}

void configure_conv(
    converter::sptr conv, const std::string& in_type, const std::string& out_type)
{
    if (in_type == "sc16") {
        if (out_type == "fc32") {
            std::cout << "Setting scalar to 32767." << std::endl;
            conv->set_scalar(32767.);
            return;
        }
    }

    if (in_type == "fc32") {
        if (out_type == "sc16") {
            std::cout << "Setting scalar to 32767." << std::endl;
            conv->set_scalar(32767.);
            return;
        }
    }

    std::cout << "No configuration required." << std::endl;
}

template <typename T>
void init_random_vector_complex_float(std::vector<char>& buf_ptr, const size_t n_items)
{
    std::complex<T>* const buf = reinterpret_cast<std::complex<T>* const>(&buf_ptr[0]);
    for (size_t i = 0; i < n_items; i++) {
        buf[i] = std::complex<T>(
            T(std::rand() / (RAND_MAX / 2.0) - 1), T(std::rand() / (RAND_MAX / 2.0) - 1));
    }
}

template <typename T>
void init_random_vector_complex_int(std::vector<char>& buf_ptr, const size_t n_items)
{
    std::complex<T>* const buf = reinterpret_cast<std::complex<T>* const>(&buf_ptr[0]);
    for (size_t i = 0; i < n_items; i++) {
        buf[i] = std::complex<T>(T(std::rand()), T(std::rand()));
    }
}

struct item32_sc12_3x
{
    uint32_t line0;
    uint32_t line1;
    uint32_t line2;
};

template <typename T>
void init_random_vector_complex_sc12(std::vector<char>& buf_ptr, const size_t n_items)
{
    item32_sc12_3x* const buf = reinterpret_cast<item32_sc12_3x* const>(&buf_ptr[0]);
    if (n_items % 4)
        throw std::invalid_argument("");

    for (size_t i = 0; i < n_items / 4; i++) {
        int16_t iq[8];
        for (auto& k : iq)
            k = rand() & 0xfff;
        buf[i].line0 = iq[0] << 20 | iq[1] << 8 | iq[2] >> 4;
        buf[i].line1 = iq[2] << 28 | iq[3] << 16 | iq[4] << 4 | iq[5] >> 8;
        buf[i].line2 = iq[5] << 24 | iq[6] << 12 | iq[7] << 0;
    }
}

template <typename T>
void init_random_vector_real_int(std::vector<char>& buf_ptr, size_t n_items)
{
    T* const buf = reinterpret_cast<T* const>(&buf_ptr[0]);
    for (size_t i = 0; i < n_items; i++) {
        buf[i] = T(std::rand());
    }
}

// Fill a buffer with increasing numbers
template <typename T> void init_inc_vector(std::vector<char>& buf_ptr, size_t n_items)
{
    T* const buf = reinterpret_cast<T* const>(&buf_ptr[0]);
    for (size_t i = 0; i < n_items; i++) {
        buf[i] = T(i);
    }
}

void init_buffers(std::vector<std::vector<char>>& buf,
    const std::string& type,
    size_t bytes_per_item,
    buf_init_t buf_seed_mode)
{
    if (buf.empty()) {
        return;
    }
    size_t n_items = buf[0].size() / bytes_per_item;

    /// Fill with incrementing integers
    if (buf_seed_mode == INC) {
        for (size_t i = 0; i < buf.size(); i++) {
            if (type == "sc8") {
                init_inc_vector<std::complex<int8_t>>(buf[i], n_items);
            } else if (type == "sc16") {
                init_inc_vector<std::complex<int16_t>>(buf[i], n_items);
            } else if (type == "sc32") {
                init_inc_vector<std::complex<int32_t>>(buf[i], n_items);
            } else if (type == "fc32") {
                init_inc_vector<std::complex<float>>(buf[i], n_items);
            } else if (type == "fc64") {
                init_inc_vector<std::complex<double>>(buf[i], n_items);
            } else if (type == "s8") {
                init_inc_vector<int8_t>(buf[i], n_items);
            } else if (type == "s16") {
                init_inc_vector<int16_t>(buf[i], n_items);
            } else if (type == "item32") {
                init_inc_vector<uint32_t>(buf[i], n_items);
                init_random_vector_real_int<uint32_t>(buf[i], n_items);
            } else {
                throw uhd::runtime_error(
                    str(boost::format("Cannot handle data type: %s") % type));
            }
        }

        return;
    }

    assert(buf_seed_mode == RANDOM);

    /// Fill with random data
    for (size_t i = 0; i < buf.size(); i++) {
        if (type == "sc8") {
            init_random_vector_complex_int<int8_t>(buf[i], n_items);
        } else if (type == "sc12") {
            init_random_vector_complex_sc12<int16_t>(buf[i], n_items);
        } else if (type == "sc16") {
            init_random_vector_complex_int<int16_t>(buf[i], n_items);
        } else if (type == "sc32") {
            init_random_vector_complex_int<int32_t>(buf[i], n_items);
        } else if (type == "fc32") {
            init_random_vector_complex_float<float>(buf[i], n_items);
        } else if (type == "fc64") {
            init_random_vector_complex_float<double>(buf[i], n_items);
        } else if (type == "s8") {
            init_random_vector_real_int<int8_t>(buf[i], n_items);
        } else if (type == "s16") {
            init_random_vector_real_int<int16_t>(buf[i], n_items);
        } else if (type == "item32") {
            init_random_vector_real_int<uint32_t>(buf[i], n_items);
        } else {
            throw uhd::runtime_error(
                str(boost::format("Cannot handle data type: %s") % type));
        }
    }
}

// Returns time elapsed
double run_benchmark(converter::sptr conv,
    const std::vector<const void*>& input_buf_refs,
    const std::vector<void*>& output_buf_refs,
    size_t n_items,
    size_t iterations)
{
    boost::timer benchmark_timer;
    for (size_t i = 0; i < iterations; i++) {
        conv->conv(input_buf_refs, output_buf_refs, n_items);
    }
    return benchmark_timer.elapsed();
}

template <typename T> std::string void_ptr_to_hexstring(const void* v_ptr, size_t index)
{
    const T* ptr = reinterpret_cast<const T*>(v_ptr);
    return str(boost::format("%X") % ptr[index]);
}

std::string item_to_hexstring(const void* v_ptr, size_t index, const std::string& type)
{
    if (type == "fc32") {
        return void_ptr_to_hexstring<uint64_t>(v_ptr, index);
    } else if (type == "sc16" || type == "item32") {
        return void_ptr_to_hexstring<uint32_t>(v_ptr, index);
    } else if (type == "sc8" || type == "s16") {
        return void_ptr_to_hexstring<uint16_t>(v_ptr, index);
    } else if (type == "u8") {
        return void_ptr_to_hexstring<uint8_t>(v_ptr, index);
    } else {
        return str(boost::format("<unhandled data type: %s>") % type);
    }
}

std::string item_to_string(
    const void* v_ptr, size_t index, const std::string& type, const bool print_hex)
{
    if (print_hex) {
        return item_to_hexstring(v_ptr, index, type);
    }

    if (type == "sc16") {
        const std::complex<int16_t>* ptr =
            reinterpret_cast<const std::complex<int16_t>*>(v_ptr);
        return boost::lexical_cast<std::string>(ptr[index]);
    } else if (type == "sc8") {
        const std::complex<int8_t>* ptr =
            reinterpret_cast<const std::complex<int8_t>*>(v_ptr);
        return boost::lexical_cast<std::string>(ptr[index]);
    } else if (type == "fc32") {
        const std::complex<float>* ptr =
            reinterpret_cast<const std::complex<float>*>(v_ptr);
        return boost::lexical_cast<std::string>(ptr[index]);
    } else if (type == "item32") {
        const uint32_t* ptr = reinterpret_cast<const uint32_t*>(v_ptr);
        return boost::lexical_cast<std::string>(ptr[index]);
    } else if (type == "s16") {
        const int16_t* ptr = reinterpret_cast<const int16_t*>(v_ptr);
        return boost::lexical_cast<std::string>(ptr[index]);
    } else {
        return str(boost::format("<unhandled data type: %s>") % type);
    }
}

int UHD_SAFE_MAIN(int argc, char* argv[])
{
    std::string in_format, out_format;
    std::string priorities;
    std::string seed_mode;
    priority_type prio = -1, max_prio;
    size_t iterations, n_samples;
    size_t n_inputs, n_outputs;
    buf_init_t buf_seed_mode = RANDOM;

    /// Command line arguments
    po::options_description desc("Converter benchmark options:");
    // clang-format off
    desc.add_options()
        ("help", "help message")
        ("in",  po::value<std::string>(&in_format), "Input format (e.g. 'sc16')")
        ("out", po::value<std::string>(&out_format), "Output format (e.g. 'sc16')")
        ("samples",  po::value<size_t>(&n_samples)->default_value(1000000), "Number of samples per iteration")
        ("iterations",  po::value<size_t>(&iterations)->default_value(10000), "Number of iterations per benchmark")
        ("priorities", po::value<std::string>(&priorities)->default_value("default"), "Converter priorities. Can be 'default', 'all', or a comma-separated list of priorities.")
        ("max-prio", po::value<priority_type>(&max_prio)->default_value(4), "Largest available priority (advanced feature)")
        ("n-inputs",   po::value<size_t>(&n_inputs)->default_value(1),  "Number of input vectors")
        ("n-outputs",  po::value<size_t>(&n_outputs)->default_value(1), "Number of output vectors")
        ("debug-converter", "Skip benchmark and print conversion results. Implies iterations==1 and will only run on a single converter.")
        ("seed-mode", po::value<std::string>(&seed_mode)->default_value("random"), "How to initialize the data: random, incremental")
        ("hex", "When using debug mode, dump memory in hex")
    ;
    // clang-format on
    po::variables_map vm;
    po::store(po::parse_command_line(argc, argv, desc), vm);
    po::notify(vm);

    // print the help message
    if (vm.count("help")) {
        std::cout << boost::format("UHD Converter Benchmark Tool %s") % desc << std::endl
                  << std::endl;
        std::cout
            << "  Use this to benchmark or debug converters." << std::endl
            << "  When using as a benchmark tool, it will output the execution time\n"
               "  for every conversion run in CSV format to stdout. Every line between\n"
               "  the output delimiters {{{ }}} is of the format: <PRIO>,<TIME IN "
               "MILLISECONDS>\n"
               "  When using for converter debugging, every line is formatted as\n"
               "  <INPUT_VALUE>,<OUTPUT_VALUE>\n"
            << std::endl;
        return EXIT_FAILURE;
    }

    // Parse more arguments
    if (seed_mode == "incremental") {
        buf_seed_mode = INC;
    } else if (seed_mode == "random") {
        buf_seed_mode = RANDOM;
    } else {
        std::cout
            << "Invalid argument: --seed-mode must be either 'incremental' or 'random'."
            << std::endl;
    }

    bool debug_mode = vm.count("debug-converter") > 0;
    if (debug_mode) {
        iterations = 1;
    }

    /// Create the converter(s) //////////////////////////////////////////////
    id_type converter_id;
    converter_id.input_format  = in_format;
    converter_id.output_format = out_format;
    converter_id.num_inputs    = n_inputs;
    converter_id.num_outputs   = n_outputs;
    std::cout << "Requested converter format: " << converter_id.to_string() << std::endl;
    uhd::dict<priority_type, converter::sptr> conv_list;
    if (priorities == "default" or priorities.empty()) {
        try {
            conv_list[prio] =
                get_converter(converter_id, prio)(); // Can throw a uhd::key_error
        } catch (const uhd::key_error&) {
            std::cout << "No converters found." << std::endl;
            return EXIT_FAILURE;
        }
    } else if (priorities == "all") {
        for (priority_type i = 0; i < max_prio; i++) {
            try {
                // get_converter() returns a factory function, execute that immediately:
                converter::sptr conv_for_prio =
                    get_converter(converter_id, i)(); // Can throw a uhd::key_error
                conv_list[i] = conv_for_prio;
            } catch (...) {
                continue;
            }
        }
    } else { // Assume that priorities contains a list of prios (e.g. 0,2,3)
        std::vector<std::string> prios_in_list;
        boost::split(prios_in_list,
            priorities,
            boost::is_any_of(","), // Split at ,
            boost::token_compress_on // Avoid empty results
        );
        for (const std::string& this_prio : prios_in_list) {
            size_t prio_index = boost::lexical_cast<size_t>(this_prio);
            converter::sptr conv_for_prio =
                get_converter(converter_id, prio_index)(); // Can throw a uhd::key_error
            conv_list[prio_index] = conv_for_prio;
        }
    }
    std::cout << "Found " << conv_list.size() << " converter(s)." << std::endl;

    /// Create input and output buffers ///////////////////////////////////////
    // First, convert the types to plain types (e.g. sc16_item32_le -> sc16)
    const std::string in_type  = format_to_type(in_format);
    const std::string out_type = format_to_type(out_format);
    const size_t in_size       = get_bytes_per_item(in_type);
    const size_t out_size      = get_bytes_per_item(out_type);
    // Create the buffers and fill them with random data & zeros, respectively
    std::vector<std::vector<char>> input_buffers(
        n_inputs, std::vector<char>(in_size * n_samples, 0));
    std::vector<std::vector<char>> output_buffers(
        n_outputs, std::vector<char>(out_size * n_samples, 0));
    init_buffers(input_buffers, in_type, in_size, buf_seed_mode);
    // Create ref vectors for the converter:
    std::vector<const void*> input_buf_refs(n_inputs);
    std::vector<void*> output_buf_refs(n_outputs);
    for (size_t i = 0; i < n_inputs; i++) {
        input_buf_refs[i] = reinterpret_cast<const void*>(&input_buffers[i][0]);
    }
    for (size_t i = 0; i < n_outputs; i++) {
        output_buf_refs[i] = reinterpret_cast<void*>(&output_buffers[i][0]);
    }

    /// Final configurations to the converter:
    std::cout << "Configuring converters:" << std::endl;
    for (priority_type prio_i : conv_list.keys()) {
        std::cout << "* [" << prio_i << "]: ";
        configure_conv(conv_list[prio_i], in_type, out_type);
    }

    /// Run the benchmark for every converter ////////////////////////////////
    std::cout << "{{{" << std::endl;
    if (not debug_mode) {
        std::cout << "prio,duration_ms,avg_duration_ms,n_samples,iterations" << std::endl;
        for (priority_type prio_i : conv_list.keys()) {
            double duration = run_benchmark(conv_list[prio_i],
                input_buf_refs,
                output_buf_refs,
                n_samples,
                iterations);
            std::cout << boost::format("%i,%d,%d,%d,%d") % prio_i % (duration * 1000)
                             % (duration * 1000.0 / iterations) % n_samples % iterations
                      << std::endl;
        }
    }

    /// Or run debug mode, which runs one conversion and prints the results ////
    if (debug_mode) {
        // Only run on the first converter:
        run_benchmark(conv_list[conv_list.keys().at(0)],
            input_buf_refs,
            output_buf_refs,
            n_samples,
            iterations);
        for (size_t i = 0; i < n_samples; i++) {
            std::cout << item_to_string(input_buf_refs[0], i, in_type, vm.count("hex"))
                      << ";"
                      << item_to_string(reinterpret_cast<const void*>(output_buf_refs[0]),
                             i,
                             out_type,
                             vm.count("hex"))
                      << std::endl;
        }
    }
    std::cout << "}}}" << std::endl;

    return EXIT_SUCCESS;
}