1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
|
//
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "../common/mock_link.hpp"
#include <uhdlib/transport/rx_streamer_impl.hpp>
#include <boost/test/unit_test.hpp>
#include <complex>
#include <iostream>
#include <memory>
namespace uhd { namespace transport {
/*!
* Contents of mock packet header
*/
struct mock_header_t
{
bool eob = false;
bool eov = false;
bool has_tsf = false;
uint64_t tsf = 0;
size_t payload_bytes = 0;
bool ignore_seq = true;
size_t seq_num = 0;
};
/*!
* Mock rx data xport which doesn't use I/O service, and just interacts with
* the link directly.
*/
class mock_rx_data_xport
{
public:
using uptr = std::unique_ptr<mock_rx_data_xport>;
using buff_t = uhd::transport::frame_buff;
//! Values extracted from received RX data packets
struct packet_info_t
{
bool eob = false;
bool eov = false;
bool has_tsf = false;
uint64_t tsf = 0;
size_t payload_bytes = 0;
const void* payload = nullptr;
};
mock_rx_data_xport(mock_recv_link::sptr recv_link) : _recv_link(recv_link) {}
std::tuple<frame_buff::uptr, packet_info_t, bool> get_recv_buff(
const int32_t timeout_ms)
{
frame_buff::uptr buff = _recv_link->get_recv_buff(timeout_ms);
if(buff.get() == nullptr) {
// No samples available - simulate a timeout for the duration,
// then return a nullptr for the buffer. This will ultimately
// return an TIMEOUT to the upper-level receive layers.
std::this_thread::sleep_for(std::chrono::milliseconds(timeout_ms));
return std::make_tuple(
nullptr,
packet_info_t{},
false);
}
mock_header_t header = *(reinterpret_cast<mock_header_t*>(buff->data()));
packet_info_t info;
info.eob = header.eob;
info.eov = header.eov;
info.has_tsf = header.has_tsf;
info.tsf = header.tsf;
info.payload_bytes = header.payload_bytes;
info.payload = reinterpret_cast<uint8_t*>(buff->data()) + sizeof(mock_header_t);
const uint8_t* pkt_end =
reinterpret_cast<uint8_t*>(buff->data()) + buff->packet_size();
const size_t pyld_pkt_len =
pkt_end - reinterpret_cast<const uint8_t*>(info.payload);
if (pyld_pkt_len < info.payload_bytes) {
_recv_link->release_recv_buff(std::move(buff));
throw uhd::value_error("Bad header or invalid packet length.");
}
const bool seq_match = header.seq_num == _seq_num;
const bool seq_error = !header.ignore_seq && !seq_match;
_seq_num = header.seq_num + 1;
return std::make_tuple(std::move(buff), info, seq_error);
}
void release_recv_buff(frame_buff::uptr buff)
{
_recv_link->release_recv_buff(std::move(buff));
}
size_t get_mtu() const
{
return _recv_link->get_recv_frame_size();
}
size_t get_chdr_hdr_len() const
{
return sizeof(mock_header_t);
}
size_t get_max_payload_size() const
{
return get_mtu() - get_chdr_hdr_len();
}
private:
mock_recv_link::sptr _recv_link;
size_t _seq_num = 0;
};
/*!
* Mock rx streamer for testing
*/
class mock_rx_streamer : public rx_streamer_impl<mock_rx_data_xport>
{
public:
mock_rx_streamer(const size_t num_chans, const uhd::stream_args_t& stream_args)
: rx_streamer_impl(num_chans, stream_args)
{
}
void issue_stream_cmd(const stream_cmd_t&) override {}
void set_tick_rate(double rate)
{
rx_streamer_impl::set_tick_rate(rate);
}
void set_samp_rate(double rate)
{
rx_streamer_impl::set_samp_rate(rate);
}
void set_scale_factor(const size_t chan, const double scale_factor)
{
rx_streamer_impl::set_scale_factor(chan, scale_factor);
}
};
}} // namespace uhd::transport
using namespace uhd::transport;
using rx_streamer = rx_streamer_impl<mock_rx_data_xport>;
static const double TICK_RATE = 100e6;
static const double SAMP_RATE = 10e6;
static const size_t FRAME_SIZE = 1000;
static const double SCALE_FACTOR = 2;
/*!
* Helper functions
*/
static std::vector<mock_recv_link::sptr> make_links(const size_t num)
{
const mock_recv_link::link_params params = {FRAME_SIZE, 1};
std::vector<mock_recv_link::sptr> links;
for (size_t i = 0; i < num; i++) {
links.push_back(std::make_shared<mock_recv_link>(params));
}
return links;
}
static std::shared_ptr<mock_rx_streamer> make_rx_streamer(
std::vector<mock_recv_link::sptr> recv_links,
const std::string& host_format,
const std::string& otw_format = "sc16")
{
const uhd::stream_args_t stream_args(host_format, otw_format);
auto streamer = std::make_shared<mock_rx_streamer>(recv_links.size(), stream_args);
streamer->set_tick_rate(TICK_RATE);
streamer->set_samp_rate(SAMP_RATE);
for (size_t i = 0; i < recv_links.size(); i++) {
mock_rx_data_xport::uptr xport(
std::make_unique<mock_rx_data_xport>(recv_links[i]));
streamer->set_scale_factor(i, SCALE_FACTOR);
streamer->connect_channel(i, std::move(xport));
}
return streamer;
}
static void push_back_recv_packet(mock_recv_link::sptr recv_link,
mock_header_t header,
size_t num_samps,
uint16_t start_data = 0)
{
// Allocate buffer
const size_t pyld_bytes = num_samps * sizeof(std::complex<uint16_t>);
const size_t buff_len = sizeof(header) + pyld_bytes;
boost::shared_array<uint8_t> data(new uint8_t[buff_len]);
// Write header to buffer
header.payload_bytes = pyld_bytes;
*(reinterpret_cast<mock_header_t*>(data.get())) = header;
// Write data to buffer
auto data_ptr =
reinterpret_cast<std::complex<uint16_t>*>(data.get() + sizeof(header));
for (size_t i = 0; i < num_samps; i++) {
uint16_t val = (start_data + i) * 2;
data_ptr[i] = std::complex<uint16_t>(val, val + 1);
}
// Push back buffer for link to recv
recv_link->push_back_recv_packet(data, buff_len);
}
/*!
* Tests
*/
BOOST_AUTO_TEST_CASE(test_recv_one_channel_one_packet)
{
const size_t NUM_PKTS_TO_TEST = 5;
const std::string format("fc32");
auto recv_links = make_links(1);
auto streamer = make_rx_streamer(recv_links, format);
const size_t num_samps = 20;
std::vector<std::complex<float>> buff(num_samps);
uhd::rx_metadata_t metadata;
for (size_t i = 0; i < NUM_PKTS_TO_TEST; i++) {
const bool even_iteration = (i % 2 == 0);
const bool odd_iteration = (i % 2 != 0);
mock_header_t header;
header.eob = even_iteration;
header.has_tsf = odd_iteration;
header.tsf = i;
push_back_recv_packet(recv_links[0], header, num_samps);
std::cout << "receiving packet " << i << std::endl;
size_t num_samps_ret =
streamer->recv(buff.data(), buff.size(), metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, num_samps);
BOOST_CHECK_EQUAL(metadata.end_of_burst, even_iteration);
BOOST_CHECK_EQUAL(metadata.has_time_spec, odd_iteration);
BOOST_CHECK_EQUAL(metadata.time_spec.to_ticks(TICK_RATE), i);
for (size_t j = 0; j < num_samps; j++) {
const auto value =
std::complex<float>((j * 2) * SCALE_FACTOR, (j * 2 + 1) * SCALE_FACTOR);
BOOST_CHECK_EQUAL(value, buff[j]);
}
}
}
BOOST_AUTO_TEST_CASE(test_recv_one_channel_multi_packet)
{
const size_t NUM_BUFFS_TO_TEST = 5;
const std::string format("fc64");
auto recv_links = make_links(1);
auto streamer = make_rx_streamer(recv_links, format);
const size_t spp = streamer->get_max_num_samps();
const size_t num_samps = spp * 4;
std::vector<std::complex<double>> buff(num_samps);
uhd::rx_metadata_t metadata;
for (size_t i = 0; i < NUM_BUFFS_TO_TEST; i++) {
mock_header_t header;
header.eob = false;
header.has_tsf = true;
header.tsf = i;
size_t samps_written = 0;
while (samps_written < num_samps) {
size_t samps_to_write = std::min(num_samps - samps_written, spp);
push_back_recv_packet(recv_links[0], header, samps_to_write, samps_written);
samps_written += samps_to_write;
}
std::cout << "receiving packet " << i << std::endl;
size_t num_samps_ret =
streamer->recv(buff.data(), buff.size(), metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, num_samps);
BOOST_CHECK_EQUAL(metadata.end_of_burst, false);
BOOST_CHECK_EQUAL(metadata.has_time_spec, true);
BOOST_CHECK_EQUAL(metadata.time_spec.to_ticks(TICK_RATE), i);
for (size_t j = 0; j < num_samps; j++) {
const auto value =
std::complex<double>((j * 2) * SCALE_FACTOR, (j * 2 + 1) * SCALE_FACTOR);
BOOST_CHECK_EQUAL(value, buff[j]);
}
}
}
BOOST_AUTO_TEST_CASE(test_recv_one_channel_multi_packet_with_eob)
{
// EOB should terminate a multi-packet recv, test that it does
const std::string format("sc16");
auto recv_links = make_links(1);
auto streamer = make_rx_streamer(recv_links, format);
const size_t num_packets = 4;
const size_t spp = streamer->get_max_num_samps();
const size_t num_samps = spp * num_packets;
std::vector<std::complex<double>> buff(num_samps);
uhd::rx_metadata_t metadata;
// Queue 4 packets, with eob set in every other packet
for (size_t i = 0; i < num_packets; i++) {
mock_header_t header;
header.has_tsf = false;
header.eob = (i % 2) != 0;
push_back_recv_packet(recv_links[0], header, spp);
}
// Now call recv and check that eob terminates a recv call
for (size_t i = 0; i < num_packets / 2; i++) {
std::cout << "receiving packet " << i << std::endl;
size_t num_samps_ret =
streamer->recv(buff.data(), buff.size(), metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, spp * 2);
BOOST_CHECK_EQUAL(metadata.end_of_burst, true);
BOOST_CHECK_EQUAL(metadata.has_time_spec, false);
}
}
BOOST_AUTO_TEST_CASE(test_recv_two_channel_one_packet)
{
const size_t NUM_PKTS_TO_TEST = 5;
const std::string format("sc16");
const size_t num_chans = 2;
auto recv_links = make_links(num_chans);
auto streamer = make_rx_streamer(recv_links, format);
const size_t num_samps = 20;
std::vector<std::vector<std::complex<uint16_t>>> buffer(num_chans);
std::vector<void*> buffers;
for (size_t i = 0; i < num_chans; i++) {
buffer[i].resize(num_samps);
buffers.push_back(&buffer[i].front());
}
uhd::rx_metadata_t metadata;
for (size_t i = 0; i < NUM_PKTS_TO_TEST; i++) {
const bool even_iteration = (i % 2 == 0);
const bool odd_iteration = (i % 2 != 0);
mock_header_t header;
header.eob = even_iteration;
header.has_tsf = odd_iteration;
header.tsf = i;
size_t samps_pushed = 0;
for (size_t ch = 0; ch < num_chans; ch++) {
push_back_recv_packet(recv_links[ch], header, num_samps, samps_pushed);
samps_pushed += num_samps;
}
std::cout << "receiving packet " << i << std::endl;
size_t num_samps_ret = streamer->recv(buffers, num_samps, metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, num_samps);
BOOST_CHECK_EQUAL(metadata.end_of_burst, even_iteration);
BOOST_CHECK_EQUAL(metadata.has_time_spec, odd_iteration);
BOOST_CHECK_EQUAL(metadata.time_spec.to_ticks(TICK_RATE), i);
size_t samps_checked = 0;
for (size_t ch = 0; ch < num_chans; ch++) {
for (size_t samp = 0; samp < num_samps; samp++) {
const size_t n = samps_checked + samp;
const auto value = std::complex<uint16_t>((n * 2), (n * 2 + 1));
BOOST_CHECK_EQUAL(value, buffer[ch][samp]);
}
samps_checked += num_samps;
}
}
}
BOOST_AUTO_TEST_CASE(test_recv_one_channel_packet_fragment)
{
const size_t NUM_PKTS_TO_TEST = 5;
const std::string format("fc32");
auto recv_links = make_links(1);
auto streamer = make_rx_streamer(recv_links, format);
// Push back five packets, then read them 1/4 of a packet at a time
const size_t spp = streamer->get_max_num_samps();
const size_t reads_per_packet = 4;
const size_t num_samps = spp / reads_per_packet;
for (size_t i = 0; i < NUM_PKTS_TO_TEST; i++) {
mock_header_t header;
header.eob = true;
header.has_tsf = true;
header.tsf = 0;
push_back_recv_packet(recv_links[0], header, num_samps * reads_per_packet);
}
std::vector<std::complex<float>> buff(num_samps);
uhd::rx_metadata_t metadata;
for (size_t i = 0; i < NUM_PKTS_TO_TEST; i++) {
std::cout << "receiving packet " << i << std::endl;
size_t total_samps_read = 0;
for (size_t j = 0; j < reads_per_packet; j++) {
size_t num_samps_ret =
streamer->recv(buff.data(), buff.size(), metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, num_samps);
BOOST_CHECK_EQUAL(metadata.has_time_spec, true);
BOOST_CHECK_EQUAL(metadata.end_of_burst, true);
BOOST_CHECK_EQUAL(metadata.more_fragments, j != reads_per_packet - 1);
BOOST_CHECK_EQUAL(metadata.fragment_offset, total_samps_read);
const size_t ticks_per_sample = static_cast<size_t>(TICK_RATE / SAMP_RATE);
const size_t expected_ticks = ticks_per_sample * total_samps_read;
BOOST_CHECK_EQUAL(metadata.time_spec.to_ticks(TICK_RATE), expected_ticks);
for (size_t samp = 0; samp < num_samps; samp++) {
const size_t pkt_idx = samp + total_samps_read;
const auto value = std::complex<float>(
(pkt_idx * 2) * SCALE_FACTOR, (pkt_idx * 2 + 1) * SCALE_FACTOR);
BOOST_CHECK_EQUAL(value, buff[samp]);
}
total_samps_read += num_samps_ret;
}
}
}
BOOST_AUTO_TEST_CASE(test_recv_seq_error)
{
// Test that when we get a sequence error the error is returned in the
// metadata with a time spec that corresponds to the time spec of the
// last sample in the previous packet plus one sample clock. Test that
// the packet that causes the sequence error is not discarded.
const size_t NUM_PKTS_TO_TEST = 2;
const std::string format("fc32");
auto recv_links = make_links(1);
auto streamer = make_rx_streamer(recv_links, format);
const size_t num_samps = 20;
std::vector<std::complex<float>> buff(num_samps);
uhd::rx_metadata_t metadata;
size_t seq_num = 0;
size_t tsf = 0;
for (size_t i = 0; i < NUM_PKTS_TO_TEST; i++) {
mock_header_t header;
header.eob = false;
header.has_tsf = true;
header.ignore_seq = false;
// Push back three packets but skip a seq_num after the second
header.seq_num = seq_num++;
header.tsf = tsf;
push_back_recv_packet(recv_links[0], header, num_samps);
tsf += num_samps;
header.seq_num = seq_num++;
header.tsf = tsf;
push_back_recv_packet(recv_links[0], header, num_samps);
seq_num++; // dropped packet
tsf += num_samps;
header.seq_num = seq_num++;
header.tsf = tsf;
push_back_recv_packet(recv_links[0], header, num_samps);
// First two reads should succeed
size_t num_samps_ret =
streamer->recv(buff.data(), buff.size(), metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, num_samps);
num_samps_ret = streamer->recv(buff.data(), buff.size(), metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, num_samps);
size_t prev_tsf = metadata.time_spec.to_ticks(TICK_RATE);
size_t expected_tsf = prev_tsf + num_samps * (TICK_RATE / SAMP_RATE);
// Third read should be a sequence error
num_samps_ret = streamer->recv(buff.data(), buff.size(), metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, 0);
BOOST_CHECK_EQUAL(metadata.error_code, uhd::rx_metadata_t::ERROR_CODE_OVERFLOW);
BOOST_CHECK_EQUAL(metadata.out_of_sequence, true);
size_t metadata_tsf = metadata.time_spec.to_ticks(TICK_RATE);
BOOST_CHECK_EQUAL(metadata_tsf, expected_tsf);
// Next read should succeed
num_samps_ret = streamer->recv(buff.data(), buff.size(), metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, num_samps);
BOOST_CHECK_EQUAL(metadata.error_code, uhd::rx_metadata_t::ERROR_CODE_NONE);
BOOST_CHECK_EQUAL(metadata.out_of_sequence, false);
}
}
BOOST_AUTO_TEST_CASE(test_recv_bad_packet)
{
// Test that when we receive a packet with invalid chdr header or length
// the streamer returns the correct error in meatadata.
auto push_back_bad_packet = [](mock_recv_link::sptr recv_link) {
mock_header_t header;
header.payload_bytes = 1000;
// Allocate a buffer that is too small for the payload
const size_t buff_len = 100;
boost::shared_array<uint8_t> data(new uint8_t[buff_len]);
// Write header to buffer
*(reinterpret_cast<mock_header_t*>(data.get())) = header;
// Push back buffer for link to recv
recv_link->push_back_recv_packet(data, buff_len);
};
const std::string format("fc32");
auto recv_links = make_links(1);
auto streamer = make_rx_streamer(recv_links, format);
const size_t num_samps = 20;
std::vector<std::complex<float>> buff(num_samps);
uhd::rx_metadata_t metadata;
mock_header_t header;
// Push back a regular packet
push_back_recv_packet(recv_links[0], header, num_samps);
// Push back a bad packet
push_back_bad_packet(recv_links[0]);
// Push back another regular packet
push_back_recv_packet(recv_links[0], header, num_samps);
// First read should succeed
size_t num_samps_ret = streamer->recv(buff.data(), buff.size(), metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, num_samps);
// Second read should be an error
num_samps_ret = streamer->recv(buff.data(), buff.size(), metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, 0);
BOOST_CHECK_EQUAL(metadata.error_code, uhd::rx_metadata_t::ERROR_CODE_BAD_PACKET);
// Third read should succeed
num_samps_ret = streamer->recv(buff.data(), buff.size(), metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, num_samps);
BOOST_CHECK_EQUAL(metadata.error_code, uhd::rx_metadata_t::ERROR_CODE_NONE);
}
BOOST_AUTO_TEST_CASE(test_recv_multi_channel_no_tsf)
{
// Test that we can receive packets without tsf. Start by pushing
// a packet with a tsf followed by a few packets without.
const size_t NUM_PKTS_TO_TEST = 6;
const std::string format("fc64");
const size_t num_chans = 10;
auto recv_links = make_links(num_chans);
auto streamer = make_rx_streamer(recv_links, format);
const size_t num_samps = 21;
std::vector<std::vector<std::complex<double>>> buffer(num_chans);
std::vector<void*> buffers;
for (size_t i = 0; i < num_chans; i++) {
buffer[i].resize(num_samps);
buffers.push_back(&buffer[i].front());
}
uhd::rx_metadata_t metadata;
for (size_t i = 0; i < NUM_PKTS_TO_TEST; i++) {
mock_header_t header;
header.eob = (i == NUM_PKTS_TO_TEST - 1);
header.has_tsf = (i == 0);
header.tsf = 500;
for (size_t ch = 0; ch < num_chans; ch++) {
push_back_recv_packet(recv_links[ch], header, num_samps);
}
size_t num_samps_ret = streamer->recv(buffers, num_samps, metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, num_samps);
BOOST_CHECK_EQUAL(metadata.end_of_burst, i == NUM_PKTS_TO_TEST - 1);
BOOST_CHECK_EQUAL(metadata.has_time_spec, i == 0);
}
}
BOOST_AUTO_TEST_CASE(test_recv_multi_channel_seq_error)
{
// Test that the streamer handles dropped packets correctly by injecting
// a sequence error in one channel. The streamer should discard
// corresponding packets from all other channels.
const std::string format("fc64");
const size_t num_chans = 100;
auto recv_links = make_links(num_chans);
auto streamer = make_rx_streamer(recv_links, format);
const size_t num_samps = 99;
std::vector<std::vector<std::complex<double>>> buffer(num_chans);
std::vector<void*> buffers;
for (size_t i = 0; i < num_chans; i++) {
buffer[i].resize(num_samps);
buffers.push_back(&buffer[i].front());
}
for (size_t ch = 0; ch < num_chans; ch++) {
mock_header_t header;
header.eob = false;
header.has_tsf = true;
header.tsf = 0;
header.ignore_seq = false;
header.seq_num = 0;
// Drop a packet from an arbitrary channel right at the start
if (ch != num_chans / 2) {
push_back_recv_packet(recv_links[ch], header, num_samps);
}
// Add a regular packet to check the streamer drops the first
header.seq_num++;
header.tsf++;
push_back_recv_packet(recv_links[ch], header, num_samps);
// Drop a packet from the first channel
header.seq_num++;
header.tsf++;
if (ch != 0) {
push_back_recv_packet(recv_links[ch], header, num_samps);
}
// Add a regular packet
header.seq_num++;
header.tsf++;
push_back_recv_packet(recv_links[ch], header, num_samps);
// Drop a few packets from the last channel
for (size_t j = 0; j < 10; j++) {
header.seq_num++;
header.tsf++;
if (ch != num_chans - 1) {
push_back_recv_packet(recv_links[ch], header, num_samps);
}
}
// Add a regular packet
header.seq_num++;
header.tsf++;
push_back_recv_packet(recv_links[ch], header, num_samps);
}
uhd::rx_metadata_t metadata;
// First recv should result in error
size_t num_samps_ret = streamer->recv(buffers, num_samps, metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, 0);
BOOST_CHECK_EQUAL(metadata.error_code, uhd::rx_metadata_t::ERROR_CODE_OVERFLOW);
BOOST_CHECK_EQUAL(metadata.out_of_sequence, true);
// Packet with tsf == 1 should be returned next
num_samps_ret = streamer->recv(buffers, num_samps, metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, num_samps);
BOOST_CHECK_EQUAL(metadata.time_spec.to_ticks(TICK_RATE), 1);
// Next recv should result in error
num_samps_ret = streamer->recv(buffers, num_samps, metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, 0);
BOOST_CHECK_EQUAL(metadata.error_code, uhd::rx_metadata_t::ERROR_CODE_OVERFLOW);
BOOST_CHECK_EQUAL(metadata.out_of_sequence, true);
// Packet with tsf == 3 should be returned next
num_samps_ret = streamer->recv(buffers, num_samps, metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, num_samps);
BOOST_CHECK_EQUAL(metadata.time_spec.to_ticks(TICK_RATE), 3);
// Next recv should result in error
num_samps_ret = streamer->recv(buffers, num_samps, metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, 0);
BOOST_CHECK_EQUAL(metadata.error_code, uhd::rx_metadata_t::ERROR_CODE_OVERFLOW);
BOOST_CHECK_EQUAL(metadata.out_of_sequence, true);
// Packet with tsf == 14 should be returned next
num_samps_ret = streamer->recv(buffers, num_samps, metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, num_samps);
BOOST_CHECK_EQUAL(metadata.time_spec.to_ticks(TICK_RATE), 14);
}
BOOST_AUTO_TEST_CASE(test_recv_alignment_error)
{
// Test that the alignment procedure returns an alignment error if it can't
// time align packets.
const std::string format("fc64");
const size_t num_chans = 4;
auto recv_links = make_links(num_chans);
auto streamer = make_rx_streamer(recv_links, format);
const size_t num_samps = 2;
std::vector<std::vector<std::complex<double>>> buffer(num_chans);
std::vector<void*> buffers;
for (size_t i = 0; i < num_chans; i++) {
buffer[i].resize(num_samps);
buffers.push_back(&buffer[i].front());
}
uhd::rx_metadata_t metadata;
mock_header_t header;
header.eob = true;
header.has_tsf = true;
header.tsf = 500;
for (size_t ch = 0; ch < num_chans; ch++) {
push_back_recv_packet(recv_links[ch], header, num_samps);
}
size_t num_samps_ret = streamer->recv(buffers, num_samps, metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, num_samps);
BOOST_CHECK_EQUAL(metadata.end_of_burst, true);
BOOST_CHECK_EQUAL(metadata.has_time_spec, true);
for (size_t pkt = 0; pkt < uhd::transport::ALIGNMENT_FAILURE_THRESHOLD; pkt++) {
header.tsf = header.tsf + num_samps;
for (size_t ch = 0; ch < num_chans; ch++) {
if (ch == num_chans - 1) {
// Misalign this time stamp
header.tsf += 1;
}
push_back_recv_packet(recv_links[ch], header, num_samps);
}
}
num_samps_ret = streamer->recv(buffers, num_samps, metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, 0);
BOOST_CHECK_EQUAL(metadata.error_code, uhd::rx_metadata_t::ERROR_CODE_ALIGNMENT);
}
BOOST_AUTO_TEST_CASE(test_recv_one_channel_one_eov)
{
const size_t NUM_PACKETS = 5;
const std::string format("fc64");
auto recv_links = make_links(1);
auto streamer = make_rx_streamer(recv_links, format);
const size_t spp = streamer->get_max_num_samps();
const size_t num_samps = spp * NUM_PACKETS;
std::vector<std::complex<double>> buff(num_samps);
for (size_t i = 0; i < NUM_PACKETS; i++) {
mock_header_t header;
header.eob = false;
header.has_tsf = true;
header.tsf = i;
for (size_t j = 0; j < NUM_PACKETS; j++) {
header.eov = (i == j);
push_back_recv_packet(recv_links[0], header, spp);
}
uhd::rx_metadata_t metadata;
// Create a vector with storage for two EOVs even though we expect
// only one, since filling the EOV vector results in an early
// termination of `recv()` (which we don't want here).
std::vector<size_t> eov_positions(2);
metadata.eov_positions = eov_positions.data();
metadata.eov_positions_size = eov_positions.size();
std::cout << "receiving packet " << i << std::endl;
size_t num_samps_ret =
streamer->recv(buff.data(), buff.size(), metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, num_samps);
BOOST_CHECK_EQUAL(metadata.eov_positions, eov_positions.data());
BOOST_CHECK_EQUAL(metadata.eov_positions_size, eov_positions.size());
BOOST_CHECK_EQUAL(metadata.eov_positions_count, 1);
BOOST_CHECK_EQUAL(eov_positions[0], (i + 1) * spp);
}
}
BOOST_AUTO_TEST_CASE(test_recv_two_channel_aggregate_eov)
{
const size_t NUM_PACKETS = 20;
const std::string format("fc64");
// This vector defines which packets in each channel's mock link will
// signal EOV in their packet headers.
//
// For example, for a vector with 3 values, [3, 5, 8]:
// Link 0 packets with EOV: 3rd, 6th, 9th, 12th, 15th, ...
// Link 1 packets with EOV: 5th, 10th, 15th, 20th, ...
// Link 2 packets with EOV: 8th, 16th, 24th, 32nd, ...
const std::vector<size_t> eov_every_nth_packet{3, 5};
const size_t num_chans = eov_every_nth_packet.size();
auto recv_links = make_links(num_chans);
auto streamer = make_rx_streamer(recv_links, format);
const size_t spp = streamer->get_max_num_samps();
const size_t num_samps = spp * NUM_PACKETS;
std::vector<std::vector<std::complex<double>>> buffer(num_chans);
std::vector<void*> buffers;
for (size_t i = 0; i < num_chans; i++) {
buffer[i].resize(num_samps);
buffers.push_back(&buffer[i].front());
}
mock_header_t header;
std::vector<size_t> expected_eov_offsets;
for (size_t i = 0; i < NUM_PACKETS; i++) {
bool eov = false;
for (size_t ch = 0; ch < num_chans; ch++) {
header.eob = false;
header.has_tsf = false;
header.eov = ((i + 1) % eov_every_nth_packet[ch]) == 0;
push_back_recv_packet(recv_links[ch], header, spp);
eov |= header.eov;
}
if (eov) {
expected_eov_offsets.push_back(spp * (i + 1));
}
}
uhd::rx_metadata_t metadata;
std::vector<size_t> eov_positions(expected_eov_offsets.size() + 1);
metadata.eov_positions = eov_positions.data();
metadata.eov_positions_size = eov_positions.size();
size_t num_samps_ret = streamer->recv(buffers, num_samps, metadata, 1.0, false);
BOOST_CHECK_EQUAL(num_samps_ret, num_samps);
BOOST_CHECK_EQUAL(metadata.eov_positions_count, expected_eov_offsets.size());
for (size_t i = 0; i < metadata.eov_positions_count; i++) {
BOOST_CHECK_EQUAL(expected_eov_offsets[i], metadata.eov_positions[i]);
}
}
// A call to `recv()` of zero samples should return immediately, regardless of
// the timeout parameter, and not return a timeout error despite the potential
// absence of a packet on the wire.
BOOST_AUTO_TEST_CASE(test_recv_zero_samples)
{
const std::string format("fc64");
auto recv_links = make_links(1);
auto streamer = make_rx_streamer(recv_links, format);
std::vector<std::complex<double>> buff(1);
uhd::rx_metadata_t metadata;
const auto start_time = std::chrono::steady_clock::now();
const size_t num_samps_ret =
streamer->recv(buff.data(), 0, metadata, 10.0, false);
const auto end_time = std::chrono::steady_clock::now();
const std::chrono::duration<double> elapsed_time(end_time - start_time);
BOOST_CHECK_EQUAL(num_samps_ret, 0);
BOOST_CHECK_EQUAL(metadata.error_code, uhd::rx_metadata_t::ERROR_CODE_NONE);
// Ensure that the `recv()` of zero samples didn't wait the requested
// timeout period of 10 seconds.
BOOST_CHECK_LE(elapsed_time.count(), 0.5);
}
|